| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References<br>000 |
|---------------------------------------------|--------------------|------------------|------------------|-------------------|
|                                             |                    |                  |                  |                   |

# Predicting Blood Pressure from the Retina using Deep Learning

# Dr. Alexander Button

Solving biological problems that require math

March 4, 2022

Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             |                    |                  |                  |            |

- **2** The Target Problem
- **3** Current Progress
- **4** Proposed Project



Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
| 000                                         |                    |                  |                  |            |

- 2 The Target Problem
- **3** Current Progress
- **4** Proposed Project
- **5** References

《曰》《聞》《臣》《臣》 (四)

Dr. Alexander Button

Solving biological problems that require math

#### Retinal Image and the Cardiovascular System

The cardiovascular system is connected throughout the body. The eyes provide an "easy access" point to examine blood vessels directly.

In an example from 2014, a group from Google Research trained a model to predict a series of cardiovascular risk factors from retinal fundus images [1].

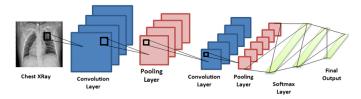


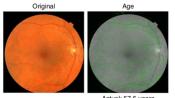
< ロ > < 同 > < 三 > < 三 >

| Using Retinal Images for Disease Prediction<br>00●0 | The Target Problem<br>00000 | Current Progress | Proposed Project | References<br>000 |
|-----------------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| Prediction from Images                              |                             |                  |                  |                   |

In order to make these predictions, the team used what is known as a convolutional neural network (CNN).

A CNN is a neural network architecture inspired from the visual cortex of the brain. This method takes a two-dimensional image as an input and combines the various pixel values in order to make a prediction.





Figure 2: Overview of a convolutional neural network [2]

Dr. Alexander Button

Solving biological problems that require math



Using their trained CNN, the team was able to predict various risk factors relevant for cardiovascular disorders.



Actual: 57.6 years Predicted: 59.1 years

Figure 3: Raw fundus image (left) and the activation highlighted (right) for age prediction

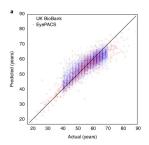



Figure 4: Comparison of predicted and actual age in years.

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             | 00000              |                  |                  |            |

# **2** The Target Problem

- **3** Current Progress
- **4** Proposed Project

# **5** References

《曰》《聞》《臣》《臣》 臣 少의(3

Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem<br>0●000 | Current Progress | Proposed Project | References<br>000 |
|---------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| Aims of the Project                         |                             |                  |                  |                   |

#### Aim 1

Training a model to predict different cardiovascular disorders directly from retinal images.

#### Aim 2

Extract the hidden layers of the model and determine how they contribute to the disease prediction.

# Aim 3

Investigate the clinical and genetic significance of the extracted features.

・ 同 ト ・ ヨ ト ・ ヨ ト

| Using Retinal Images for Disease Prediction | The Target Problem<br>00●00 | Current Progress | Proposed Project | References<br>000 |
|---------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| Model Architecture                          |                             |                  |                  |                   |

For this problem, we chose to use the **DenseNet** architecture. The DenseNet is a convolutional neural network that consists of a series of inter-connected **denseblock modules**.

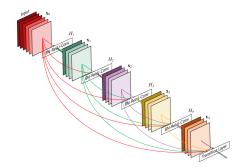



Figure 5: Overview of how the DenseNet works [3]

Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem<br>000●0 | Current Progress | Proposed Project | References<br>000 |
|---------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| Input data                                  |                             |                  |                  |                   |

For our input data, we obtained  $\sim$ 60,000 retinal images from the UKBioBank, as well as the subject's corresponding genomes.

As an initial preprocessing set, we converted these images into their vessel segmented forms.



