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Abstract 

Background:  Male carriers of the FMR1 premutation are at risk of developing the fragile X-
associated tremor/ataxia syndrome (FXTAS), a newly recognized and largely under-
diagnosed late onset neurodegenerative disorder. Patients affected with FXTAS primarily 
present with cerebellar ataxia and intention tremor. Cognitive decline has also been associated 
with the premutation but the lack of data on its penetrance is a growing concern for clinicians 
who provide genetic counseling. 
Methods: The Mattis Dementia Rating Scale (MDRS) was administered in a double-blind 
fashion to 74 males aged 50 years or more recruited from fragile X families (35 premutation 
carriers and 39 intrafamilial controls) regardless of their clinical manifestation. Based on 
previous publications, marked cognitive impairment was defined by a score ≤ 123 on the 
MDRS. 
Results: Both logistic and survival models confirmed that in addition to age and education 
level, premutation size plays a significant (p<0.01 and p<0.03 for logistic and survival model, 
respectively) role in cognitive impairment.  The estimated penetrance of marked cognitive 
impairment in our sample (adjusted for the mean age: 63.4 years and mean education level: 
9.7 years) for midsize/large (70-200 CGG) and small (55-69 CGG) premutation alleles was 
33.3% (RR: 6.5; p = 0.01) and 5.9% (RR: 1.15; p = 0.9) respectively. Penetrance in the 
control group was 5.1%.  
Conclusions: Male carriers of midsize to large premutation alleles had a 6-fold increased risk 
of developing cognitive decline and the risk increases with allele size. In addition, it was 
observed that cognitive impairment may precede motor symptoms. These data provide 
guidance for genetic counseling although larger samples are required to refine these estimates. 
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Introduction 

The Fragile X – associated Tremor Ataxia Syndrome (FXTAS) is a recently described late 
onset neurodegenerative disorder found mostly among male carriers of a premutation in the 
Fragile X Mental Retardation 1 (FMR1) gene (a repeat expansion with 55 to 200 CGG triplets 
in the 5’UTR of the FMR1 gene) 1. FXTAS also has been infrequently reported in female 
carriers 2 . The premutation is unstable during maternal meiosis and female carriers are at risk 
of having children with a “full mutation” (more than 200 CGG repeats) which is responsible 
for the fragile X syndrome, the most common cause of inherited mental retardation. FXTAS 
is defined by clinical, neuroradiological, molecular and neuropathological criteria 3-5. Affected 
individuals primarily present with cerebellar ataxia and intention tremor. Less distinctive 
symptoms are cognitive decline or impairment, peripheral neuropathy, parkinsonism and 
urinary and bowel incontinence. Distinctive MRI findings include increased signals in the 
middle cerebellar peduncle and the deep white matter of the cerebellum 6, 7. 
FXTAS is not fully penetrant and many older male carriers of the premutation may remain 
asymptomatic. A preliminary study by Jacquemont et al 8 demonstrated an age-related 
penetrance of tremor and ataxia of 17%, 38%, 47%, and 75% for male carriers of the 
premutation, aged 50-59, 60-69, 70-79, and over 80 years, respectively. Penetrance for 
different allele size is unknown. Several papers have reported the association between the 
older male carrier and cognitive impairment or dementia 3, 9-16. These deficits involve 
executive cognitive functioning, working and declarative memory as well as inhibition and 
selective attention. It is unclear whether younger premutation carriers also exhibit 
dysexecutive symptoms and conflicting data has been published in this regard 15, 17. Cognitive 
impairment and dementia may represent the most debilitating symptom affecting premutation 
carriers and this is a growing concern for clinicians who provide genetic counseling in fragile 
X families. Penetrance is essential and relevant information for proper genetic counseling to 
carriers of the premutation. Yet, due to the absence of data regarding the penetrance of 
cognitive symptoms, counseling given to premutation carriers is still vague, at best. The aim 
of this study is to estimate the penetrance (risk of developing symptoms) of marked cognitive 
impairment in older male carriers of the FMR1 premutation regardless of their medical 
history. Given its prevalence (1/800 male; 1/300 female)18, 19, the FMR1 premutation allele 
likely represents the most frequent monogenic predisposition to cognitive impairment or 
dementia in the general population. For power issues we chose to include males only since 
FXTAS, cognitive impairment or cognitive decline have been infrequently reported in 
females2. 

