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loci and enables polygenic prediction of disease
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a disease by optic nerve can be through timely and
treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model
to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected

glaucoma cases and modifies penetrance of the MYOC variant encoding p.GIn368Ter, the most common glaucoma-associated
myocilin variant. In the in the top PRS decile reach an absolute risk for glaucoma
10 years earlier than the bottom decile and are at 15-fold risk of (top 10% versus
remaining 90%, odds ratio =4.20). The PRS predicts in early manifest
glaucoma cases (P =0.004) and surgical intervention in advanced disease (P =3.6 x 10%). This glaucoma PRS will facilitate
the ch for earlier of high-risk with less intensive monitoring and

ofa
treatment being possible for lower-risk groups.

laucoma refers to a group of ocular conditions united by a  more refined approaches can capitalize on the fact that POAG is one
clinically characteristic optic neuropathy associated with, of the most heritable of all common human diseases™*. The lack
but not dependent on, elevated intraocular pressure”. Itisthe  of a currently cost-eficctive screening strategy for glaucoma’,
leading cause of irreversible blindness worldwide and is predicted  coupled with very high heritability, make glaucoma an ideal candi-

to affect 76 million by 2020 (ref. ). There is no single definitive
biomarker for glaucoma, and diagnosis involves assessing clinical
features, with characterization of the optic nerve head carrying the
strongest evidential weight. Primary open-angle glaucoma (POAG)
is the most prevalent subtype of glaucoma in people of European
and African ancestry™. POAG is asymptomatic in the early stages;

date disease for the development and application of a PRS to facili-
tate risk stratification.

Overlap of features shared by healthy optic nerves with those in
the early stages of glaucoma makes it a difficult disease to diagnose
carly, ing costly ongoing itoring of patients for pro-
gressive optic nerve degeneration’. Once a glaucoma diagnosis is

currently i ly half of all cases in thy ity are undi-
agnosed even in developed countries’. Early detection is paramount
since existing treatments cannot restore vision that has been lost,
and late presentation is a major risk factor for blindness". Thus, bet-
ter strategies to identify high-risk individuals are urgently needed’;

blished, rates of p ion vary widely between individuals,
and considerable time can elapse before surveillance techniques
adequately differentiate slow from more rapidly progressing cases'.
Progressive vision loss from glaucoma can be slowed, or in some
cases halted, by timely intervention to reduce intraocular pressure

A full list of affiliations appears at the end of the paper.
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https://insightplus.mja.com.au/2018/9/what-gps-
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PRS : Patient's genome — Risk score
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Fig. 1| Manhattan plot displaying glaucoma-specific P values from the MTAG analysis. The samples used in the multitrait analysis are presented in

Extended Data Fig. 1a. Previously unknown SNPs are highlighted with red dots, with the nearest gene names in black text. Known SNPs are highlighted
with purple dots, with the nearest gene names in purple text. The red line is the genome-wide significance level at 5x10-8
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PRS : Patient's genome — Risk score
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Fig. 4 | Clinical implications of the glaucoma PRS. a, Mean age at diagnosis (years) for each decile of the PRS in the ANZRAG cohort (linear regression
P=1.8x107°). A total of 1,336 cases had accurate age at diagnosis information. We calculated the mean age at diagnosis for each decile of PRS, adjusted
for sex and the first four principal components in a linear regression model. The black squares are the regression-based mean age at diagnosis, with

the error bars for the 95% Cls. The red line is the line of best fit, with the 95% Cls in gray. b, Proportion of preserved baseline retinal nerve fiber layer

for PROGRESSA participants with early manifest glaucoma plotted against PRS decile (n=388; linear regression P=0.004). The black squares are the
retinal nerve fiber layer proportions, with the error bars showing the 95% Cls. The remaining retinal nerve fiber layer proportion is calculated for the
most affected quadrant of the most affected eye of each patient, as determined on optical coherence tomography scans at baseline and latest follow-up
scan. ¢, Proportion of patients requiring trabeculectomy in either eye in the ANZRAG POAG cohort (linear regression P=3.6 X10-%). There were 1,360
cases with records of surgical treatment status. The black squares represent the observed average proportion of cases in each decile of PRS who required
trabeculectomy, with 95% Cl bars. The line of best fit is shown in red, with the 95% Cl shaded in gray.