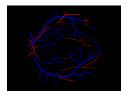
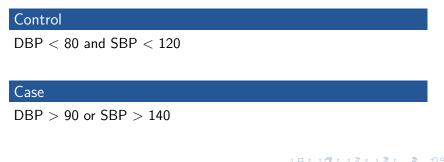



Figure 6: Raw retinal fundus image Figure 7: Vessel segmented image


Dr. Alexander Button

Predicting Blood Pressure from the Retina using Deep Learning

| Using Retinal Images for Disease Prediction | The Target Problem<br>0000● | Current Progress | Proposed Project | References<br>000 |
|---------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| Target Disorder                             |                             |                  |                  |                   |

The key trait that we have been investigating has been **hypertension**. We predict hypertension categorically, that is, either as 0 (control) or 1 (case)

In our study we define hypertension as:



Dr. Alexander Button

Predicting Blood Pressure from the Retina using Deep Learning

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             |                    | 0000             |                  |            |

# **2** The Target Problem

- **3** Current Progress
- **4** Proposed Project

# **5** References

- ▲日 > ▲国 > ▲目 > ▲目 > ▲日 >

Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem<br>00000 | Current Progress<br>0●00 | Proposed Project | References<br>000 |
|---------------------------------------------|-----------------------------|--------------------------|------------------|-------------------|
| Prediction Results                          |                             |                          |                  |                   |

We have successfully trained out model to predict hypertension and obtained a high predictive accuracy.

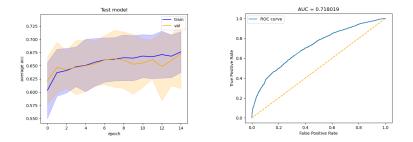



Figure 8: Training curve comparing Figure 9: Receiver operator curve for the predictive accuracy between the predicting the hypertensive label training and validation data

(AUC=0.72)

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress<br>00●0 | Proposed Project | References<br>000 |
|---------------------------------------------|--------------------|--------------------------|------------------|-------------------|
| Activation Visualization                    |                    |                          |                  |                   |

To further understand which features of the image were contributing to the prediction, we generated **class activation maximized images**, that is, images in which the pixels are coloured according to their contribution to the output.

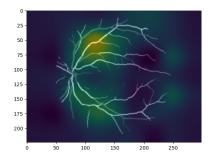



Figure 10: Vessel segmented image highlighted by the class activation

Dr. Alexander Button

Solving biological problems that require math

Using Retinal Images for Disease Prediction The Target Probl 0000 00000 Current Progress

Proposed Pr 00 References

# Genetic Analysis

We also performed a series of **genome-wide association studies (GWAS)** on a subset of the output layer neurons in order to determine their genetic significance.

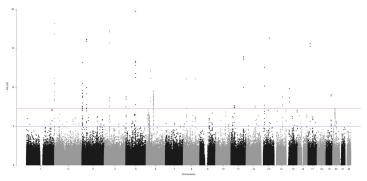



Figure 11: Manhatten plot for the activation values of a selected output layer neuron

#### Dr. Alexander Button

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             |                    |                  | •o               |            |

- **2** The Target Problem
- **3** Current Progress
- **4** Proposed Project
- **5** References

· ▲ □ ▶ ▲ @ ▶ ▲ 문 ▶ ▲ 문 ▶ · 문 · \*)오(\*

Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project<br>○● | References<br>000 |
|---------------------------------------------|--------------------|------------------|------------------------|-------------------|
| Proposed Project                            |                    |                  |                        |                   |

# **Project Proposal:**

- The aim of the project would be to apply the same pipeline to different disease categories e.g. angina, diabetes, stroke, heart attack event.
- The method could be applied both on the raw images as well as the vessel segmented images
- One could also investigate in predicting continuous traits such as age, diastolic pressure, systolic Blood Pressure.

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             |                    |                  |                  | •00        |

- **2** The Target Problem
- **3** Current Progress
- **4** Proposed Project



Dr. Alexander Button

Solving biological problems that require math

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References<br>0●● |
|---------------------------------------------|--------------------|------------------|------------------|-------------------|
|                                             |                    |                  |                  |                   |

 Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily Peng, and Dale R. Webster.
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. *Nature Biomedical Engineering*, 2(3):158–164, 2018.

 [2] Mohammad Farukh Hashmi, Satyarth Katiyar, Avinash G. Keskar, Neeraj Dhanraj Bokde, and Zong Woo Geem.
Efficient pneumonia detection in chest xray images using deep transfer learning.

Diagnostics, 10(6):1–23, 2020.

| Using Retinal Images for Disease Prediction | The Target Problem | Current Progress | Proposed Project | References |
|---------------------------------------------|--------------------|------------------|------------------|------------|
|                                             |                    |                  |                  | 000        |
|                                             |                    |                  |                  |            |

 [3] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:2261–2269, 2017.