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Abstract
Aims/hypothesis Several susceptibility genes for type 2
diabetes have been discovered recently. Individually, these
genes increase the disease risk only minimally. The goals of
the present study were to determine, at the population level,
the risk of diabetes in individuals who carry risk alleles
within several susceptibility genes for the disease and the
added value of this genetic information over the clinical
predictors.
Methods We constructed an additive genetic score using the
most replicated single-nucleotide polymorphisms (SNPs)
within 15 type 2 diabetes-susceptibility genes, weighting each
SNP with its reported effect. We tested this score in the
extensively phenotyped population-based cross-sectional

CoLaus Study in Lausanne, Switzerland (n=5,360), involving
356 diabetic individuals.
Results The clinical predictors of prevalent diabetes were age,
BMI, family history of diabetes, WHR, and triacylglycerol/
HDL-cholesterol ratio. After adjustment for these variables,
the risk of diabetes was 2.7 (95% CI 1.8–4.0, p=0.000006)
for individuals with a genetic score within the top quintile,
compared with the bottom quintile. Adding the genetic score
to the clinical covariates improved the area under the
receiver operating characteristic curve slightly (from 0.86
to 0.87), yet significantly (p=0.002). BMI was similar in
these two extreme quintiles.
Conclusions/interpretation In this population, a simple
weighted 15 SNP-based genetic score provides additional
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information over clinical predictors of prevalent diabetes.
At this stage, however, the clinical benefit of this genetic
information is limited.
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Abbreviations
IDI Integrated discriminant index
QC Quality control
ROC Receiver operating characteristic
SNP Single-nucleotide polymorphism

Introduction

Several clinical variables are associated with incident type 2
diabetes including age, sex, obesity, family history of
diabetes, dyslipidaemia, smoking, hypertension and lack
of physical activity [1–5]. Recently a series of susceptibility
genes for this disease have been discovered [6–10]. Taken
individually, the size of the effects of the risk alleles is
generally modest, in the order of 5–20% [7, 8]. To what
extent the accumulation of risk alleles within multiple
susceptibility genes predisposes to diabetes, the added
value of the information derived from genetic markers over
clinical predictors, and the way to derive from risk alleles a
genetic score with an optimal predictive value are of major
importance, as a better prediction of diabetes would allow
preventative behavioural and pharmacological measures to be
deployed in a more targeted, efficient and cost-saving manner
[11, 12]. These questions are not specific to diabetes, but are
equally relevant to other diseases for which genome-wide
scans have now revealed several susceptibility genes [13].

For type 2 diabetes, analyses of three susceptibility
genes in the Botnia Study [14], in the UK Diabetes Study
[15] and in the French Data from an Epidemiological Study
on the Insulin Resistance syndrome (DESIR) Study [16]
indicate that accumulation of multiple risk alleles markedly
increases the risk of diabetes, and evidence has been provided
that incorporation of additional genes should improve the
diabetes risk prediction [17]. Recently Lango et al. [18] have
shown that, in a case–control study involving 2,309 diabetic
and 2,598 non-diabetic individuals, the risk of diabetes rose
in proportion to the added number of risk alleles within 18
susceptibility genes for diabetes, and that diabetic patients
with a large number of risk alleles had an earlier age of
onset of the disease. In this particular study though, the
discriminatory power of the genetic score over age, BMI
and sex was small, and limited phenotypic information was
available. The relevance of these findings at a population
level and the value added by the genetic information over

family history of diabetes and other clinical predictors of the
disease remained unknown. Very recently, the ability of these
risk alleles to predict incident disease has been evaluated in
two prospective populations, the Framingham [19] and the
combined Malmö and Botnia studies [20]. Both studies
showed that once all non-genetic predictors were taken into
account, the addition of the genetic score provided only a
marginal increase in prediction. The fact that risk alleles
within susceptibility genes vary somehow in their effect was
not taken into account in the generation of the additive
genetic score in any of the above studies, with the exception
of that of Meigs et al. [19]. In this particular study,
weighting the genetic score did not change substantially its
predictive value.

