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ABSTRACT / This paper presents a new habitat suitability
modeling method whose main properties are as follows: (1) It
is based on the density of observation points in the environ-
mental space, which enables it to fit complex distributions
{e.g. nongaussian, bimodal, asymmetrical, etc.). (2) This den-
sity is modeled by computing the geometric mean to all ob-
servation points, which we show to be a good trade-off be-
tween goodness of fit and prediction power. (3) It does not
need any absence information, which is generally difficult to

collect and of dubious reliability. (4) The environmental space
is represented either by an expert-selection of standardized
variables or the axes of a factor analysis [in this paper we used
the Ecological Nighe Factor Analysis (ENFA)].We first explain
the details of the geometric mean algorithm and then we ap-
ply it to the bearded vutture (Gypaetus barbatus) habitat in the
Swiss Alps. The results are compared to those obtained by
the “median algorithm” and tested by jack-knife cross-valida-
tion. We also discuss other related algorithms (BIOCLIM, HABI-
TAT, and DOMAIN). All these analyses were implemented into
and performed with the ecology-oriented GIS software BIOMAP-
PER 2.0.The results show the geometric mean to perform better
than the median algorithm, as it produces a tighter fit to the bi-
modal distribution of the bearded vutture in the environmental
space. However, the “median algorithm” being quicker, it could
be preferred when modeling more usual distribution.

Habitat suitability (HS) modeling is inherently
based on the Hutchinsonian concept of ecological
niche (Hutchinson 1957). All habitat suitability model-
ing methods (for a review, see Guisan and Zimmer-
mann 2000) try to predict species occurrence on the
basis of ecogeographical predictors. Among them, the
environmental-envelope based ones are conceptually
very close to the niche theory as they try to delineate in
the space of the ecogeographical variables—which
need to be quantitative—the hypersurface (or enve-
lope) that circumscribes all suitable conditions. In a
one-dimensional ecogeographical space, say altitude, it
simply means to find the range allowing the species to
persist (e.g, from 400 to 700 ms above see level). In a
multidimensional space, the problem becomes more
complex as the species may be sensitive to particular
interactions or a combination of the variables. Practi-
cally, the suitable conditions are identified by the posi-
tion, in the ecogeographical space, of the sites where
the focal species has been recorded. Intuitively, occur-
rence density in this space is correlated to habitat suit-
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ability, and all the environmental-envelope methods
are based on this property.

As computers became more and more powerful,
several methods developed that address this problem
with increasing detail. The method BIOCLIM (Busby
1991) simply framed the species occurrences into
bounding hyperboxes; it earned a great success and was
widely used in Australia (Busby 1988, Carpenter and
others 1993). Nevertheless, the bounding-box ap-
proach obviously suffers from its coarseness when the
species distribution is influenced by a combination of
the ecogeographical predictors rather than by each one
individually (Carpenter and others 1993). Walker and
Cocks (1991) addressed this problem in the program
HABITAT, a complex algorithm based on multidimen-
sional convex subenvelopes narrowly fitted around the
data, according to ecogeographical variables selected
through a classification and regression tree (CART)
approach. Both methods are basically binary classifiers,
discriminating the sites into suitable or unsuitable (nev-
ertheless, core and marginal envelopes can be delin-
eated).

Carpenter and others (1993) compared the two pre-
cedent methods and showed that BIOCLIM tended to
be too “permissive” in its predictions while HABITAT
was far too restrictive; they proposed a new method,
named DOMAIN, which computes for all grid points of
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the studied area a similarity coefficient based on the
Gower’s metric (Gower 1971) (equation 1):

ZIA B|

range;

(1)

where dg is the Gower’s distance between the points A
and B, p is the number of dimensions in the ecogeo-

graphical space, and range; is the statistic range of the -

ith dimension (maximum — minimum). This distance
is thus simply the arithmetic mean of the differences
between the two points in each dimension, this differ-
ence being range-standardized to equalize the contri-
bution from each predictor. The similarity coefficient is
the inverse of the Gower’s distance to the closest spe-
cies point. By computing this coefficient for all grid
points of the study area, it is possible to map the habitat
suitability by a quantitative value. The main drawback
of the DOMAIN procedure is that it does not take the
density (in the ecogeographical space) of observations
into account, exposing itself to being misled by outliers.

