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This paper explores the effect of spatial processes in a heterogeneous environment on the dynamics of a host-
parasitoid interaction. The environment consists of a lattice of favourable (habitat) and hostile (matrix)
hexagonal cells, whose spatial distribution is measured by habitat proportion and spatial autocorrelation (inverse
of fragmentation). At each time step, a fixed fraction of both populations disperses to the adjacent cells where it
reproduces following the Nicholson-Bailey model. Aspects of the dynamics analysed include extinction, stability,
cycle period and amplitude, and the spatial patterns emerging from the dynamics.

We find that, depending primarily on the fraction of the host population that disperses in each generation
and on the landscape geometry, five classes of spatio-temporal dynamics can be objectively distinguished: spatial
chaos, spirals, metapopulation, mainland-island and spiral fragments. The first two are commonly found in
theoretical studies of homogeneous landscapes. The other three are direct consequences of the heterogeneity and
have strong similarities to dynamic patterns observed in real systems (e.g. extinction-recolonisation, source-sink,
outbreaks, spreading waves).

We discuss the processes that generate these patterns and allow the system to persist. The importance of these
results is threefold: first, our model merges into a same theoretical framework dynamics commonly observed in
the field that are usually modelled independently. Second, these dynamics and patterns are explained by
dispersal rate and common landscape statistics, thus linking in a practical way population ecology to landscape
ecology. Third, we show that the landscape geometry has a qualitative effect on the length of the cycles and, in

particular, we demonstrate how very long periods can be produced by spatial processes.

There is a large body of theory that describes the
interactions of well mixed and spatially homogeneous
“consumer” and “resource” populations (e.g. prey and
predator; host and parasite or parasitoid). For an
overview of this classical theory, see Murdoch et al.
(2003). A second body of theory recognizes the
importance of the distributions of populations in space
(Murdoch et al. 2003 chapter 10); however, much of
that work either assumes that habitat is either homo-
geneous or made up of identical patches. Real land-
scapes, of course, are heterogeneous. Their quality as
habitat varies across space, and suitable habitat is
commonly interspersed in a matrix of unsuitable
habitat, which reduces the probability of successful
dispersal. Here, we explore how this type of landscape
structure impacts the finding from the previous, well-
established, theory.

A key theme in the research that assumes perfect
mixing or spatial homogeneity is identification of the
interactions that lead to stable co-existence of consumer
and resource or to particular patterns of fluctuation,
such as cycles or chaos. An otherwise non-persistent
system, described for example by the Nicholson-Bailey
parasitoid-host model (Nicholson and Bailey 1935),
may be stabilized via “self-organizing” processes,
provided the system is large enough in relation to
host and/or parasitoid dispersal to allow these processes
to operate (Comins et al. 1992). One of three spatial
patterns results, depending on the dispersal rates of the
host and parasitoid: “crystal lattices”, spiral patterns,
and chaotic waves (Comins et al. 1992, Solé et al.
1992). Similar findings hold for continuous time and
space (Sherratt et al. 2001). In systems with identical
patches, population persistence of consumer resource
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systems can also be achieved through metapopulation
dynamics — a balance between local extinction and
recolonization (Maynard Smith 1974, Gurney and
Nisbet 1978). There has been some limited study of
patchy consumer-resource systems with non-identical
patches (Murdoch et al. 1992), the most extreme
situation being “mainland-island” or “source-sink”
scenarios in which a smaller or less stable “sink”
population is maintained by migrants from a single
source (Pulliam 1988, Thomas and Kunin 1999).

In this paper, we show that by combining landscape
structure and population dynamics into a common
framework it is possible to generate all the above
phenomena as particular outcomes from a single model.
By varying habitat proportion, spatial auto-correlation
and host dispersal rate, five important spatio-dynamical
patterns can be identified: spatial chaos, spirals,
metapopulation, mainland-island and fragmented-spir-
als. We describe the characteristics and the emergence
conditions of these patterns and discuss the probability
of finding them in nature.

From an application point of view, this study points
to a few simple landscape and dynamic statistics that
allow the conservation biologist to determine which
processes are driving the system. Moreover, as the
conditions for the emergence of the different patterns
relate theoretical spatial dynamics to landscape statis-
tics, they have the potential to synthesize insight from
these two domains, thereby providing both the theore-
tician and the conservationist with novel ways of
characterizing system behaviour.

Model

Consider a landscape invaded by populations of a host
and its specialist parasitoid. Some parts of the land-
scape, henceforth designated ‘“habitat,” provide a
suitable habitat for the host, where it can successfully
reproduce and increase in density; in contrast, other
parts, hence-forth designated “matrix,” are largely
unsuitable and colonizing populations decrease. Para-
sitoids attack the hosts independently of the habitat
suitability. Both host and parasitoid can disperse a short
distance before reproducing and dying.

Population model

We model this situation as follows: the landscape is
represented by a hexagonal lattice of isometric cells — or
hexes — small enough to assume that inside them: (1)
host conditions are homogeneous, and (2) parasitism is
random. The discrete-time dynamics on the landscape
follow the spatial generalisation of the original Nichol-
son-Bailey (1935) model (from now on NB model)
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developed by Comins et al. (1992): the dynamics of
each generation consist of a dispersal phase followed by
a reproduction-and-parasitism phase.

During the dispersal phase, a fraction iy of the hosts
and pp of the parasitoids leaves each hex to distribute
themselves uniformly among the six neighbours, while
the remainder stays in their original cell. For reasons
discussed in the next section, the lattice has a torus
topology, meaning that hexes located along a boundary
are connected to the hexes of the opposite side.
Accordingly, for each hex i the equations for the
dispersal phase are:

1
Ni/,[ = Ni,r - HNNi,r + - N Z Ni,r (12)
k j in adj. hexes
1
Pl =P — P + -y Z P, (1b)

k

j in adj. hexes

where N;, and P;, are the host and parasitoid
population densities in hex i at time t, and N” and P’
the corresponding densities after the dispersal. In the
summation term, j varies over the hexes adjacent to hex
i, and k is the number of neighbours, in this case, k =6.