In the present study, we first compared the clinical
characteristics of 356 diabetic individuals and 5,004 non-
diabetic controls in the extensively phenotyped CoLaus
population-based study in Lausanne, Switzerland [21, 22].
We then performed a multivariate logistic regression analysis
to identify the clinical variables that were independently
associated with the presence of the disease. Subsequently, we
constructed a genetic score using the most replicated single-
nucleotide polymorphism (SNP) within 15 susceptibility
genes for diabetes (two SNPs were not available in this
cohort). As the amplitude of the effect varies somewhat
between diabetes-susceptibility genes, and in an attempt to
penalise those SNPs with a less reliable OR estimate, we
weighted here each SNP using the log lower boundary of the
reported 95% CI. We used an additive model consistent with
the additive risk described for most of the susceptibility genes
for diabetes and the absence of interactions between these
genes [18]. We next compared the predictive value of this
weighted genetic score with the unweighted score. Finally,
we examined the discriminatory power of the weighted
additive genetic score over the clinical predictors of the
disease using receiver operator characteristic (ROC) curve
and integrated discriminant index (IDI) analyses [20, 23].

Methods

Design of the CoLaus Study and phenotypic assessment The
CoLaus Study has been described previously [21]. Briefly,
6,200 white individuals aged 35–75 years were randomly
selected from the general population in Lausanne, Switzer-
land. These individuals underwent a detailed phenotypic
assessment including measurement of several metabolic
markers in fasting blood samples. Diabetes was defined as
fasting blood glucose ≥7.0 mmol/l or prescription of
glucose-lowering drugs. The study was sponsored in part
by GlaxoSmithKline and each participant was duly
informed about, and consented to, the use of their data and
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samples by this company and/or its affiliates. The protocol
was approved by the local ethics committee.

Genotyping, quality controls and imputation The list of 17
susceptibility genes for diabetes, the corresponding SNPs
and the sizes of their effects were extracted from published
meta-analyses [8, 9]. Eleven of these SNPs were included
in the Affymetrix 500K SNP chip which had been used to
genotype 6,000 CoLaus participants. Genotype quality
control (QC) was performed to detect genotype inconsisten-
cies and check the genotyping efficiency. The first step
covered QC of individuals. Samples were removed from the
analysis if: (1) sex was inconsistent with genetic data from
X-linked markers; (2) the returned genotype call rate was
<90%; or (3) genotypes were inconsistent compared with
control markers. We next performed a QC analysis for SNP
markers. Markers were removed if: (1) they were monomor-
phic in all samples; (2) the genotype call was <95%; or (3) the
p value for Hardy–Weinberg equilibrium was <10−7. Based
on these criteria, a total of 640 individuals were removed
from the analysis so that the full set of phenotypic data
and these 11 genotyped SNPs were available for 5,360
individuals.

The remaining six SNPs were imputed. For that purpose,
we applied the IMPUTE version 0.2.0 method of Marchini
and Howie (www.stats.ox.ac.uk/∼marchini/software/gwas/
impute.html, accessed 17 December 2008), and haplotypes
derived from the CEU samples (Centre d’Etude du Poly-
morphisme Humain trios originating from northern and
western Europe living in UT, USA) and fine-scale recombi-
nation maps from HapMap Release 21 (www.hapmap.org/
downloads/genotypes/2006-7/, accessed 17 December 2008)
including 390,631 measured SNPs. The output of this
version gives genotype probabilities for a given SNP based
on information from all measured SNPs. Only SNPs with a
minor allele frequency ≥1% and with an average maximum-
posterior probability score >0.90 were included in the
present analyses. Two of the imputed SNPs (rs4430796 for
TCF2 and rs13266634 for SLC30A8, with a reported OR for
diabetes of 1.10 [1.07–1.14] and 1.15 [1.12–1.19], respec-
tively) did not pass this QC, so that these two genes were
removed and 15 genes/SNPs were eventually included in the
present analysis. Twelve of these 15 SNPs were used in the
report by Lango et al. [18]. Three SNPs (rs7901695 for
TCF7L2, rs5215 for KCNJ11 and rs10923931 for ADAM30)
were used as proxy SNPs in the present study.