Hirzel and others (2002a) took into account the
observation density in the software BIOMAPPER 2.0
median algorithm (Hirzel and others 2002b). In this
method, the ecogeographical predictors are first sum-
marized into a few uncorrelated factors by the Ecolog-
ical Niche Factor Analysis (ENFA)—a procedure simi-
lar to the Principal Component Analysis (PCA)—which
define the space where the environmental envelope will
be delineated. The frequency distribution and the me-
dian of the observation sites are computed along each
factor. Every grid cell can be compared to these distri-
butions and the further the cell is from the medians,
the less suitable it is. The habitat suitability index is
based on this principle, by computing a weighted aver-
age of these frequency-based distances to medians. This
process is in principle quite similar to the DOMAIN
process except that the similarity coefficient depends
on the density of recorded sites in the ecogeographical
space rather than on each individual point.

In this paper, we present a new method based on a
distance geometric mean metric, which computes the
habitat suitability in the environmental space without
assuming any distribution of the species points, there-
fore solving the problems encountered both by the
DOMAIN and median algonthms This new algorithm
has been implemented in BIOMAPPER 2.0 (http://
www.unil.ch/biomapper) and can therefore be easily
compared with the above-mentioned algorithms.

As an illustration, both the median and geometric
mean algorithms have been applied to model the hab-
itat suitability of the bearded vulture (Gypaetus barbatus)
in Valais (Swiss Alps). This species was chosen because
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it offers a good example of a bimodal distribution due
to its reintroduction history.

- Data and Methods

Distance Geometric Mean Algorithm

The principle of this method is to draw in the envi-
ronmental space the influence field—or suitability
field—of each species point in such a way that when
they are close together their attraction powers are mu-
tually reinforced. For any point of the environmental
space, this is done by computing the geometric mean of
the distances to all species points (equation 3 below).
Thus, the denser—in the environmental space—the
species points around a grid cell, the higher its habitat
suitability. Actually we are calibrating a model in the
environmental space to apply it in the geographic
space. This process does not need absence points,
which are most difficult to collect and to rely on (Hirzel
and others 2002a, Zaniewski and others 2002).

The dimensions of the environmental space must be
standardized beforehand to equalize the contribution
of each variable. This can be done in different ways.
With BIOCLIM and HABITAT, a small set of variables
were selected by an expert and directly fed into the
algorithms. The DOMAIN algorithm had to standard-
ize them by dividing each variable by its range. This
expert selection and standardization (or a mean-SD
standardization) could also be used with the methods
we propose here. The variable selection, however,
needs to make a prior ecological assumptions about the
most important variables and to verify that included
variables are mostly uncorrelated. Actually, feeding two
correlated variables into such a model decreases the
relative weight of the others, potentially biasing the
result. As environmental variables are usually corre-
lated, a way to cope with this problem is to transform
the variables into uncorrelated factors by means of a
factor analysis like PCA.

In this paper, we chose to use the Ecological Niche
Factor Analysis (ENFA), which, similar to PCA, summa-
rizes all information into a few uncorrelated and stan-
dardized factors but which, unlike PCA, convey ecolog-
ical information (Hirzel and others 2002a); the first
factor explains all the marginality of the species, i.e.,
how it differs from the average conditions of the study
area. If the species habitat distribution is bimodal or
asymmetrical, this will be reflected by this factor. The
other factors explain the species specialization, i.e.,
how selective it is by comparison to the available range
of environmental conditions; species distribution on
these factors is fairly symmetrical and unimodal (for a
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more detailed description of marginality and specializa-
tion factors, see the Appendix in the present paper, and
Hirzel and others 2002a).