During the reproduction-and-parasitism phase, the
population densities change according to the original
NB model:

N = KiN;J exp{—aPl/ } (2a2)

it+1
Pi,t+1 = Ni/,t C<1 - CXP{_aPi/,:}>

where a is the per capita parasitoid attack rate, ¢ is the
conversion efficiency of parasitized hosts into adult
parasitoids of the next generation, and A; is the hex-
dependent host growth rate.

Following Comins et al. (1992), we assume that
population densities are scaled so that a and c are set to
one in all hexes. Thus variation in habitat quality across
the landscape is assumed to be expressed solely through
host growth rate, and the set of parameters {A;}
represents the growth rate of the host population in
each hex. Each hex is either habitat, with host growth
rate Ay, or unsuitable matrix, with host growth rate Ay;.
Several growth rate values were explored but, unless
stated otherwise, all results presented below were
obtained using Ay =2 (in absence of parasitoid, the
host density doubles at each generation.) and Ay =0.01
(rapid geometric decline with a small, but non-zero rate
of host reproduction). Whenever host or parasitoid
density drops below an arbitrary threshold of 10~ ' in
a hex, the local population is considered extinct and set
to zero. There is no upper limit. Trial simulations
showed that neither the precise value of the extinction
threshold nor of an imposed maximal host density, if
chosen within reasonable ranges, changed the outcome
significantly. The NB model’s simplicity makes it a
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perfect choice for investigating general mechanisms. In
the discussion, we address how adding more complexity
would alter our results.

Landscape structure

In this paper, a “landscape” is defined as the lattice of
hexagonal cells characterized by the local host growth
rate A;, and a “patch” is defined as a set of one or more
habitat hexes connected by at least one common side,
and surrounded by matrix. Random landscapes can be
generated by a wide range of algorithms (With 1997,
With and King 1997, Andren 1999, Hill and Caswell
1999, Hiebeler 2000, Tischendorf 2001, Hargrove
et al. 2002). We use the sequential Gaussian algorithm
(Gomez-Hernandez and Srivastava 1990, Goovaerts
1998, Hirzel 2001), a method commonly used in
geostatistics that is based on two parameters readily
measurable in the field, namely habitat proportion, h,
and spatial autocorrelation range of the landscape
structure, o.

First, a random landscape is generated using the
sequential Gaussian algorithm, which we adapted to
comply with the torus topology (Appendix 4). It assigns
an interim random value z; to every hex, which is drawn
from a Gaussian distribution with mean =0 and SD =
1, while controlling their spatial autocorrelation; the
key parameter here is the autocorrelation range o,
defined as the distance (expressed in hex number)
between hexes at which their z; have, on average, a
correlation of 0.05, assuming that correlation decreases
geometrically with distance (Goovaerts 1998). There-
fore, when the range is o =0, the landscape is purely
random and therefore “rough”: knowing the z; value of
a hex gives no indication to the value of an adjacent hex.
Conversely, the larger the autocorrelation range, the
smoother the landscape: the closer two hexes are, the
smaller the expected difference is between their z
values. Second, we transform the continuous z; into
binary A;. We determine the proportion h of the hexes
that are habitat, by computing a critical value of the
parameter z using an inverse Gaussian distribution.
Hexes whose z-value exceeds this critical value are
habitat (growth rate A;=Ap,) whilst the ones with
values under the critical value are considered matrix
(A =Anm). Examples of landscapes generated this way
are shown in Fig. 1.

The torus topology minimizes the potential effects of
system size on dynamics; indeed, in such a topology,
every hex or patch can be thought of as being at the
centre of the landscape. Preliminary simulations con-
vinced us that, consistently with the findings of Comins
et al. (1992), the type of the boundary had no

qualitative effect on the results.

Simulation design

The model defined above is controlled by four
parameters, o and h, which characterize the landscape,
and the dispersal rates py and pp. We performed our
simulations on a 30 x 30 lattice, for which we chose
five values between 0 and 15 for the autocorrelation
range (o) and five values between 0.1 and 0.9 for the
habitat proportion (h). For each combination of these
parameters, five random landscapes were generated.
This process yielded 125 different landscapes.

These landscapes defined the environments within
which different dispersal strategies were investigated by
varying the dispersal rates py and pp between 0.1 and
1. As initial condition, we assumed that all hexes in the
landscape were empty, except for one hex, located in the
centre of the biggest patch; its host and parasitoid
densities were randomly and independently drawn from
the range [1,10]. For each set of dispersal rates, ten
simulations were run differing only in initial popula-
tions densities.

The simulations were allowed to run until: (1) the
parasitoid went extinct; (2) the system attained a
bounded fluctuations state (the standard deviation of
the host density computed on the last 500 time steps
was smaller than 1); or (3) 2000 generations elapsed,
whichever came first. In most of the cases, however,
either extinction or limit behaviour occurred before the
500th generation.

Finally, when the system was found to be persistent,
the last 256 generations were used to compute several
global statistics: mean and variance of the population
densities and cycle amplitude, period and signal-to-
noise ratio, assessed by a discrete Fourier analysis (Press
et al. 1989).

Other experiments were made where we varied
lattice size, dispersal neighbourhood radius, boundary
conditions or patch/matrix growth rate. Their results
are not discussed, unless they were qualitatively differ-
ent from those produced by the above design.

Results

The outcome of the simulations was almost entirely
determined by the system parameters, the only effect of
the random inital densities being on the probability of
early extinction. This probability drops when initial
(scaled) host density is much higher (10:1) than (scaled)
parasitoid density, and increases when this imbalance is
reversed (few hosts, many parasitoids in one patch).
The most drastic effect of the parameters is on the
persistence of the system. Extinctions (i.e. one species
becoming extinct across the whole landscape) occur on
two scales — local and landscape. The reason is the same
in both cases: following oscillations of increasing
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Fig. 1. Examples of the four landscape paradigms showing typical spatial distribution of suitable (white) and unsuitable (black)
hexes: (a) spotted (o =0, h =0.1), (b) archipelago (o =15, h =0.3), (c) labyrinth (& =0, h =0.5), (d) Swiss cheese (& =15, h =
0.9). In panel (b), the capital letters identify the mainland (M), a close island (1) and a far island (2) (Fig. 4); because of the torus
topology, the two “parts” of patch M are actually connected through the upper and lower edge of the lattice.