Construction of the weighted genetic score The weighted
genetic score was generated using the following equation:

weighted genetic score ¼ w1 � SNP1 þw2

� SNP2 þ . . .þ wk � SNPk
ð1Þ

where SNPi=0, 1 or 2 according to the number of risk alleles
for the specific locus, wi is the appropriate weight to be
determined and k is the number of SNPs used (i.e. k=15).
The weighted score was derived based on the assumption
that the SNPs of interest have independent effects on the
disease and contribute to the log risk of the disease in an
additive manner [18]. Under these assumptions, we derived
the following relationship between the log odds of having
disease given the joint value of the SNPs:

log
P D¼1j SNP1;...;SNPð Þk
P D¼0j SNP1;...;SNPkð Þ

� �

¼ CþPk
i¼1

log ORið Þ SNPi
ð2Þ

where P(…) indicates the probability function, C is a
constant specific to a dataset, ORi is the OR per allele at
the ith SNP of having the disease, SNPi is a genotype coded
0/1/2 and D=1 and D=0 indicate an individual having or not
having the disease, respectively. Based on Eq. 2, one could
have used wi=log(ORi) if the true ORs and these estimates
were known and were reliable and accurate. However, the
ORs used here were based on meta-analyses of various
studies, with different sample sizes and designs. Hence, to be
conservative and in an attempt to penalise those SNPs with a
lower confidence or a less reliable OR estimate, and in an
effort to avoid inflation of SNPs with a lower boundary of the
95% CI close to 1, we used loge transformation of the lower
boundary of 95% CI as the wi. To make the weighted genetic
score more comparable to the unweighted genetic score
(cumulative number of alleles), we used the rescaled version
of the genetic score using the rescaling factor k/(w1+…+wk):

rescaledð Þ weighted genetic score ¼
k � w1 � SNP1 þw2 � SNP2 þ . . .þ wk � SNPkð Þ
= w1 þ . . .wkð Þ:

ð3Þ

To determine the variables independently associated with
type 2 diabetes, we performed a multivariate logistic
regression analysis, including the variables listed in Table 1
with the exception of glucose, insulin and type 2 diabetes
medication usage. The covariates with p values <0.05 level
were included in the final model. The Hosmer–Lemeshow
test was used as a calibration statistic to check the goodness
of fit of the final models [19, 24]. A χ2 statistic was
calculated to compare the predicted and observed event
rates. A model with χ2 statistic <20 (p>0.01) is usually
considered a good calibration. The added contribution of
the weighted genetic score to the prediction of prevalent
diabetes was evaluated using a ROC analysis and a non-
parametric comparison of areas under these curves [25]. We
also performed an IDI analysis [23] of the model comparing
covariates and weighted genetic score vs covariates only.
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The IDI was estimated by computing the difference
between the integrated difference in sensitivities and the
integrated difference in 1−specificities between the cova-
riates and weighted genetic score model and the covariates
only model. The integration was performed over all
possible cut-offs. Evaluation of model predictive perfor-
mance using the same dataset used for fitting the model
usually leads to a biased assessment. To obtain an unbiased
assessment of discriminatory power of the multivariate
regression models, a tenfold cross-validation was used in
the ROC analysis and in the IDI analysis. Tenfold cross-
validation randomly divides the data into ten (roughly)
equal subsets and repeatedly uses any nine subsets for
model fitting and the remaining subset as validation until
each of the ten subsets has been used exactly once as
validation data.