Let O, be the N species observation points given by
their coordinates in the D-dimensional environmental
space. In this space, the weighted Euclidian distance
between two points, A and B—whose coordinates are
Ap, Ag,..., Apand B, , B, ..., By, respectively—is given
by equation 2:

(A, B) = (2)

where w; are the weights of the predictors, if any. In our
case, the weights are given by the amount of informa-
tion explained by each ENFA factor.

For any point P of the environmental space, the
geometric mean of its distances to all observation
points O; is given by:

wo(P) = Nyl ,8(P,0) (3)

These means range from 0 to infinity. Envelopes can
be delineated in this space, encompassing hypervol-
umes with values below a fixed threshold, i.e., delineat-
ing the niche in the environmental space. A habitat
suitability index can finally be associated to each enve-
lope by counting the number of observation points they
contain, thus defining core areas (e.g., an envelope
containing 50% of the points), marginal areas (from
50% to 90%), and unsuitable areas (less than 10% of
observations are discarded). Of course, these thresh-
olds are arbitrary and should be discussed carefully in
each case, depending on species movement behavior
and data quality. '

Studied Species

To illustrate this method, we present an application
on the bearded vulture in the Valais (Alps, southwest-
ern Switzerland) and-compare the results to those ob-
tained by the BIOMAPPER median algorithm. How-
ever, it is not in the scope of this paper to fully exploit
the species-specific ecological clues that can be drawn
from such analyses. The interested reader will find
them in a companion paper fully dedicated to this
species (Hirzel and Arlettaz, submitted).

Since 1986, the bearde_dvvulture has been reintro-
duced into the Alps (Austria, Switzerland, France, and
Italy). In the French Alps (Haute-Savoie), the first re-
leases took place in 1987 at a reintroduction site lo-
cated close to the Swiss border (Valais). Throughout
the Alps, ornithologists, both professionals and ama-
teurs, have been monitoring the birds’ movements
since the beginning of the release program. In Valais, a

network of observers (Réseau Gypaéte Valais) has col-
lected and checked 1560 sightings, which stem from at
least 29 different individual birds, from 1987 to 31
December 2001. The observers recorded the kilometric
cell in which the vulture had been seen first and, if it
had transited through several cells, the coordinates of
the last one; when this was the case, in order to remove
temporal autocorrelation, the average between the two
locations was used. In some cases, it was also possible to
identify marked birds; however, marking was being ob-
tained by bleaching feathers, and thus it disappears at
the first molt, usually after 2-3 years and this informa-
tion could therefore not be used for our purpose.
Nonetheless, we found that most identified birds (19 of
29, ca. 65%) originated from the release site in Haute-
Savoie (France).

In an attempt to remove potential dependence
among sightings, we tried, in preliminary analyses, to
use alternately either only one sighting per spatial lo-
cation, or only one sighting per year per spatial loca-
tion; however, models built on this base proved slightly
less accurate than using the whole data set, and we
present here only those latter results. None of the
sightings were made on the same day and same loca-
tion, ensuring time-independence of the data. Most of
the sightings are obviously not independent in the
sense that they are due to the same individual; however,
this is not a problem for the present methods, which
rely only on the frequencies of use.

Although the observation effort was not constant
across the whole study area due, in particular, to vari-
able numbers of local observers, we controlled for any
possible bias in clustering of observations by subdivid-
ing the study area into six major valley systems for
which the observational effort in a golden eagle (Aquila
chrysaetos) monitoring program was quantified (P. A.
Oggier) (Figure 1). As the latter eagle specialist system-
atically recorded bearded vulture sightings in parallel,
an index of the frequency of observations per invested
observation time unit and year (1990-2001) could be
estimated for each zone. These enabled us to assess that
clusters of bearded vulture sightings were independent
of the observation effort (Hirzel and Arlettaz, submit-
ted). However, this does not entail that absence data
could be included to improve the model, as this bird is
still in a spreading phase and the sightings are still
closer to the release site than expected by chance,
although the influence of this variable decreases pro-
gressively with time (Hirzel and Arlettaz, submitted).
Absence can reliably be used only if the focal species
distribution has achieved equilibrium (Hirzel and oth-
ers 2001). Among the birds released in France from
1987 onwards, several visited Valais soon after the first
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Figure 1. Hill-shade map of the study area (Valais, Switzer-
land) showing 1-km?® squares with bearded vulture sightings
from 1984 to 1994 (black squares, prospective phase) and
from 1995 to 2001 (white circles, installation phase). No