Methods 
All aspects of this study were approved by the institutional review boards of the University 
Hospital of Nantes and the University Hospital of Lausanne CHUV.   
Recruitment of premutation carriers and controls 
Participants were ascertained through a family member affected with fragile X syndrome 
(FXS). None were referred for cognitive or neurological symptoms. Eligibility included being 
a male 50 years or older without a diagnosis of fragile X syndrome (FXS). Families were 
recruited through the FMR1 databases at the University Hospitals of Nantes, Rennes (western 
France) and Lausanne (Switzerland). Additional families were recruited through the local 
(Vendée Loire Atlantique) fragile X syndrome association. In families who accepted to 
participate, we identified all eligible male subjects and contacted them individually. Subjects 
who accepted to participate signed the informed consent form and were seen at the Center for 
Clinical Investigation in Nantes and in the department of neurology of Lausanne. The 
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recruitment of intrafamilial controls allowed avoiding stratification issues related to different 
cultural, education and genetic background. 
Neuropsychological evaluation  
This evaluation is part of a larger phenotypic study of male premutation carriers, including 
assessment of motor signs using standardized scales for tremor 20, ataxia 21, and parkinsonism 
22 and morphologic study with MRI scans of the brain in premutation carriers. 
During the evaluation, results of the genetic analyses were not available, thus the 
neuropsychologist administering the tests was blinded to the FMR1 status of the participants. 
The evaluator would of course suspect that participants who presented overt movement 
disorder were carriers of a premutation allele. 
 
Evaluating marked cognitive impairment 
The Mattis Dementia Rating Scale (MDRS) 23 was used to assess the global cognitive status 
of the participants. The MDRS is a sensitive measure of impairment of different cognitive 
domains, and is widely used to discriminate various forms of dementia, including cortical and 
subcortical subtypes 24-26. Its maximum total score is 144 and we used a cut-off score of 123 
(i.e., a score equals to or below 123) on the total score of the MDRS as an indicator of marked 
cognitive dysfunction. This cut-off value has been shown to detect Parkinson’s disease 
dementia (PDD) with a high sensitivity and specificity 27. PDD is mainly characterized by 
frontal-subcortical impairment28, with a neuropsychological pattern very similar to that 
observed in FMR1 premutation carriers with cognitive alterations. Other cognitive evaluations 
As prior studies suggest that patients with FXTAS have a pattern of cognitive abnormalities 
marked by a prominent dysexecutive syndrome 3, 11, 13, three tests providing an overview of 
the different components of executive cognitive functions were administered 29: (i) the 
Wisconsin Card Sorting Test (WCST) to assess concept formation and mental flexibility; (ii) 
the phonemic and semantic verbal fluency measuring the capacity to actively generate 
information; and (iii) the Stroop Colour-Word Interference test, reflecting an individual’s 
cognitive inhibition capacities. In order to assess other aspects of cognitive function, four 
subtests of the Weschler Adult Intelligence Scale, 3rd edition (WAIS-III) 30, were also 
administered: (i) Block Design, to measure visuospatial performances; (ii) Matrix Reasoning 
to assess nonverbal abstract reasoning capacities; (iii) Digit Span, a test of attention and 
verbal working memory; and (iv) the Information subtest, which is correlated to the degree of 
information acquired from culture. Evaluation of the visuospatial (nonverbal) working 
memory was made through the Corsi Blocks Task 31. Depression and anxiety were rated by 
administering the Montgomery-Asberg Depression Rating Scale (MADRS) 32 and the 
Hamilton Rating Scale for Anxiety 33. 
Molecular Analyses 
DNA was isolated from peripheral blood and sizing of the CGG repeat was performed as 
described previously 34. Southern blotting, used to estimate the size of alleles of more than 
110 repeats (very large premutations), was performed upon EcoRI and EagI double digestion 
by hybridization with StB12.3 probe. FMR1 testing in our diagnostic laboratory is controlled 
by the European Molecular genetics Quality Network. Genetic results were available after 
completion of the cognitive evaluations: the control group was composed of individuals 
carrying an allele with less than 55 CGG repeats while participants with an allele size between 
55 and 200 CGG repeats 35 were in the “premutation group”. 
Statistical Methods  
Group comparison test  
For group comparison we applied the Wilcoxon rank sum test to determine statistical 
significance between groups (controls versus carriers) and to avoid bias due to outliers. 
Linear regression analysis  
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Data normalization was performed on all test scores as follows: for each test we subtracted the 
mean across all individuals and divided by the standard deviation. Bootstrapping (10,000 re-
samplings) based linear regression was carried out to establish the effects of age, education 
and CGG repeat length on each cognitive test score. The advantage of this procedure is that it 
does not pose any assumption on the distribution and it is robust against outliers. 
Logistic regression analysis  
The continuous MDRS scores were first transformed into binary scores using the 123 cut-off, 
i.e. taking the value 1 if the MDRS ≤ 123, and 0 otherwise. These binary variables were then 
modeled according to the logistic regression framework. Here again we used bootstrapping 
(10,000 re-samplings) to obtain confidence intervals for the parameters. 
Survival analysis 
Binarized MDRS score was used as the response variable with the “survival function” defined 
as S(T>age; CGG repeat length, education level | a1, a2, a3) = exp(-age*(a1 + a2*CGG repeat 
length + a3*education level)), where T denotes the time when the given individual develops 
marked cognitive impairment. Likelihood-ratio test was performed to assess the effect of 
CGG repeat length on the response variable. 
Model evaluation 
Akaike Information Criterion (AIC) was used to compare different, not necessarily nested, 
models.  
Predicting the score for the MDRS (MATTIS dementia rating scale) 
The estimated linear regression parameters were substituted back into the linear model in 
order to obtain estimates for the MDRS score (for a given age, education and CGG repeat 
length). 
Predicting the penetrance of marked cognitive impairment 
Logistic regression coefficients were substituted back into the logistic model in order to 
obtain estimates for the penetrance of cognitive impairments (for a given age, education and 
CGG repeat length). 
Multiple testing 
We applied the Benjamini-Hochberg False Discovery Rate (FDR) approach to control for 
multiple testing. 