Results

The clinical characteristics of the 5,360 participants,
including 356 diabetic and 5,004 non-diabetic individuals,
are described in Table 1. As expected, diabetic individuals
were older than non-diabetic and had higher levels of
blood pressure, insulin and triacylglycerol levels, and lower
HDL-cholesterol levels. Plasma levels of total- and LDL-

cholesterol were lower in diabetic participants than in non-
diabetic, presumably because of the broader usage of statins
in this former group. The proportion of individuals engaged
in regular physical activity was lower among diabetic
patients. Twice as many diabetic than non-diabetic individuals
had a positive family history of diabetes, defined as having at
least one first-degree relative with diabetes.

To determine the variables that were associated with the
presence of diabetes in this population, we performed a
multivariate logistic regression analysis (Table 2). The
variables that were significantly and independently associated
with diabetes included age, BMI, family history of diabetes,
WHR, triacylglycerol/HDL-cholesterol ratio and lack of
regular engagement in physical activity.

Fifteen SNPs were measured or imputed for each of the
5,360 participants (Table 3). Overall, the risk allele frequency
was similar in the CoLaus Study and the published meta-
analyses. As expected, considering the limited number of
diabetic patients in the present study, only three SNPs
reached nominally significant p values (≤0.01) for associa-
tion with diabetes in this population (IGF2BP2, CDKAL1
and TCF7L2).

These SNPs were used to construct a weighted genetic
score. This score was normally distributed among the non-
diabetic individuals in the CoLaus population and was
slightly skewed to the right among diabetic individuals

Table 1 Clinical characteristics of the participants in the study

Characteristic Diabetic individuals Non-diabetic individuals p valuea

n 356 5,004
Sex (% female) 32.6 54.0 <0.0001
Age (years) 60.7±8.5 52.8±10.7 <0.0001
Glucose (mmol/l) 7.66±1.44 5.36±0.56 <0.0001
Insulin (pmol/l) 99.2±74.6 59.1±38.3 <0.0001
BMI (kg/m2) 30.4±6.2 25.5±4.3 <0.0001
Waist (cm) 103.6±14.8 88.3±12.7 <0.0001
Hip (cm) 108.7±11.6 101.2±8.9 <0.0001
WHR 0.95±0.08 0.87±0.08 <0.0001
Total cholesterol (mmol/l) 5.46±1.19 5.61±1.03 0.003
HDL-cholesterol (mmol/l) 1.37±0.36 1.66±0.43 <0.0001
Triacylglycerol (mmol/l) 2.14±2.08 1.34±1.08 <0.0001
Triacylglycerol/HDL-cholesterol ratio 1.75±1.80 0.95±1.10 <0.0001
LDL-cholesterol (mmol/l) 3.20±1.03 3.36±0.91 0.002
Systolic BP (mmHg) 138.5±17.8 127.8±17.7 <0.0001
Diastolic BP (mmHg) 82.0±11.2 79.2±10.7 <0.0001
Type 2 diabetes medication usage (%) 65.7 0 <0.0001
Statin usage (%) 22.8 7.6 <0.0001
Physical activity (%) 48.9 67.3 <0.0001
Family history of type 2 diabetes (%) 42.1 21.1 <0.0001
Weighted genetic score 15.2±2.9 14.3±2.7 <0.0001
Unweighted genetic score (number of risk alleles) 15.2±2.5 14.6±2.4 <0.0001

Values are means±SD
a p value for comparison between diabetic and non-diabetic individuals
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(Fig. 1a), with a correspondingly higher mean score in the
latter group (15.2±2.9 vs 14.3±2.7, p<0.001, Table 1).
After adjustment for the clinical variables independently
associated with the disease, the risk of prevalent diabetes
rose in proportion to the weighted genetic score, with the
20% of the population with a score within the top quintile
having a 2.7 (95% CI 1.8–4.0, p=0.000006) higher risk
than those within the bottom quintile (Fig. 1b). Figure 2a
shows the distribution of the unweighted genetic score, as
generated by risk allele counting for the 15 SNPs in these

two groups. The relationship between the unweighted genet-
ic score and the weighted genetic score is shown in Fig. 2b.
Overall, a direct relationship was observed between the two
scores; however, a wide spread was observed in the weighted
genetic score for each category of cumulative risk alleles.