amplitude, the parasitoid overexploits the host then dies
out. (1) In early extinctions (typically <15 generations)
both species fail to spread from the initially occupied
patch so the NB oscillations are short-lived. (2) Late
extinctions occur after the whole landscape has been
colonized (typically >100 generations in our simula-
tions); the populations become more and more syn-
chronised, until they behave like a single NB system.
Synchronization may occur either as series of parasitoid
waves travelling across the whole landscape leaving the
host density lower and lower at each passage, or, less
frequently, as full synchronisation of all hexes cycling
together to extinction. Both early and late extinctions
are favoured by high host mobility; early extinctions
are more frequent in fragmented, habitat-scarce, land-
scape while late ones happen usually in more homo-
geneous and habitat-rich landscapes. However, in most
cases the system was persistent, and we focus on these
cases now.
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The dynamics observed in simulations that attained
a persistent state are strongly dependent on landscape
geometry and dispersal rates. Six classes of spatial
dynamics can be delineated: spirals, spiral fragments,
mainland-island, spatial chaos, metapopulation and
crystal lattice. Among them, the crystal lattice pattern
is of very restricted practical use as it appears only when
parasitoid dispersal rates are high (pp >0.98) and host
dispersal rates are low (pn <0.05). It can be found in
most kinds of landscapes, the only constraint being the
presence of at least one patch that is large enough ( > 30
hexes) to house such a pattern, a condition unlikely to
be filled when o0 <4 and h <0.15 simultaneously. As it
only occurs within such a narrow range of parameter
values, the crystal lattice pattern will not be addressed
further.

The remaining five patterns change gradually from
one type to another as parameter values change. In
order to describe their characteristics and conditions of



emergence, we chose four exemplary landscape geome-
tries, defined by their o and h values, which we will
refer to as “Swiss-cheese”, “archipelago”, “labyrinth”
and “spotted” (Fig. 1 and 2, Table 1). Although each
geometry blends into the next, often entailing hybrid
dynamics, they are representative — and somewhat
extreme — situations enabling one to isolate and
understand the forces at play. The landscape geometry
is, with host dispersal rate, the most important factor
controlling the emergence the spatio-dynamical pat-
terns. We explore now each geometry and describe the
patterns along the way.

Swiss-cheese geometry (high spatial correlation
(2=15) and high habitat fraction (h=0.9))

This landscape is nearly homogeneous and exhibits
dynamics similar to the situation described by Comins
et al. (1992): when the host dispersal rate is low the
dynamics are characterised by chaotic short-lived
travelling waves — the spatial chaos pattern — but
when host dispersal rate is high, the waves are regularly
organised in one or more spirals: the spiral pattern. The
main difference from the homogeneous case is that the
situation previously described as “hard-to-start spirals”
(Comins et al. 1992), occurring for high py and low
up, is much less likely to occur here (Fig. 5d, no-
emergence area). Indeed, in a homogeneous landscape,
concentric waves or other highly symmetrical patterns
develop and grow, leading to the eventual extinction of

15 S

128332 i

S| Swiss- |
] cheese

Spatial autocorrelation o

4 Labyrinth {3 S

AN

04 05 06
Habitat proportion h

0.7 08 09
Fig. 2. Combination of habitat proportion h and spatial
autocorrelation o defining the four landscape paradigms. The
sharp boundaries between them are purely abstract as actually
one type fades into the next. They were delineated on the base
of four landscape statistics: Largest patch index, Mean patch
size, Number of patches and Fractal dimension (Mcgarigal
et al. 2002).

the parasitoid. By contrast, the inhomogeneities intro-
duced by the matrix holes in the Swiss-cheese landscape
break the symmetry of the waves and make the self-
organisation of spirals possible. Hosts can “hide” in
these holes long enough to let the parasitoid wave move
away before the parasitoid re-colonizes the depleted area
left behind it. In these landscapes, the spiral vortices are
often centred on or close to the holes.

Archipelago geometry (high spatial correlation
(2 =15) and low habitat fraction (h =0.3))

This landscape consists of a set of compact patches
located at various distances from each other. This
configuration produces the richest dynamic repertoire,
with the outcome depending not only on dispersal rates
but also on the particular geometry of the patches.

When host dispersal is sufficiently low (typically
Hn <0.3), the largest patches are big enough to develop
chaotic patterns, allowing their populations to persist
independently. As each patch can be considered an
independent homogeneous landscape, the pattern here
is essentially spatial chaos, in particular when all the
patches are about the same size.

With higher host dispersal rates, the patches are too
small to sustain a whole spiral pattern and only
fragments, or travelling waves, can appear. These waves
cross a patch leaving a depleted zone behind them; from
there, the wave propagates to nearby patches and so on,
eventually reaching all patches in the landscape. In most
cases, however, the patches that were attacked first will
be recolonised by dispersers coming from currently
intact patches lying behind the wave, allowing the cycle
to repeat itself ad infinitum, each patch experiencing
quite regular extinctions and recolonisation (Fig. 4).
The period of these cycles is dictated by the geometry of
the islands through the constant-inflow dynamics
described in Appendix 2. In some cases though,
particularly when both host and parasitoid dispersal
rates are high, this may lead to synchronisation of the
patches and finally to global extinction. This process of
wave propagation and recolonisation from the back is
actually a spiral constrained by landscape boundaries.
We call it the spiral fragment pattern.

However, this pattern is rarely present alone. In most
cases, by chance, at least one of the patches is large
enough to house small spiral arms, which entail more
stable dynamics, smaller density variations and no
extinction. This patch acts like a pool for the other
smaller patches (for example, see Fig. 1b in relation to
the dynamics shown in Fig. 4). This leads to interesting
and common dynamics where an archipelago of small
patches experience recurrent extinctions, but are cycli-
cally rescued by dispersers from the mainland. The
detailed life-history of one of these islands is as follows:
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Table 1. Characteristics exhibited by the five spatio-dynamic patterns (+ =low,

++ =medium, ++ 4 =high).