Results 
The recruitment process is detailed in Figure 1. The demographic data from the 75 
participants (one participant had an unmethylated full mutation and was excluded) are shown 
in Table 1. 

 Controls Premutation carriers 

 (CGG < 55) 
Small 

premutation 
(55-69) 

Midsize-large 
premutations 

(70-200) 

All 
premutations 

(55-200) 
Number of patients 39 17 18 35 
Age: median (range) 59 (52-81) 64 (54-80) 66 (50-79) 65 (50-80) 
Education level, 
years:  
median (range) 

9 (5-20) 9 (5-17) 11 (5-16) 11 (5-17) 

CGG repeat length: 
median (range) 

27 (17-53) 64 (57-69) 83.5 (70-150) 70 (57-150) 

 
Table 1: Participant’s demographic and genetic status.  
Age and education were not statistically different between groups (p=0.34, and 0.63, respectively). 
The premutation range was divided based on the previous data showing significant excess of allele’s ≥ 
70 CGG in Patients with FXTAS 36. 
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Group and categorical analysis 
Subjects from the carrier group scored significantly worse than controls on the MDRS, a 
measure of global cognitive function: control group had a median of 137 (range: 108-144); 
carrier group had a median of 135 (range: 58-143), p=0.04 (Wilcoxon rank-sum test). The 
lowest cognitive performances were recorded in the carriers of midsize to large premutation 
alleles, which had a median of 132.5 (range: 58-143), p=0.04 (Fig. 1 of supplemental file).  
 