We next examined the relationship between BMI, the
weighted genetic score and the prevalence of diabetes in the
CoLaus sample (Fig. 3). As expected, the disease preva-
lence increased in proportion to quintiles of BMI. In
addition, within each BMI quintile, the prevalence of the

Table 3 Genes and SNPs selected from published meta-analyses to generate the 15 SNP-based weighted score

SNP CHR Nearest gene Non-
risk

Risk Reference CoLaus Study

Risk allele
frequency

OR 95% CIb Risk allele
frequency

OR 95% CI

rs10923931 1 NOTCH2 G T 0.11 1.13 1.08–1.17 0.10 1.06 0.81–1.39
rs7578597 2 THADA C T 0.90 1.15 1.10–1.20 0.90 1.31 0.98–1.74
rs1801282a 3 PPARG G C 0.87 1.14 1.08–1.20 0.88 1.25 0.96–1.63
rs4607103 3 ADAMTS9 T C 0.76 1.09 1.06–1.12 0.72 0.84 0.71–1.01
rs4402960a 3 IGF2BP2 G T 0.32 1.14 1.11–1.18 0.31 1.29 1.09–1.53
rs10010131a 4 WFS1 A G 0.60 1.11 1.08–1.16 0.61 1.05 0.89–1.23
rs10946398a 6 CDKAL1 A C 0.32 1.14 1.11–1.17 0.32 1.35 1.14–1.59
rs864745 7 JAZF1 C T 0.50 1.10 1.07–1.13 0.50 1.07 0.91–1.25
rs10811661a 9 CDKN2A–

CDKN2B
C T 0.83 1.20 1.14–1.25 0.80 0.91 0.75–1.12

rs12779790 10 CDC123–
CAMK1D

A G 0.18 1.11 1.07–1.14 0.18 1.12 0.91–1.37

rs1111875a 10 HHEX–IDE T C 0.65 1.15 1.10–1.19 0.59 1.02 0.87–1.20
rs7901695a 10 TCF7L2 T C 0.31 1.37 1.31–1.43 0.34 1.59 1.35–1.87
rs5215a 11 KCNJ11 T C 0.35 1.14 1.10–1.19 0.37 1.05 0.88–1.24
rs7961581 12 TSPAN–LGR5 T C 0.27 1.09 1.06–1.12 0.30 1.07 0.90–1.28
rs8050136a 16 FTO C A 0.40 1.17 1.12–1.22 0.41 1.12 0.95–1.32

a SNPs selected from the review by Frayling [9]; other SNPs were chosen from Zeggini et al. [8]
b The lower boundary of the 95% CI was logarithmically transformed and used as weighting factor for each SNP
CHR, chromosome number

Table 2 Multivariate logistic regression analysis of the risk of prevalent diabetes in the CoLaus Study

Characteristic Without genetic score With genetic score

OR 95% CI p value OR 95% CI p value

Age (per 1 year) 1.08 1.06–1.10 1.0×10−25 1.08 1.06–1.09 9.5×10−27

BMI (per 1 kg/m2) 1.13 1.10–1.17 1.3×10−18 1.13 1.10–1.16 6.9×10−19

Family history of diabetes 2.94 2.27–3.80 2.5×10−16 2.92 2.25–3.77 7.3×10−16

WHR (per 1 SDa) 1.77 1.47–2.13 1.3×10−9 1.78 1.48–2.14 1.5×10−9

Triacylglycerol/HDL-cholesterol ratio (per 1 SDb) 1.24 1.14–1.35 3.3×10−7 1.25 1.15–1.36 1.6×10−7

Physical activity 0.64 0.49–0.83 0.0006 0.63 0.49–0.82 0.0004
Weighted genetic score (per unit) NA NA NA 1.15 1.10–1.20 2.9×10−9