release event, with a few individuals attempting to settle
in that area more recently. Accordingly, the coloniza-
tion of Valais showed two distinct chronological phases:
(1) the prospective phase (1987-1994) in which imma-
ture individuals visited mostly the southwestern parts of
Valais, i.e., the valleys south of the main Rhone valley
axis, at the periphery of the release site in France
(Figure 1); and (2) the installation phase (1995-2001)
in which maturing birds (subadults) attempted to settle
in the northwest of Valais, in calcareous mountain
ridges.

Study Area

The study area is the territory of the canton of Valais,
in the Swiss Alps. It covers 5191 km® modeled by a 100-
X 100-m resolution rastér map, i.e., 519, 124 grid cells.
Fourteen ecogeographical variables were used: topo-
graphic, geologic, biological, and anthropogenic
(listed in Table 1).

These variables were made more symmetrical by the
Box-Cox standardizing algorithm (Sokal and Rohlf
1981). This procedure looks for the best transforma-
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significant relationship was detected between observation ef-
fort and sighting number among the six delineated regions.
The inset map shows the position of Switzerland inside Eu-
rope.

tion (producing a distribution as close to a gaussian as
possible) among the family of functions ¥ = (¥ —1)/A
by iteratively optimising A.

Algorithm Evaluation

These data were submitted to ENFA, which ex-
tracted mutually independent factors. The significant
factors [as determined by comparison to MacArthur's
broken-stick distribution (Hirzel and others 2002a)]
were used as dimensions of the environmental space for
habitat suitability analyses.

Two algorithms were compared on the same dataset:
BIOMAPPER’s median algorithm (Hirzel and others
2002a) and the above-described distance geometric
mean algorithm. They do not directly compute proba-
bility estimates but rather assign a similarity coeffi-
cient—or habitat suitability index—between any can-
didate location and the most suitable conditions. These
values, combined with the presence points as described
above, were used to delineate three regions whose
boundaries where arbitrarily fixed, namely core habitat
(50% of the presence points), marginal habitat (50% to
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Table 1.
analyses

Ecogeographical variables included in the

Variable category Variable

Average elevation in a 2-km radius
Average slope in a 2-km radius
SD of elevation in a 2-km radius
Average northness in a 2-km radius®
Average eastness in a 2km radius®
Frequency of calcareous area in a
2-km radius
Rock frequency in 2-km radius
Scree frequency in a 2-km radius
Water frequency in a 2-km radius
Building frequency in a 2-km radius
Forest frequency in a 2-km radius
Ibex biomass
Ibex frequency in a 2-km radius
Chamois biomass

Topographical

Geological

Anthropogenic
Biological

*Cosine of exposition.
*Sine of exposition.

90%), and unsuitable habitat (more than 90%). These
thresholds were fixed as the most conforming to expert
knowledge. They are, of course, dependent on the
studied species. Looking at how validation indices vary
for different thresholds may guide the expert decision
process.

The lack of absence data makes the predictive power

assessment of a presence-only based model difficult.
~ One possibility is to count the proportion of evaluation
points occurring in the predicted core habitat. How-
ever, according to this absolute validation index
method, a model predicting a value of 100 on every cell
would be seen, absurdly, as perfect as it would have
100% of the evaluation points above 50. To circumvent
this problem when comparing algorithms, we have
computed a contrast validation index by comparing the
above index to the value that could- be expected by
chance only: let A, be the proportion of validation
points in the core habitat (HS > 50); by construction of
the core envelope, A, will not, on average, be greater
than 0.5. Let 4, be the same proportion for the whole
study area. The contrast Cvalue is then given by:

C=4,- A, (4)

This contrast index ranges from 0 to (1 — Ay ) a
value of 0 meaning that the model accuracy does not
outperform a random model. A high value of the con-
trast index means that the model is better, both more
accurate and more “contrasted”; in presence-absence
confusion matrix terminology, this indicates higher
sensitivity and specificity (Fielding and Bell 1997). As A,
is generally not greater than 0.5, so is C.