Pattern Equilibrium Cycles Commonness

N* N*/P* Amplitude Period* Noisiness®
Spatial chaos +++ ~2.5 + <10 +++ +++
Metapopulation + + ~14 +++ <10 S +
Mainland-island + ~5 +++ >20 + + +++
Spiral fragments + ~4 + + 15-20 + + +++
Spirals +++ ~2 + 11 + + +

¥ Number of generations. The absolute value of these figures depends on model specificities.

*Noise-to-signal ratio of a discrete Fourier analysis.

initially, the island is empty, but eventually it is
colonised by hosts dispersing from the mainland. In
the matrix, the host density is initially too low to enable
the parasitoid to survive and thus to reach the island.
Thus, in absence of external regulation, the insular host
population begins to grow exponentially, producing an
ever increasing overflow of dispersers. Eventually, this
overflow, in combination with its mainland counter-
part, generates a high enough host density in the matrix
— the host bridge — to allow parasitoids to cross it.
Once they colonise the island, they rapidly parasitize
the huge host population, then go extinct themselves.
The cycle can then start again with a new outbreak. For
reasons developed in Appendix 3, the further away the
island is from the mainland, the longer the time
between two parasitoid invasions is (Fig. 1b, Fig. 4).
In our simulations, resulting periods commonly range
from 30 to 80 generations, although much longer
periods are not infrequent. Actually, within this model,
any period length could theoretically be achieved
providing the island is far enough from the mainland.
However, in a more realistic framework, density-depen-
dence in the host insular population would limit the
length of the host bridge. We call it the mainland-island
pattern. However, in spite of this terminology, the matrix
lying between the mainland and the islands is not
completely hostile territory: both species can reproduce
there and the crossing often takes several generations.

Spotted geometry (no spatial correlation (o =0)
and very low habitat fraction (h=0.1))

We jump now to the other end of the landscape
spectrum to introduce the last pattern. In “spotted”
landscapes, habitat is sparse and randomly distributed.
The risk of rapid extinction is high (at best 60% but
most of the time approaching 100%). The few systems
that manage to persist all have py <0.5 (Fig. 5a) and
experience wild oscillations over several orders of
magnitude (Fig. 3b). Two effects combine to prevent
the system from persisting: (1) most patches are
composed of only one or two hexes and are surrounded
by hostile habitat. They are thus smaller than the critical

6-OE

size needed to support a viable host population in the
face of diffusion, unless the host dispersal rate is very
low (Appendix 1). (2) Even when hexes are aggregated
compactly enough that some exceed the critical size for
host population growth, these patches are usually too
small to house stabilising spatial patterns (including
crystal lattice), and are on average too far apart to be
able to rescue each other. Therefore, the only persistent
dynamics appear in landscapes composed of a large
number of small patches close to one another, com-
bined with low host dispersal; in this configuration, the
patches continuously and persistently experience ex-
tinction and recolonisation events, which, although the
underlying processes are completely deterministic, are
chaotic enough to look random; patch occupancy is
much higher for the host than for the parasitoid because
a substantial proportion of the host population is
actually running through unsuitable areas. We call
this spatio-dynamical pattern metapopulation.

Labyrinth geometry (no spatial correlation (a2 =0)
and medium habitat fraction (h =0.5))

Starting from a spotted landscape and increasing the
habitat proportion by adding habitat hexes randomly
(keeping o =0), initially, the mean patch size does not
change noticeably but their number increases linearly,
so patches become closer to each other. Between h =0.4
and h =0.6, patch connection begins to increase and
the actual number of patches drops rapidly as the
percolation threshold (the value of h at which, on
average, all hexes are connected into only one patch,
about 0.7 (Dussert et al. 1989)) is approached. In this
range, the patches are highly interconnected, but have
complex shapes with a low area/perimeter ratio (Fig.
1b). This geometry is therefore an intermediate between
the previously discussed landscapes and this results in a
somewhat hybrid dynamics. In this kind of landscape,
the diffusion effect (Appendix 1) generates asymme-
trical influences on the host and the parasitoid: when
host dispersal rate is low, most patches are larger than
the critical size and the host colonises all suitable hexes,
closely followed by the parasitoid, producing a spatial
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(h=0.3, a =15, un =0.9, pup =0.1), higher dispersal rate in the host generates longer range and more regular spatial patterns;
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long range and very regular patterns. Note that spiral and chaos graphs have linear scale. The median densities (triangle) and
Nicholson and Bailey’s theoretical unstable equilibrium (square) are also shown. These numbers show the mean hex densities,

taking into account only the suitable hexes.

chaos pattern. However, when host dispersal rate is
high, the diffusion effect prevents the host from
thriving in those areas where the patch shape is long
and narrow (hexes connected to less than three
neighbours, Appendix 1); although hosts can survive
in these areas at low density, they are functionally closed
to parasitoids. Therefore, the landscape as experienced
by the parasitoids is actually much more fragmented
than that experienced by its host and is indeed closer to
archipelago geometry, generating spiral fragments or
mainland-island patterns. Therefore depending on the
host dispersal rate the functional landscape for the
parasitoid will be either Swiss cheese or archipelago.
This distinction between a functional and a physical
landscape is potentially very important but, is beyond
the scope of the present paper.

Sensitivity analysis

Qualitatively, the above results are insensitive to
changes in parameters other than the four discussed
above.

Varying matrix host growth rate (hy) (while keeping
Ay =2) has only small effects, increasing or decreasing
patch isolation and, as a consequence, influencing early
extinction risk. Reducing Ay to zero actually traps the
system in the initial patch, thereby mimicking the
homogeneous case investigated by Comins et al.
(1992). Increasing Ay has no strong effect undl it is
close to a zero-growth matrix, Ayy =1. The main result
is then to decrease drastically or even completely
remove the risk of early extinction in all cases except
the Swiss-cheese landscapes where early extinction is
always unlikely. The greatest change happens in the
spotted landscapes where extinctions now occur almost
only at gy >0.7. The zero-growth matrix eliminates
the over-diffusion effect, so there is no critical patch size
required for a viable host population. The late extinc-
tions however, caused by global synchronisation, can
still happen and their likelihood may be increased. A
secondary effect is that the weaker spatial heterogeneity
is no longer able to break the parasitoid wave front,
producing dynamics more similar to those of a
homogeneous landscape, particularly when the gaps
between patches are small, as in the labyrinth and Swiss
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the close (A) and far (B) islands whose cycle period and
amplitude increases with distance, due to the host-bridge
effect (cf. Appendix 3). This simulation was done on
landscape b) of Fig. 1 with py =pp =0.5.

cheese geometries. In the latter, the discontinuities in
the landscape can no longer favour spiral emergence by
breaking wave front symmetry; accordingly, Swiss-
cheese landscapes no longer show a significantly
different behaviour from the homogeneous case. A
third effect is to make the matrix a refuge for the host:
on average, the host density is higher in the matrix than
in the patches, which have a higher level of parasitoids.
Finally, the host bridge between patches being perma-
nent, the mainland-island pattern cannot emerge.