Effect of CGG repeats on the dementia score (MDRS) 
Linear regression performed on the complete data set demonstrated that CGG repeat size, age 
and education, each had a significant effect on the MDRS score which remained significant 
after controlling for multiple testing of different response variables (FDR<0.05): CGG repeat 
size (beta = -0.12, SE = 0.05, CI95 = [-0.2, -0.05], p<0.002), education level (beta = 0.68, SE = 
0.32, CI95 = [0.2, 1.21], p<0.01), and age (beta = -0.48, SE = 0.19, CI95 = [-0.81, -0.19], 
p<0.002). This linear model explained more than a quarter of the variance of the MDRS score 
(R2 = 0.26). In addition, age, CGG repeat and education level are also significantly associated 
with the quantile-quantile normalized MDRS score. This fact excludes any bias in our results 
due to the non-normal MDRS score distribution (all p-values <10-3). Other regression models, 
such as piece-wise linear-, quadratic- and step-functions, were also fitted to the data, but the 
simple linear regression yielded the best AIC value. We used this linear model to predict the 
distribution of the MDRS scores for controls, small and large premutation carriers at 60 and 
70 years of age (Fig. 2). These distributions enable one to visualize the proportion of carriers 
and controls with marked cognitive impairment (visible in red on Fig. 2). 
 
Penetrance of marked cognitive impairment in premutation carriers > 50 years 
We defined three groups according to CGG repeat length: normal (0-54 CGG), small 
premutation (55-69 CGG) and midsize/large premutation (70-200 CGG). These premutation 
groups were defined based on previous data showing significant excess of allele’s ≥ 70 CGG 
in Patients with FXTAS 36. Cognitive impairment was defined as an MDRS score ≤ 123. 
The estimated penetrance of marked cognitive impairment in our sample (mean age 63.5 
years; mean education level: 9.7 years) for midsize/large and small premutation alleles was 
27.8% (Relative Risk (RR): 5.4; p = 0.03) and 17.7% (RR: 3.4; p = 0.15), respectively (Table 
2). RR values were computed relative to the risk ratio in the control group. 
In order to control for the slightly unequal distribution of age and education between these 
groups (Table 1), we adjusted the MDRS scores for those 2 parameters using the linear 
regression described earlier. The adjusted penetrance (for 63.5 years of age and 9.7 years of 
education) increased for midsize/large alleles: 33.3% (RR: 6.5, p = 0.01) and controls (5.1%). 
It was slightly lower for small alleles 5.9% (RR: 1.1, p = 0.9).  In both analyses, only the 
midsize/large alleles (≥ 70 CGG) yielded significant relative risk (6-fold) for cognitive 
impairment (Table 2). Our sample size was to small to provide penetrance estimates for 
further categories (different age groups, further CGG repeat size categories) so we modeled 
the effects of CGG, age and education on cognitive impairment. 
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Table 2. Penetrance of marked cognitive impairment stratified by CGG repeat length.  
Marked cognitive impairment was defined by an MDRS score ≤ 123. 
* MDRS scores were adjusted for the mean age and education level of our sample (63.5 and 9.7 years, 
respectively). Individuals with large CGG repeat expansions are at 6 times higher risk of developing 
marked cognitive impairment than those with repeat size in the normal range.  
** Relative risk (RR) and CI 95 are given for adjusted data. We obtain similar results with non-adjusted 
MDRS scores. 
 
Effect of CGG repeats on marked cognitive impairment 
In order to estimate the effect of CGG repeats on cognitive impairment, the MDRS scores 
were binarized (score ≤ or > 123). This binary, cognitive impairment indicator score was then 
modeled by logistic regression including CGG repeat (beta=-0.04, SE=0.03, CI95=[-0.12, -
0.01], p<0.003), age (beta=-0.22, SE=0.19, CI95=[-0.68, -0.07], p<0.002), and education 
(beta=0.21, SE=0.30, CI95=[-0.08, 0.78], p=0.09) as explanatory variables. Naturally, 
dichotomizing the MDRS scores decreases the statistical power. The cognitive impairment 
indicator score was also modeled using survival analysis and likelihood ratio test confirmed 
that the CGG repeat length is significantly associated with the cognitive impairment (p<0.03). 
These two analyses demonstrate that the penetrance of cognitive impairment increases with 
the CGG repeat size. 
 