How do we calculate the PRS?

PRS : Patient's genome — Risk score

N
PRS == ZﬁiXi
i=0

* X; = allelic dosage of the i!*SNP position (0,1,2)

This value represents whether or not the patient possesses 0, 1, or 2 copies of the main
effect allele in their chromosome

e.g for effect allele T this would be G/G(0), G/T(1), or T/T(2)

* [3; = effect size of the it"SNP position (float)

A measure of how much a trait varies with the allelic dosage at position i. (For continuous
traits, this is often the slope of a linear fit between the trait and dosage)



Median Tortuosity

Real Results

Tortuosity = 0.00408 * PRS + 1.0267 . . .
R~2 = 0.10168165626952193 Median Tortuosity Angina 0.5448

PRS Angina 0.5168
1087 Median Tortuosity Diabetes 0.5237
1.07 - PRS Diabetes 0.4996
1.06 - Median Tortuosity DV Thrombosis 0.5252
Los . PRS DV Thrombosis 0.4904

Median Tortuosity Heart Attack 0.5338
H PRS Heart Attack 0.4968
1.037 o Median Tortuosity Hypertension 0.5644
1.02 - PRS Hypertension 0.5131
101 4, ' . ' . ' Median Tortuosity Stroke 0.545
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PRS value PRS Stroke 0.5127
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Project goal:
Construct a polygenetic risk score to
accurately evaluate a patient’s disease risk.

Learning objectives:

* Learn to calculate the polygenetic risk score from GWAS summary
statistics.

* Learn to manipulate and analyze genetic patient data (big data, high
performance computing).

 Utilize the PRS for disease outcome prediction.

* Look into extensions to the basic PRS method (LASSO, linear mixed
models).

* |[nvestigate various phenotypes and their influence on the PRS and its
predictive capabilities.
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Overview

This tutorial provides a step-by-step guide to performing basic polygenic risk score
(PRS) analyses and accompanies our PRS Guide paper. The aim of this tutorial is to
provide a simple introduction of PRS analyses to those new to PRS, while equipping
existing users with a better understanding of the processes and implementation
"underneath the hood" of popular PRS software.

The tutorial is separated into four main sections and reflects the structure of our guide
paper: the first two sections on QC correspond to Section 2 of the paper and
constitute a 'QC checklist' for PRS analyses, the third section on calculating PRS
(here with examples using PLINK, PRSice-2, LDpred-2 and lassosum) corresponds to
Section 3 of the paper, while the fourth section, which provides some examples of
visualising PRS results, accompanies Section 4 of the paper.

1. Quality Control (QC) of Base Data
2. Quality Control (QC) of Target Data
3. Calculating and analysing PRS

4. Visualising PRS Results

We will be referring to our guide paper in each section and so you may find it helpful
to have the paper open as you go through the tutorial.

Data used in this tutorial are simulated and intended for demonstration purposes
only. The results from this tutorial will not reflect the true performance of different
software.

REVIEW ARTICLE

https://doi.org/10.3038/541596-020-0353-1

[ tor upctal

Tutorial: a guide to performing polygenic risk

score analyses

Shing Wan Choi"?, Timothy Shin-Heng Mak ®* and Paul F. O'Reilly"?™

A polygenic s<ofe (PGS) or polygenic risk score (PRS) is an estimate of an mdvlduars genetic liability to a trait or

ng to their profile and iation study (GWAS) data. While

pvesen( PIISs Iypkaly exphln only a small fraction of trait variance, their correlation with the single largest contributor to

ypic var genetic liability—has led to the routine application of PRSs across biomedical research. Among a

rmge of ap i PRSs are ited to assess shared etiology betv h to eval thedinld utinyof
gm:daufof:mlexdisusemdxpanofexpermmwsmdnsmwhmfw le, exp