We also tested the effect of increasing growth rate
(M) in habitat while keeping Ay =0.01. Again, the
main effect is to decrease early extinction risk although
in a less drastic way. In spotted landscapes, the
metapopulation pattern can now emerge for any system
with [N <0.7. By contrast, the late extinction risk is
noticeably increased, particularly for the most homo-
geneous landscapes.

In the above simulations, dispersal range, i.e. the
number of hexes dispersers can cross in one generation,
was set to 1. We tested the effect of increasing this
value to 2 and 3 and, that was found to have littde
effect. Decreasing patch isolation somewhat reduced
early extinction risk in spotted landscape, enabling a

metapopulation pattern to emerge at [y <0.5 and
up <0.8. Longer dispersal range tended to shift chaotic
dynamics toward more spiral-like patterns, but the
spirals themselves have a longer wavelength, which
made extinction more likely as they need larger
homogeneous patches to persist. This tended therefore
to shift to the left the emergence patterns shown in Fig.
5 b—d. It also shortened the length of the transient
dynamics needed to achieve limiting behaviour. How-
ever, increasing the dispersal range entailed a much
longer simulation time and it was unpractical to
investigate longer ranges, at which the landscape could
eventually become so well mixed it would behave like a
non-spatial system.

Summary of pattern characteristics

Our results have led to the identification of five
important spatio-dynamic patterns whose occurrence
can be deterministically predicted on the base of
landscape geometry and host dispersal rates. These
patterns can be easily discriminated from each other by
looking at their spatial dynamics, at their global
dynamics in the phase space (Fig. 3) and at the global
equilibrium statistics (mean host density, mean host/
parasitoid ratio, cycle amplitude, period and signal-to-
noise ratio, see Table 1). The spatial chaos pattern (Fig.
3a) is the most common as it emerges whenever the host
dispersal is low in all but spotted landscapes, in which
case the metapopulation pattern occurs. When host
dispersal is medium or high, landscape geometry
becomes a decisive factor. Swiss-cheese landscapes entail
the emergence of the spiral pattern (Fig. 3e), labyrinth
landscapes favour the spiral fragment pattern (Fig. 3c),
whilst archipelago geometry generates chiefly mainland-
island pattern (Fig. 3d). These relationships between
landscape geometry, host dispersal rates and the
patterns are summarised in Table 2.

Relating pattern to process

It is possible to better understand the relationship
between landscape and population dynamics by con-
sidering more mechanistically the processes that pro-
duce the patterns discussed in the previous section.
The NB model has fundamentally unstable dy-
namics and the only way to achieve population
persistence is to allow the host to escape the parasitoid.
However, the host must also be able to “reseed” the
depleted areas. The mechanism for reseeding depends
on the host dispersal rate. If the host has a low dispersal
rate, synchronisation acts at a very short range. This
allows reseeding points to occur close together. In a
homogeneous context, this process generates spatial
chaos, ie. shortlived omni-directional travelling
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Fig. 5. Combination of host () and parasitoid (pip) dispersal rates leading to the emergence of different patterns in the four
landscape paradigms: (a) spotted, (b) archipelago, (c) labyrinth, (d) Swiss-cheese. These charts contain some degree of
subjectivity, as transitions between patterns are gradual rather than abrupt; the notional boundary between the patterns can be
interpreted as the middle of a transition zone where hybrid dynamics can be seen. The “no emergence” areas are those where
population persistence is unlikely (one or both species goes extinct after a few (<15) generations. Close to these areas, the
dynamics tends to be very unstable with episodes of very low global density. In the “late extinction” areas, one or both species
goes extinct after a long history (>100 generations) tending toward synchronisation of the whole lattice.

waves. We call this the dispersed reseeding persistence
mechanism. Alternatively, if the host is highly vagile,
the dynamics are synchronised on a longer range. This
forces reseeding locations to be far apart. In a homo-
geneous landscape this is the process that yields true
spirals: near the spiral’s vortex, the host population,
depleted by the parasitoid wave, is reseeded and can

grow into a new wave, generating a persistent, direc-
tional (a given spiral never reverses its rotation sense)
and symmetrical pattern. We call this the focal
reseeding persistence mechanism.

Heterogeneous landscape geometry interferes with
these reseeding processes. Dispersed reseeding is quite
robust to habitat fragmentation since it is a short-range

Table 2. Two types of qualitative information are sufficient to grossly predict the emergence of each pattern: landscape geometry
(rows) and host dispersal rate (+ =low, ++ =medium, + + + =high dispersal rate).

Patterns Geometries Chaos Meta-population Mainland-island Spiral fragments Spirals
Swiss cheese + +++
Labyrinth + NS
Archipelago + ++
Spotted +

I ——
Persistence mechanism Dispersed reseeding Host-bridge Focal reseeding
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mechanism. It occurs with all geometries except the
spotted landscape, and generates the spatial chaos
pattern. With the spotted landscape, reseeding is
constrained to take place in small and isolated patches;
the ensuing spatial chaos pattern occurs in the matrix
and its only conspicuous effect is to fill or empty the
patches pseudo-randomly. Therefore, this pattern is a
special case of the spatial chaos pattern with many
features hidden in the matrix.