Cognitive decline and FXTAS may occur independently 
Based on the neurological evaluation and the rating of tremor, ataxia and parkinsonism scales, 
15 participants had postural or intention tremor (4 controls and 11 premutation carriers), and 
19 participants had some degree of gait impairment affecting the score of the cerebellar ataxia 
rating scale (4 controls and 15 premutation carriers). Two out of the 8 premutation carriers 
with marked cognitive alterations had no sign of movement disorder at the time of the 
examination. A third case was followed during several months for a rapidly progressive 
isolated dementia before the onset of any motor sign. The remaining 5 carriers with a 
cognitive disorder had clear motor symptoms, fulfilling the diagnostic criteria for probable or 
definite FXTAS 3, 4. Brain MRIs, performed in 29 /35 premutation carriers, found 
periventricular and subcortical white matter abnormalities in 8 cases, and increased T2 signal 
in the middle cerebellar peduncle in 7 cases. Both radiological abnormalities were found in 3 
carriers with cognitive alterations. 
 
Cognitive decline or Cognitive impairment  
In order to differentiate between cognitive decline and cognitive impairment in this cross 
sectional dataset, we compared the regression slope of age-related cognitive decline in the 

 Penetrance of marked cognitive 
impairment at 63.5 y. 

** RR (CI 95) ; p 

 unadjusted  * adjusted 

controls (0-54 CGG)    5.1% (2/39) 5.1%  (2/39) 1 

P
re

m
ut

at
io

n 

small (55-69 CGG) 17.7% (3/17) 5.9%  (1/17) 1.1 (0.1 – 11.8) ; 0.9 

Midsize-large (70-200 CGG)    27.8% (5/18) 33.3% (6/18) 6.5 (1.5 – 29.1) ; 0.01 
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control and premutation groups (Fig. 3). Both negative slopes indicated significant and 
inverse association of MDRS with age (p=0.03, p=0.05, respectively) but the rate of cognitive 
decline was not significantly different between the two groups (p=0.22). The rate of decline 
for the subgroup of midsize to large alleles (≥70 CGG) was faster but the difference with 
controls remained non significant (p=0.17). Increased variance in the MDRS scores was also 
seen in the older carriers (>65y.) in comparison to the younger ones (<65y.) (p<10-6), 
illustrating the fact that a subgroup of carriers presents significant cognitive impairment while 
others function normally. All in all, given the large amount of noise and our modest sample 
size we are statistically underpowered to demonstrate that premutation carriers exhibit a faster 
cognitive decline than controls although such trend is visible. 
 
We controlled for the potential effect of depression on cognitive function37, 38 as well as for 
familial clustering (c.f. Supplemental Files). 
 
Characterization of the cognitive impairment 
Linear regressions demonstrated that CGG repeat size was significantly altering three 
subscores of the MDRS, as well as the perseverative errors rate of the WCST, semantic 
fluency, abstract reasoning and visuospatial performances (Matrix reasoning and Block design 
subtests of the WAIS-III). In all these analyses, a larger premutation allele was associated 
with poorer cognitive performances. The working memory tasks (Digit span and Corsi 
Blocks), and the Information subtest of the WAIS-III were not influenced by the CGG repeat 
size (Fig. 4 and Supplemental file Table 1). 
 

Discussion 
To our knowledge, this is the first study evaluating the penetrance of cognitive impairment in 
older male carriers of the FMR1 premutation. In our sample, the penetrance for carriers of 
midsize-large premutation alleles (≥70 CGG repeats) was six times higher (p=0.01) than in 
controls (33.3% vs 5.1%). There was no increased risk for small premutation alleles (55-69 
CGG repeats) compared to controls after adjusting for age and education (Table 2). These 
penetrance estimates apply to a carrier with an age of 63.5y and relatively low level of 
education (9.7 years). The regression models do predict an elevated risk for small premutation 
alleles at a later age (e.g. 70y – Fig. 2) but one should avoid strong conclusions obtained via 
extrapolation to an age range considerably higher than our sample mean.  
Determining a cutoff score associated with significant cognitive impairment or dementia is 
still a matter of debate. Some authors have established this limit between 132 and 129 on the 
MDRS39, 40. Using 129 as an alternative cutoff, we obtained of course higher penetrances: 
38.9% (RR 3.8), 11.7%  and  10.2% for midsize/large, small and normal alleles respectively. 
MDRS scores between 129 and 124 denote mostly mild cognitive alterations, with minimal 
functional impact. The more stringent cutoff of 123 reported by Llebaria et al 27 to screen 
dementia in PD is therefore more appropriate for genetic counseling purposes.  Aarsland et al. 
reported mean MDRS score of 120.6 (SD: 7),  118 (SD: 10.8) and 125.7 (SD: 5.3) in groups 
of patients with mild to moderate dementia and a diagnosis of PD, dementia with Lewy 
bodies and progressive supranuclear palsy respectively24. Over half of these patients with 
dementia had MDRS scores > 120 which is an additional argument in favor of a cutoff 
slightly higher than 120. 
We compared our control group to previous normative studies of the MDRS in the general 
population.41, 42  Frequencies of 3-5% 41 have been reported for marked cognitive impairment 
(using an MDRS score ≤ 123) in a male population (n=166) aged 69-71 years old with an 
education level of 13.1 years. 41  Using our logistic regression model to adjust our control 
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group for the same age range and education level, we obtained very similar penetrance of 
marked cognitive impairment: 4.8%. Our sample shows a predominance of small to midsize 
premutations alleles (Fig. 2, Supplemental file), which is closer to the distribution in the 
general population and a sign of limited ascertainment bias 36, 43. Our sample did not properly 
cover the very large allele range and the penetrance in this latter category is likely to be 
significantly higher. 
 