Unweighted genetic score (per 1 risk allele)c NA NA NA 1.13 1.08–1.19 1.4×10−6

a SD=0.08, b SD=1.18, as calculated for the entire population
c The results for the unweighted genetic score (per allele) were obtained by replacing the weighted genetic score in the model
NA, not applicable
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disease increased for each quintile of the genetic score. The
disease prevalence in individuals in the top quintiles for
both BMI and the genetic score was 24.7% (n=220),
compared with 1.4% among individuals with a genetic score
within the bottom quintiles for both variables (n=220). The
effect of the weighted genetic score appeared particularly
pronounced among the top three quintiles of the distribu-
tion. However, the interaction between the weighted genetic
score (by quintiles) and BMI (by quintiles) was not sig-
nificant (p=0.18). No significant differences in BMI were
observed between genetic score quintiles. BMI averaged

25.6±4.5 (SD) kg/m2 in the bottom quintile (n=1,071) and
25.9±4.7 kg/m2 in the top quintile (n=1,071, p=0.10).

When the weighted genetic score was included in the
multivariate logistic regression analysis, this score was
significantly and independently associated with the risk of
prevalent diabetes (Table 2). The fact that, in this analysis,
the genetic score and family history of diabetes were both
independent predictors of diabetes suggested that these
variables each added additional information to the risk
prediction, i.e. that the genetic score did not capture the
entirety of the information contained in family history. The
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calibration statistic (Hosmer–Lemeshow χ2 statistic) for
the model with the clinical predictors was 5.55 (p=0.70)
and adding the weighted score yielded 12.55 (p=0.13),
which indicated that both models represented a good fit.

To explore further the discriminatory power of the
weighted genetic score, we performed a ROC curve analysis
(Fig. 4). The values for the area under the ROC curve for
the weighted and unweighted genetic scores only were 59%
and 57%, respectively (p=0.008 for comparing the area
under ROC curves for the weighted and unweighted
scores), whereas the value was 86% for the clinical
covariates listed above only. Adding the weighted genetic
score to the clinical covariates led to a limited yet
significant improvement in the area under the ROC curve
to 87% (p=0.002). In contrast, adding the unweighted
genetic score to the clinical covariates did not lead to a
statistically significant improvement in the area under the
ROC curve (p=0.07, compared with the area under the
ROC curve of the model with the covariates only). To
further characterise whether or not the weighted genetic
score improved the prediction of prevalent diabetes, we
also performed an IDI analysis. In this analysis, adding
the weighted genetic score to the covariates led to a statisti-
cally significant improvement in the prediction (IDI=1.2%,
p=0.0003). This indicated that by adding the weighted
genetic score the improvement of average sensitivity offset
by the potential increase in average ‘one minus specificity’
was about 1.2%. The IDI for adding the unweighted genetic

score led to a smaller and less significant improvement
(IDI=0.7%, p=0.002) than the weighted score. This
analysis confirmed the ROC curve analysis results and
reinforced the concept that the weighted genetic score
added some predictive ability to the clinical covariates.

Discussion

In this study, we show that, at a population level, accumula-
tion of several susceptibility genes for diabetes is accompa-
nied by a substantial increase in the risk of having the disease.
This was particularly apparent, in terms of prevalence, among
obese individuals. We also show that the weighted genetic
score added some information that was not captured by
clinical variables, including family history of diabetes. The
present data also show that weighting the genetic score with
the reported effect of risk alleles provided more predictive
value than an unweighted genetic score generated by counting
the number of risk alleles. The clinical usefulness of the score,
however, remains to be demonstrated.

The present population-based cross-sectional study is in
line with two very recently published prospective studies
[19, 20]. In both of these studies, a high unweighted genetic
score was associated with a marked increase in the
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(dotted line, area under ROC curve=87%, p=0.002 vs covariates
only) to predict the presence of diabetes in the CoLaus Study. Clinical
covariates included age, sex, family history of diabetes, physical
activity, triacylglycerol/HDL-cholesterol ratio and WHR. The ROC
curves were based on cross-validation prediction for the multivariate
logistic regression models
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Fig. 3 Prevalence of type 2 diabetes in the CoLaus Study according
to BMI and the weighted genetic score. The 5,360 participants of the
Lausanne Study were partitioned into 25 groups, each containing an
average of 220 individuals, by quintiles of BMI and quintiles of the
weighted genetic score
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incidence of diabetes. However, the predictive value of this
score beyond clinical variables was modest.