By contrast, the focal reseeding is much more
sensitive to landscape geometry. We have seen that
full-developed spiral — the spiral pattern — can occur
only in Swiss-cheese geometry. In a fragmented land-
scape like the labyrinth geometry, the spiral’s symmetry
is broken, but the reseeding occurs by hosts reinvading
the depleted patch from a yet untouched one; the
process is still directional as the spiral fragments travel a
given patch following always the same direction.

For this reseeding to be possible, the patches must be
close enough. When they are too far apart, i.e. in the
archipelago geometry, the persistence is not possible at
high host dispersal rate; however, when it is medium, a
hybrid mechanism occurs: dispersed reseeding main-
tains the biggest patch (the mainland), which in turn
reseeds periodically the smallest ones by means of the

host-bridge effect.

Discussion

The simulation results allowed us to distinguish five
important patterns. How are they related to previous
theoretical and field studies?

The spatial chaos pattern describes how a spatial
aggregation may arise even if the landscape structure is
mostly homogeneous. The chaotic nature of the wave
propagation makes this an unpredictable process and, in
the field, it will be difficult to distinguish it from other
effects inducing individual aggregation. Moreover, as
spatial heterogeneity is a scale-dependent concept, some
systems described as metapopulations at some scale
could actually be driven by chaotic waves at a larger —
and thus more homogeneous — scale.

The spiral pattern, although described in many
previous theoretical studies (Perry 1995, Rohani et al.
1997, Gurney et al. 1998, Allen et al. 2001) has so far
never been observed in real landscapes, although it has
been shown to resist robustly a high level of stochas-
ticity (Ruxton and Rohani 1996). Our results show that
spiral patterns are easily destroyed by spatial hetero-
geneity (see also Hassell et al. 1993), in particular when
spatial autocorrelation increases landscape irregularity at
the scale at which the spirals appear. As the size of these
patterns is directly related to the dispersal range of the
focal species, it could well be that no real landscape can
offer a space large and homogeneous enough to house
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them. In our simulations, fully developed spirals are
rather uncommon since they can only appear when the
patches are large and homogeneous enough.

The metapopulation pattern has been the subject of
several previous studies (Hanski and Gaggiotti 2004),
although it is still unclear how many populations really
belong to the classical case as defined by Hanski (1997)
rather than to the, apparently more common, main-
land-island (or source-sink) one. Most studies focus on
a single species without modelling explicitly the causes
of local extinctions (but see Holyoak and Lawler 1996,
Lei and Hanski 1998, Johst and Schops 2003).
Recolonisation of empty patches is a central theme of
metapopulation models but, as most of them are built
on the base of a snapshot of the patch-occupancy
situation, it is difficult to assess if these recolonisations
are purely random (as assumed by metapopulation
theory) or follow some spatio-temporal pattern. Our
simulations show two different situations that could be
perceived as metapopulation dynamics if observed
within a small time-window: the first is the one we
called the metapopulation pattern, where local patches
are small, close to each other and whose truly random
extinction/recolonisation sequence is generated by an
underlying spatial-chaos process; this pattern is un-
common in our simulations since it only emerges in
very scarce landscapes and for low host dispersal rates.
The second is the spiral-fragment pattern where the
patches are larger (as related to dispersal range), further
apart and where extinction/recolonisation are driven
by the propagation of a wave of parasitoids; this pattern
is much more conspicuous for the parasitoid than for
the host. Discriminating between these two patterns
would need a time-series analysis: whilst the metapo-
pulation pattern shows pseudo-random recolonisation/
extinctions, the spiral fragment pattern predicts them to
be regularly recurrent.

The spiral-fragment pattern is actually one of the
commonest dynamic patterns emerging from our
simulations. Apart from the metapopulations, which
one saw it could be confounded with, this pattern is
also well supported by field studies. Recurrent,
directional, travelling waves are a common phenom-
enon (Okubo 1980, Ranta et al. 1997, Kaitala and
Ranta 1998, Haydon and Greenwood 2000, Grenfell
et al. 2001, Murdoch and Briggs 2002). In particular,
Bjornstad et al.’s (2002) detailed analysis of the larch
budmoth Zeiraphera diniana outbreaks across the Alps
shows a pattern strikingly similar to the spiral-
fragment pattern: directional waves travelling across
an elongated patch (the Alps), originating recurrently
from its western end.

Finally, the mainland-island pattern, which is a
common outcome of our simulations, is too quite often
found in real populations (Amezcua and Holyoak
2000). A prediction of the host-bridge process that



drives this pattern is that, the further an island is from
the mainland, the more a prey is released from its
predator and, therefore, the larger its cycle amplitude
and period. This prediction is well supported by field
studies on insect prey-predator systems (Kareiva 1987,
1990, Kruess and Tscharntke 1994).

The patterns exhibited by our simulations seem
therefore to correspond to an ecological reality. How-
ever, linking theoretical spatial predictions to field
observations is always flawed as this consists basically
in fitting the predicted results of a process to a detected
pattern. Most often, long time-series of spatially-
referenced data are not available and we are left with
snapshots of what is most probably a transient situation.
We have seen that in some cases this would not be
sufficient to discriminate between two patterns. The
spatial extent of the study has also some importance.
For instance, in the case of the mainland-island pattern,
a study focused on the mainland would conclude at a
spatial-chaos pattern while the same study conducted
on the islands would find regular outbreaks separated
by long time interval. However, there are means to get
around these difficulties. When spatially-explicit data
are unavailable, it is still possible to determine which
pattern it is linked with, provided a sufficiently long
time-series on a sufficiently large spatial extent. The
host/parasitoid density ratio linked to cycle character-
istics will make it possible to select the most probable
pattern. Murdoch et al. (2002) claimed that global
time-series spectrum analysis was conveying informa-
tion about ecological relationship at the community
scale; here we argue that such analyses can also provide
clues about spatial ecology.