It is unclear whether premutation carriers have an accelerated age-related decline or if they 
present, earlier on with lower MDRS scores. Our premutation group declined faster than 
controls but this difference was not statistically significant (Fig. 3).  Our sample size is too 
small to clearly answer this question. Conflicting data has been published on the presence of 
executive function deficits in younger premutation carriers. Hunter et al.17 reported no effect 
of CGG repeats on neuropsychological performance in males < 50 years of age even when 
only very large alleles (>100 CGG) were taken into account. On the other hand, Cornish et 
al15 found deficits in response inhibition and working memory in premutation carriers in their 
forties. Moderate to severe symptoms are likely the result of interactions between the 
premutation allele and other genetic or environmental factors, as we clearly see increased 
variance in MDRS scores for older carriers in comparison to younger ones (p<10-6). 
 
Two out of the 8 carriers of a premutation with marked cognitive alterations had no sign of 
movement disorder at the time of the examination. This indicates that cognitive impairment 
and dementia may precedes the onset of motor symptoms in many cases, and supports 
previous reports 44, 45. Cognitive impairment is not always obvious to family members since 
the onset of cognitive alteration is often insidious and may be noted only when overt disability 
occurs. 
 
The profile of neuropsychological alterations observed in our sample is in accordance with 
previous studies 11, 14, 15. It confirms that executive dysfunction is the core feature of the 
cognitive impairment in premutation carriers, associated with impairment of memory and 
visuo-spatial processing, a pattern typically observed in “subcortical” dementias, such as 
Parkinson’s disease dementia 28. In contrast to results reported by Grigsby et al. 13 (who 
mainly evaluated carriers affected with FXTAS), our sample did not show evidence of 
impairment in working memory tasks (Corsi blocks and digit span). However, the memory 
subscore of the MDRS, which includes items assessing long-term and short-term memory, 
was correlated to the CGG repeats length. These results suggest that the premutation might 
affect long-term memory, a feature that should be specifically investigated. 
  
We recommend evaluating older male carriers for executive function deficits as well as 
depression and anxiety symptoms. If present, medications for cognitive deficits have 
anecdotally been reported to be helpful in patients with FXTAS. The genetic counseling 
priority in these families should remain the information and prevention of fragile X syndrome 
by screening women of child bearing age at risk of transmitting the Fragile X syndrome. By 
doing so, clinicians will often perform involuntary presymptomatic testing in males identified 
as obligate carriers. Symptoms have a later onset and their penetrance is lower than in other 
genetic neurodegenerative disorders such as Huntington’s disease. A rigid protocol for 
presymptomatic testing may therefore not always appropriate. Our data on the penetrance of 
cognitive impairment will help clinicians provide the necessary information before they 
propose premutation screening in these families.  
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Figure legends 
 
Figure 1. Recruitment Process. 
* includes also potential participants who were not informed of the study due to family 
miscommunication. 
** full mutation (unmethylated): excluded from analysis. 
 