The best way to construct a genetic score for individuals
who carry risk alleles for several susceptibility genes is not
yet known. The present analysis provides evidence that, at
least in the CoLaus dataset, weighting the score with the
individual effect of the genes provides more predictive
information for the presence of prevalent diabetes than
simply counting the number of risk alleles. Considering the
fact that most susceptibility genes for type 2 diabetes have a
relatively similar effect, one may anticipate that weighting
the genetic score may be even more advantageous for
diseases where risk alleles have a much more divergent
effect, like type 1 diabetes [26].

BMI was similar between quintiles of genetic score. This
observation, which is in line with the data reported from the
combined prospective Malmö and Botnia studies [20],
suggests that the cumulative genetic susceptibility to
diabetes, as mediated by the 15 genes under investigation,
could be accounted for by a dysfunction of the insulin-
secreting beta cell or other unknown mechanisms, rather
than by merely a propensity to obesity. This observation is
supported by the data reported by Lango et al. [18], in
which, among diabetic cases, individuals with a high genetic
score had an earlier age of diagnosis, and had 1.6 kg/m2 less
in BMI than those with a low genetic score. In contrast, we
observed that the genetic score and increasing BMI together
could identify individuals at high risk of diabetes, an effect
that was also observed in Lyssenko et al. [20]. This
suggests that even though overall the genetic score alone
does not add a great deal to our ability to predict who will
develop diabetes, in combination with other risk factors
there may be usefulness in identifying high-risk individuals
who could benefit from early preventative interventions.

This study has some limitations. First, it is cross-
sectional, allowing the predictive potential to be inferred
from the clinical state only at the time of observation. The
number of diabetic patients in the present study was
relatively modest, and documentation of the value of the
score in larger population-based collections is warranted.
Another limitation of this study is that two SNPs/genes
were not included in the present analysis because of technical
reasons. If anything, we expect that incorporation of these
additional SNPs in the weighted genetic score should
improve its predictive value. In addition, the weighting
scheme we used to construct the genetic score is not
necessarily an optimal solution, but an attempt to account
for the variability in allelic contribution and estimate
variation. Finally, the CoLaus Study includes only whites,
so extrapolation to other ethnic groups should be considered
with great caution.

One may anticipate that future genetic scores will have a
better capacity to predict diabetes. First, the genes under

investigation only account for part of the genetic suscepti-
bility to diabetes [18]. Additional diabetes-susceptibility
genes are likely to be discovered when larger collections
are assembled for meta-analyses or when technological
advances increase SNP coverage in areas of the genome
that are currently poorly represented. Incorporation of these
new genes into the genetic score may make it more
predictive, although the gain could be relatively modest
unless a large number of additional new genes are identified
[17]. Most of the SNPs selected here are not causal, and are
presumably in linkage disequilibrium with causative SNP.
Once causal SNPs will be identified, the score may further
improve. Similarly, it is conceivable that incorporation of
several SNPs within each gene, by capturing more variability
within these genes, could also ameliorate the predictive value
of the score. Finally, it is conceivable that larger studies will
improve the risk prediction associated with risk alleles, so
that the OR (rather than its lower 95% CI boundary) could be
used in the risk assessment.

Despite these limitations, this study shows that, at a
population level, accumulation of risk alleles within
multiple susceptibility genes for diabetes increases signif-
icantly the disease risk and that a simple weighted genetic
score has the ability to predict the presence of the disease
beyond the clinical predictors. At this stage, however, the
weighted genetic score does seem to have limited ability to
predict the presence of diabetes, and additional studies are
required to demonstrate its clinical usefulness.
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