Implications for conservation

Spatial ecology has previously identified a variety of
responses of populations to habitat loss and fragmenta-
tion. For example, Hanski (1997) distinguishes the
“classical metapopulation” (sensu Levins 1969), main-
land-island, ephemeral aggregation of individuals, iso-
lated populations and synchronised local populations.
These different dynamical scenarios may need different
conservation policies and have therefore given rise to
distinct theoretical frameworks (Hanski 1997). An
interesting outcome of our model is that it can
reproduce all these situations — as well as hybrids —
by varying essentially only three parameters, namely
proportion of suitable habitat, spatial autocorrelation
(related to fragmentation), and host dispersal rate.
Identifying which processes are governing a particular
population is one of the first and most important
questions a conservation biologist has to answer when
tackling a new problem. Therefore, being able
to delineate from simple landscape and dynamic

probes, which is the most appropriate model among
several candidates, i.e. which is the expected pattern,
would be a powerful tool for both basic ecology and
management.

While confirming that habitat loss and fragmenta-
tion are indeed important factors for population
dynamics, our study highlights the importance of
dispersal rates and interspecies relationships (confirm-
ing previous work, Darwen and Green 1996, Bas-
compte and Solé 1998), since they may determine
which pattern is actually occurring in the system. Being
based on the NB model, our findings are particularly
relevant for systems where consumer and resource are
strongly coupled and prone to cycles, whilst systems
with generalist consumers are more likely to exhibit
single-species-like dynamics (Murdoch et al. 2002).
Furthermore, depending on the pattern and whether we
are primarily interested in the host or the parasitoid,
habitat loss, fragmentation or dispersal may prove to be
the crucial parameter, needing either to be carefully
monitored or controlled through management. An
example of this is the management of predator
populations. The habitat suitability map of its main
prey is often taken as a predictor of the predator’s
distribution (Boyce and Mcdonald 1999, Cramer and
Portier 2001, Hirzel and Arlettaz 2003, Hirzel et al.
2004). However, as exemplified by the labyrinth
geometry, prey spatial distribution may be of limited
interest if not considered together with its dispersal
behaviour. Biological pest control is another domain
that could benefit from this approach. Spatial processes
have long been thought important in some pest control
situations (Settle et al. 1996). Our model predicts, for
example, that field geometry is a dominant factor
controlling outbreaks and suggests landscape designs
that may help achieve this goal.

Contributions to ecological theory

The present model provides novel insight in two
domains of theoretical ecology. First, it is one further
contribution to the long history of NB model stability
analysis. Including space, implicitly or explicitly, was
known to have a stabilising effect on its dynamics.
However, spatially homogeneous systems were produ-
cing symmetrical spatial patterns, like spirals or circles,
which have never been observed in the field. Our work
shows that spatial heterogeneity breaks up these
unrealistic symmetrical patterns in most cases, even in
absence of stochasticity. These patterns are replaced by
a palette of realistic behaviours that can be related to
field observations: spatial chaos, spiral-fragments (or
travelling waves), metapopulation and mainland-island.
Cycles in total population numbers can occur, and have
periods in the range expected from non-spatial theory
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(>6), and shown by Murdoch et al. (2002) to be
characteristic of many observed consumer-resource
interactions.

Second, our model establishes a conceptual bridge
between landscape ecology and population ecology, two
domains that, although they are closely related, use such
different tools that it is difficult to apply one to the
other. Our model places a classical and highly studied
host-parasitoid model within a heterogeneous landscape
defined by common fragmentation and habitat-loss
parameters. For the sake of simplicity, we have here
restricted our analysis to exemplary and well-defined
landscape geometries, but obviously the next step is to
study more precisely how the dynamical characteristics
of the system are affected along the whole gradient of
landscape configurations.

In this paper we have considered environmental
heterogeneity as acting on host growth rate. Future
studies could address spatial heterogeneity in the para-
sitoid attack rate — i.e. spatially explicit host refuges — or
in the dispersal rates — i.e. dispersal barriers. Another
question of interest would be to study how our results can
be generalised to different interaction types: e.g. compe-
titors and food webs (Arditi et al. 2005).
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Appendix 1. Diffusion effect

The diffusion effect may lead a patch to extinction
providing that it propagates more dispersers it can
compensate for by reproduction and immigration. This
effect — which is related to the critical patch size theory
— depends primarily on the dispersal rate py, the
number of adjacent habitat hexes k’ and the growth rate
A, and more marginally on the distance to other sources
of host dispersers. Neglecting predation and immigra-
tion, equation 1a shows that, for a hex not to go extinct,
the following relation must be true:

hy — 1

k/
xH(l B k)

With the parameter values used throughout this paper
(A =2, k =0), this entails that any hex with three or
more neighbours will be viable for any value of iy, and,
conversely, if [y <0.5, even a single isolated hex is
viable.

Py < (3)

Appendix 2. Host-parasitoid dynamics
with constant inflow

We consider here a version of the NB model where the
focal system is an island experiencing a constant inflow
of hosts Iy and parasitoids Ip from a close enough
mainland so that dispersers cross the gap in one
generation:

N, =AN, exp{—aP } + I (4a)
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P, =Nl —exp{—aP })+1, (4b)

Many dynamical properties of this system can be
demonstrated by standard approaches involving the
computation of equilibria and by the study of small
perturbations from an equilibrium state (Gurney and
Nisbet 1998, chapter 3, Murdoch et al. 2003, chapter
4). These analyses show that the system is persistent
provided both immigration rates are strictly positive (I
>0 and Ip >0). If both of them are small there are
typically persistent limit cycles, while if either is
sufficiently large there is a stable equilibrium. With
A =2and a=c=1, we find empirically that the period
of the cycles linearly decreases with log(Iy). After a
parasitoid-driven extinction, the host can always recover
thanks to immigration, but the smaller the inflow, the
longer the recovery time. However, the host cannot
recover if the inflow is insufficient to keep the
population above the extinction threshold; for a thresh-
old of 107'% the maximum period is around 36
generations. Parasitoid inflow has litde effect on
oscillation period, however the cycle amplitude de-
creases non-linearly as parasitoid amplitude increases.
On or near the stability boundary, the period does not
drop much below 6 when A <10 — a property similar
to that noted for a wide range of consumer-resource
systems by Murdoch et al. (2002).