The accuracy of these models was evaluated through
jack-knife crossvalidation (Sokal and Rohlf 1981,
Manly 1991, Fielding and Bell 1997): the data set was
partitioned into 100 subsets of which, alternately, 99
were used to calibrate the model (calibration set) and
one to evaluate it (evaluation set). This produced the
mean and standard deviation on the A, and C indices,
which could then be compared by Student’s  tests. The
outcome of the ¢ test actually does not depend on the
number of partitions as the variance of the validation
indices increase* with it.

Results

Ecological Niche Factor Analysis Applied to Bearded
Vulture

By comparison of the eigenvalues to MacArthur’s
broken-stick distribution, seven factors were extracted
as providing significant information. The first factor
(marginality) showed a preference of the bearded vul-
ture for calcareous areas, with a southward exposure
(=aspect) and with higher frequency of ibex; moreover
elevation is lower than average (global average: 2224 m;
species average: 2044 m above sea level), and there is an
eastward aspect tendency. The specialization factors
show that this bird is mostly selective about elevation,
rock frequency, and calcareous frequency. However, as
it is not in the scope of the present paper to study
bearded vulture ecological requirements, we shall not
give here more details.

Habitat Suitability Models

Although the distribution of species observations in
the factorial environmental space is widely spread, re-
flecting the far-ranging behavior of the bearded vulture
in the initial prospective phase, most of them are con-
centrated into three patches, two being closely con-
nected (Figure 2). The isolated peak (Figure 24A) is
related to the immature birds whilst the twin peaks
(Figure 2B) are due to the subadults. This bimodality is
almost completely accounted by the marginality factor
as shown by the 1-dimensional histograms represented
in Figure 2. This indicates that subadult birds tend to fly
over locations with higher frequency of limestone and
more southward aspect than the immature do. This
environmental landscape is differently modeled by the
two algorithms.

The median algorithm locates the most suitable hab-
itat on the middle patch (Figure 2B), the densest of the
three, slightly shifted from its middle point, from this
point, the suitability decreases monotonically with a
crest in direction of the secondary patch, although, at
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Figure 2. Bearded vulture observation density in the two-
dimensional environmental space represented by the two first
ecological niche factors, marginality (horizontally) and spe-
cialisation (vertically). The density isolines show the bimodal-
ity of the distribution; peak A is due to the prospective phase,
and the twin peaks B are due to the installation phase. The
margin histograms represent the same distribution in one
dimension.

this point, the suitability is already quite low (Figure
3A). Another consequence of this algorithm is the cross
arms artificially extending the medium habitat quality
all along the ecological factors. :

The center of the middle patch is identified as the
best habitat by the “geometric mean” algorithm with an
area of high quality around the twin peaks (Figure 2B).
From here, habitat suitability decreases rapidly except
toward the secondary patch (Figure 2A) where one
observes a local maximum of sub-optimal suitability
(Figure 3B).

The habitat suitability maps computed by these al-
gorithms are given in Figure 4. The median algorithm
tends to predict higher suitability values, resulting in
wider core and marginal habitats. These areas are also
more fragmented, with unsuitable patches occurring
inside globally good regions. By contrast, the geometric
mean predicts fewer and more compact habitat
patches. Many small marginal patches predicted by the
median algorithm lack in the geometric mean map.