par (e.g., gene exp ion and cellular r to ) b i i mﬂl lw and high

PRS values. As GWAS sample sizes increase and PRSs become more powerful, PRSs are set to play a key role in research
and stratified medicine. However, despite the vaoﬂanoe and grvwmg application of PRSs, there are limited guidelines for

perfom-ng PRS analyses, which can lead to i

studies and mi: P ion of results. Here, we

P for performing and interp

"_, PRS ] We outline standard quality control steps,

ﬁscuss different methods for the cal ion of PRSs, pr

misconceptions relating to PRS results, offer rec

ide an introd y online tutorial, highlight common
for best practice and discuss future challenges.

Introduction

Genome-wide association studies (GWASs) have identified a
large number of genetic variants, mostly single nucleotide
polymorphisms (SNPs), significantly associated with a wide
range of complex traits'". However, these variants typically
have a small effect and correspond to a small fraction of truly
associated variants, meaning that they have limited predictive
power™™. Using a linear mixed model in the genome-wide
complex trait analysis software’, Yang et al. demonstrated that
much of the heritability of height can be explained by evalu-
ating the effects of all SNPs simultaneously’. Subsequently,
statistical techniques such as linkage disequilibrium (LD) score
regression™” and the polygenic risk score (PRS) method™'” have
also aggregated the effects of variants across the genome to
estimate heritability, to infer genetic overlap bﬂw«n traits and
to predict phenotypes based on genetic profile !

While genome-wide complex trait analysis, LD score
regression and PRS can all be exploited to infer heritability and
shared etiology among complex traits, PRS is the only approach
that provides an estimate of genetic liability to a trait at the
individual level In the classic PRS method™'*"'* (terms in
boldface are defined in Box 1), a polygenic risk score is calcu-
lated by computing the sum of risk alleles that an individual
has, weighted by the risk allele effect sizes as estimated by a
GWAS on the phenotype. Studies have shown that substantially
greater predictive power can usually be achieved by including a

large number of SNPs in the PRS rather than restricting to only
those reaching genome-wide significance in the GWAS' """
As an individual-level proxy of genetic liability to a trait, PRSs
are suitable for a range of applications. For example, as well as
identifying shared etiology among traits, PRSs have been used
to test for genome-wide gene-by-environment and gene-by-
gene interactions ', to perform Mendelian randomization
studies to infer causal relationships and for patient stratification
and sub-phenotyping'™'™'". Thus, while polygenic scores
represent individual genetic predictions of phenotypes, pre-
diction is often not the end objective: instead, these predictions
are commonly aggregated across samples and used for research
purposes, interrogating hypotheses via association testing.
Despite the popularity of PRSs, there are minimal guide-
lines™ on how best to perform and interpret PRS analyses.
Here, we provide a guide to performing PRS analyses, outlining
the standard quality control steps required, options for PRS
calculation and testing and interpretation of results. We also
outline some of the challenges in PRS analyses and highlight
common misconceptions in their interpretation. We will not
perform a comparison of the power of different PRS methods
or provide an overview of PRS applications, since these are
available elsewhere’ ™' *'"*" Instead, we focus this article on the
issues relevant to PRS analyses irrespective of the method used
or the application, so that researchers have a starting point and
reference guide for performing polygenic score analyses.

"MRC Social, Genetic and Developmental Psyc
“Department of Genetics and Genomic Scien

of Hang Kong, Hong Kong, China. *e-mail
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Choi, S.\W. et al. Nat Protoc 15, 2759-2772 (2020)
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Appendix



Project suggestions

e Compare different methods for calculating the PRS (LASSO, mixed linear models).

* Investigate different quality control methods (significance threshold, corrections
for relatedness, linkage disequilibrium).

» Use different phenotypes for performing the GWAS analysis (Which phenotype
leads to most accurate PRS?).

* Determine the correlation between a given phenotype and the corresponding
PRS (How well do they correlate? Does combining them improve disease
prediction?).

* Look into different diseases (Are some diseases more strongly influenced by
genetic contributions? Are some more polygenetic?).