Appendix 3. Mainland-island dispersal:
the host-bridge effect

Let us consider a mainland assumed to be large enough
to convey constant populations of hosts and parasitoids,
separated from an island by a space of unsuitable
habitat, which takes D generations to be crossed. This
one-dimensional system can be modelled in the frame-
work of Eq. 1 and 2, with a neighbourhood size k =2
(dispersers can only move islandward or mainland-
ward). The system is composed of D+2 cells with
reflexive boundary conditions. At one end lies the
mainland with constant densities Nog=Py=1 and
therefore constant numbers of dispersers. At the other
end is the suitable island with a growth rate A =hy =2.
In between are the unsuitable cells with A =Xy, =0.01;
these cells can therefore not sustain populations
without immigrants from either the island or the
mainland.

In the absence of any island, the population densities
in the unsuitable cells quickly achieve death-immigra-
tion equilibrium. A numerical model showed that the
logarithm of host equilibrium density N; decreases
linearly with distance i from mainland, whilst the

logarithm of the parasitoid equilibrium density Py

decreases quadratically. This can be confirmed mathe-
matically as follows:
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In an one-dimensional system, dispersal Eq. 1
become:

1 1
N = N — N+ 5 PNy + EHNNi+I,t (52)

, 1 1
Pi,t =P, — uNPi,t + EHNPFM + EHNPHLI,( (5b)
The host-parasitoid step then takes the form
N = XMN{; CXP{*aPiﬂt} (6a)
Pi‘t+1 = Nl/t(]‘ - exp{_aPi/,t}) (Gb)

The approximation is based on the assumptions that
matrix growth rate is low and the densities decrease
rapidly from one cell to the next, i.e. Ayy<<1; Nj<<
N;_1; P;<<P;_ ;. Furthermore, we are only interested
in equilibrium solutions, so we drop the subscript t.
With these approximations, Eq. 5a and 5b can be
simplified to the form:

1
N; ZEHNNifl (7a)

1
P, = 2 1000 (7b)

With the same assumptions as above, Eq. 2a then
becomes:

1
N, zikMuN-Ni_l (8)

1

This approximation is likely to be excellent for all but
the smallest values of i (and is of course exact when
there are no parasitoids. Thus we expect that asympto-
tically the host density decreases geometrically with
distance into the matrix and we can conjecture that to a
good level of approximation

log(N?) = log(C) + log(A) i 9

1
with A = EXM iy and C a positive constant depending

on Ny and Py. Similarly, we find that, for the
parasitoid, we have:

1 .
Pi= ZauP”NNi—IPi—l =BCA'P,_,

(10)
1
ith B=-
wi 4 alpHy
Thus
log(P,) = log(BC) + ilog(A) + log(P, _,) (11)

which, if exactly true for all i would imply that



log(P)) = ilog(BC) + log(A) > j = ilog(BC)

j=0

+bgM%KLFD+bgm) (12)

Thus log(P;) varies quadratically with i, i.e.

1 1
log(P)) = o + Bi + yi* with y = Elog (E KMLLN> (13)

This means that, whenever an extinction threshold
prevents a population to get infinitesimally small, host
dispersers can reach further away from the mainland
than the parasitoids. If the island can initially be
reached by the host and not by the parasitoid, the
former will grow there exponentially. As the island host
density increases, it will become a significant source of
dispersers spreading toward the mainland. At some
time, which depends on the distance D between the
mainland and the continent, there will be enough host
dispersers in the interpatch space to allow the parasitoid
to cross it. This is what we call the “host-bridge effect”.
The parasitoid invasion of the island drives both
populations extinct there, and the process starts again.
This generates cyclic dynamics with regular host out-
breaks closely followed by short bursts of parasitoids.
The cycle period increases linearly with the distance D;
the slope of this increase is fairly insensitive to other
parameters, except for high host dispersal rates py;,
which makes the slope steeper.

Appendix 4. Sequential Gaussian
algorithm

The sequential Gaussian simulation algorithm used for
spatially correlated stochasticity was derived from
Gomez-Hernandez and Srivastava (1990), as well as
from Goovaerts (1998) with a few modifications
designed to adapt it to torus topology. The principle
is to generate for each hex x; a spatially correlated and
normally distributed (mean =0, SD =1) random
value z; so that they reproduce a Gaussian correlogram
model, i.e.:

3
(d)=r,e * (14)

where r (d) is the spatial correlation between two hexes
separated by a distance d, rp. is the maximal
correlation for d >0 and o is the range, i.e. the distance
at which r(a) =0.05. The distance d between two hexes
is measured according to the torus topology. The
landscape generation did not differ whether absorbing
or reflecting boundary conditions were used.

Suppose that we know the z value at a set of hexes
{x1, X5, ..., xi} and we want to draw a random z value
for a cell x4 1, so that, together, they reproduce the
correlogram model. Geostatistics have developed a
family of least-square regression algorithms called
“kriging” that answer this question. Conceptually,
“simple kriging” is a locally-weighted linear regression.
It expresses the estimated value z*(x, ;1) as a linear
combination of the z(x;):

k
2K ) =Y WLZX) (15)
i=1
The weights w; are set according to the relative spatial
position of the x; and to the correlogram model, so as to
minimise the error variance. This is achieved by solving

a system of linear equations:
k
r(dl,k+|) = E Wif(dl,i)
i=1

k
tdy )= wirld,,) (16)
i=1

k
f(digs ) = Zwir(dk,i)
i=1

where d;; is the distance between cells x; and x;.
Furthermore, kriging theory shows that the variance
of z* is given by:

k
Gz(xk+1) =1- Zwir(dk+l,i) (17)
i=1
with the constraint that, for 6> to be positive, the
correlogram model r must produce a positive-definite
correlation matrix.
From here, the sequential Gaussian algorithm
proceeds as follows:

1. Define a path {xy, x5, ..., xn} visiting each hex once
and only once, in random order.

2. For each hex x; taken sequentially along the path do:

3. Using Eq. 15, 16 and 17, compute its expected
mean z*(x;) and SD G°(x;), on the base of the hexes
already generated {x, x5, ..., Xi_1}.

4. Draw a random value from a Gaussian distribution
with mean z*(x;) and SD o?(x;), and assign it to
2(x;y).

5. Proceed to the next hex along the path and repeat
steps 3 and 4 undil all hexes have been generated.

This algorithm is implemented into a dedicated

program (GENESIS, Hirzel, unpubl.), available upon
request from AHH.
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