The jack-knife cross-validation computed an average
“absolute validation index” of 0.39 (SD = 0.2) for the
median algorithm and 0.44 (SD = 0.27) for the geo-
metric mean algorithm; these values differ significantly
(¢ test, df = 198, P = 0.045). The average contrast
validation indexes were, respectively 0.29 (SD = 0.2)
and 0.37 (SD = 0.27), which differ very significantly (¢
test, df = 198, P = 0.01). These validation measures
both tend to indicate that the geometric mean algo-
rithm offers a better generalisation of the data than the
median one.
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Figure 3. Habitat suitability field symbolised by its isolines in
the same environmental space as Figure 2, as modeled by the
median (A) and the geometric mean (B) algorithms. The
plain isolines correspond to core and marginal envelopes.
Only two dimensions are shown here although the actual
modeling was conducted in a 7-dimensional space.

Discussion

A behavioral particularity of the bearded vulture
made the modeling of its habitat a challenge. Its carri-
on-based diet and great flying capacity allow it to ex-
plore daily a very wide area (up to 37 km linear distance
from nest site for adults) (Arlettaz and others 2002). It
can therefore be observed flying over a great diversity
of habitats, many of them not at all or poorly suitable.
Of course, most of the observations will be located close
to the best habitats, and any model must be based on
this property and not be too outlier-sensitive. In this
respect, as both algorithms are being based on obser-
vation density in the environmental space, they give
equally good results. During preliminary phases of this
work, we tested two other algorithms: the first one,
inspired from the DOMAIN algorithm (Carpenter and
others 1993), was based on the distance to the closest
observation point in the environmental space. The sec-
ond one was similar to the geometric mean algorithm
but used the harmonic mean instead; the latter was
considered before the geometric mean because of its
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well-known application to model species home ranges
in the geographic space (Dixon and Chapman 1980,
White and Garrott 1990). Both algorithms were shown
to give too much importance to isolated (in the envi-
ronmental space) observations and were therefore not
able to provide a good generalization of the habitat.
They would probably achieve better results on less va-
grant species, as was shown by Carpenter and others
(1993) on plants. We argue that, for a far-ranging ani-
mal like the bearded vulture, environmental space can
be substituted for geographical space for modeling,
providing that observation density rather than observa-
tion only is taken into account. Indeed, although vul-
tures can be seen flying over a wide range of habitat,
our data show that it nevertheless tends to stay much
more frequently on particular parts of the available
area that translate into well defined spots in the envi-
ronmental space.

Another challenging difficulty of this bird is, in this
case, its particular reintroduction history. As stated
above, the vultures began by settling down in southwest-
ern Valais before colonizing the mountains north of
the Rhone. This shift in geographic space (Figure 1) is
reflected in the environmental space by a bimodal pat-
tern: the left-hand isolated optimum (Figure 2A) cor-
responds to the suboptimal valley firstly colonized and
the twin main optima (Figure 2B) to the more recently
selected area; the points scattered throughout the en-
vironmental space correspond to occasional observa-
tions of birds in unsuitable habitats. By conducting a
separate analysis on each period, it was possible to draw
clues about the ecological requirements and behavior
of immature and subadult vultures (Hirzel and Arlet-
taz,submitted): immatures were mainly attracted by ar-
eas with high prey density (ibex and sheep) and stayed
closer to the release site; the subadults were more
driven by the need to look for areas favoring breeding
and nestling (chiefly calcareous areas). However, no
pair has yet nested in Switzerland and, therefore, the
observed distribution is genuinely due to utilization
preferences rather than merely to flight routes to and
from the nest sites.

This bimodal distribution misleads the median algo-
rithm, as it would for any model making too stringent
assumptions on the environmental space landscape as it
assumes that the factor distributions are unimodal and
roughly symmetrical. Although this assumption is gen-
erally correct, there are cases where it is not (Austin
2002, Oksanen and Minchin 2002). Asymmetry in the
environmental space may arise if the study area is situ-
ated in a marginal part of the species repartition where
the most suitable environmental conditions are scarce
and where the species has to settle down in suboptimal
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areas. This could be due to habitat fragmentation, as it
has been shown to reduce niche breadth (Gehring and
Swihart 2003, Swihart and others 2003), which probably
also has an effect on its symmetry. Asymmetry may also

~ result from interspecific competition or climate change

(Austin 1992, 2002). Anyway, strong skewness will cause
the median algorithm to overestimate the suboptimal
areas and underestimate the most suitable ones. Multi-

* modality is probably rarer but may be caused by: (1)

historical events—a spreading species settling down in a
suboptimal area before it discovers a better one, (2)
interaction with a more competitive species that pushes
it away from its intrinsic optimum (Austin 2002), or (3)
by adaptation to two or more kinds of environment
(Kawata 2002). In such cases, as the median is prone to
lie somewhere between the optima, this algorithm pro-
duces incorrect results.

These two characteristics, namely sporadicity and
multimodality, generate contradictory constraints:
while multimodality needs a closely fitting model, out-
lier sporadicity must be smoothed by a more parametric
one. This paper shows that a model based on the
distance geometric mean is a good trade-off between
the two evercompeting constraints of generality and
precision.

According to these results, should the median algo-
rithm nevertheless be abandoned? In many cases, ob-
servation distribution in the environmental space is
unimodal and grossly symmetric around the optimum,
and it has been applied successfully to many species
(Reutter and others 2003). However, its main advan-
tage is its simplicity and, therefore, its computing
speed. With large sets of observations, distance-based
algorithms such as the geometric mean are far slower
than the median algorithm. While this is not a great
problem when computing only one model, it can be
time-consuming when Monte Carlo statistics are in-
volved, such as the jack-knife cross-validation procedure
applied here. A good practice would be to perform a
preliminary analysis using the median algorithm and to
look at the species distribution on the factors, particu-
larly at the marginality factor as the potential multimo-
dality or asymmetry patterns are most likely to show on
this factor. Anytime the distribution is bimodal or,
more generally, the median does not seem to be a good
approximation of optimal habitat, the geometric mean
algorithm should preferred.
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Appendix. Ecological Niche Factor Analysis

One aim of factor analyses is to transform V corre-
lated variables into the same number of uncorrelated
factors. As these factors explain the same amount of
total variance, subsequent analyses may be restricted to
the few important factors (e.g., those explaining the
largest part of the variance) without losing too much
information. The ENFA achieves this by computing
ecologically meaningful factors.

Data are in the form of raster maps, which are grids
of Nisometric cells covering the whole study area. Each
cell of a map contains the value of one variable. The
ecogeographical maps contain continuous values, mea-
sured for each of the V descriptive variables. Species
maps contain boolean values (0 or 1), a value of 1
meaning that the presence of the focal species was
proved on this cell. A value of zero simply means ab-
sence of proof. Alternately, presence can be given a
weight reflecting the amount of cell utilization by the
focal species.



Each cell can thus be represented by a point in the
multidimensional space of the variables. If distributions
are multinormal, their distribution will have the shape
of a hyperellipsoid. The cells where the focal species
were observed constitute a subset of the global distri-
bution and define a smaller hyperellipsoid within the
global one. The first factor, or marginality factor, is the
straight line passing through the centroids of the two

ellipsoids. The marginality of the species is the stan- -

dardized distance between these centroids.

The two ellipsoids are then projected onto a hyper-
plane perpendicular to the marginality factor. This en-
sures that subsequent factors will be uncorrelated to the
first and removes one dimension from the environmen-
tal space. The first of the specialization factors is ob-
tained by computing the axis that maximizes the ratio
of global variance over species variance. The following
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specialization factors are then extracted in turn by re-
peating this process, each step removing one dimen-
sion from the space, until all V factors are extracted.
The amount of specialization accounted for by a factor

* is necessarily lower than that due to the one previously

extracted. Furthermore, all specialization factors are
orthogonal, in the sense that the distribution of the
species subset on any factor is uncorrelated with its
distribution on the others. A limited number (F) of the
first factors will thus generally contain most of the
relevant infermation. Their small number and inde-
pendence make them easier to use than the original
variables. From this process, it follows that the ecolog-
ical niche factors depend strongly on the extent of the
reference area.

The mathematical demonstration of this procedure
is developed by Hirzel and others (2002).