Figure 2. Predicted distribution of MDRS score.  
Each panel represents the predicted distribution of the MDRS total score, based on the linear 
regression model of the data: Controls (30 CGG repeats) aged 60 (a) and 70 years (b). Short 
premutation carriers (60 CGG) at 60 (c) and 70 years of age (d). Large premutation carriers 
(90 CGG) at 60 (e) and 70 years of age (f). For all estimates we set the education to 9.5 years, 
which was the mean education level in our study. The vertical line indicates the cut-off score 
for marked cognitive impairment (123 on the MDRS). In this model, elevated penetrance of 
cognitive decline for small premutation carriers becomes apparent after the age of 65 years.  
 
Figure 3. Data visualization.  
Individual MDRS scores (corrected for education, and set to the mean education level of the 
sample, 9.5 years) were plotted against age for both controls and premutation carriers. 
Regression slopes indicate the age-related decline in the MDRS score. A faster, albeit not 
statistically significant (p=0.22), age-related decline (slope) can be observed for premutation 
carriers compared to the control group.  
 
Figure 4: CGG Repeat Regression Coefficients for Cognitive Assessments.  
Blue squares mark the median value and whiskers represent the 95% confidence interval. 
Bold whiskers, that do not overlap the red vertical line (value of 0), represent significant 
coefficients (p<0.05). CGG has a significant impact on MDRS total score, and on 9 out of 26 
other scores and subscores. Most scores decrease as they worsen, thus most coefficients are 
negative (as CGG repeat increases, scores worsen and drop).  For “% perseverative errors”, 
“items for first category”, “Hamilton”, and “MADRS”, increasing scores denote pathological 
results. Those coefficients were indicated by black cross next to the test name and inverted so 
they are presented in the same direction as the other negative coefficients. Red star next to the 
test name marks the scores which remained significant with FDR<0.05 after Benjamini-
Hochberg multiple testing correction. Confidence intervals that do not contain zero are 
marked with thicker lines. 
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Supplemental files 

 

Controlling the effect of depression on cognitive function 

The Montgomery-Asberg Depression Rating Scale (MADRS) was significantly influenced by 

the CGG repeat size. To prevent a bias due to the impact of depressive mood and anxiety on 

cognitive performances, we added the MADRS and Hamilton scores as additional covariates 

(besides the age, CGG repeat and education) to our regression model for the MDRS score. 

CGG repeat (beta=-0.21, SE=0.11, CI95=[-0.44, 0], p=0.05), age (beta=-0.29, SE=0.12, 

CI95=[-0.53, -0.07], p<0.01) and education (beta=0.15, SE=0.10, CI95=[-0.05, 0.34], p=0.11) 

still had at least marginally significantly non-zero coefficients, while depression scores did 

not significantly contribute to the MDRS (p>0.2). Thus, the MDRS score is – among the 

measured parameters – primarily driven by CGG repeat, age and education, and not by 

depression or anxiety. 

 

Controlling  for the effect of familial clustering on cognitive function 

We found no association between familial background and MDRS score (ANOVA p=0.18). 

Furthermore, our regression results do not change when familial backgrounds are added as 

covariates.  

 on 6 July 2009 jmg.bmj.comDownloaded from 

http://jmg.bmj.com


 

50

60

Column Number

100

105

110

115

120

125

130

135

140

145

M
D

R
S

 to
ta

l s
co

re

(n = 39)
(n = 35) (n = 17)

(n = 18)

controls premutation carriers
all short midsize-large

*

 

Supplemental file, Figure 1: Boxplots Showing the Distribution of MDRS Uncorrected Total 

Score in the Premutation and Control Groups.  

The premutation carrier group was subdivided based on CGG repeat size. The red midline of 

the box denotes the median, the extremes of the box the inter-quartile range, and the bars the 

upper and lower limits of the 95 percent confidence interval. The crosses denote outlying 

values.  On the left of each bar the individuals in the given group whose score is below 129 

are marked with black dots. The horizontal dotted line indicates the 129 cut-off value for the 

MDRS.  

* : p<0.05 
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Supplemental file, Figure 2: CGG repeat length distribution. 
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Dependent variable 
CGG repeat length regression coefficients 

beta SE CI95 p-value 

MDRS total -0.2926 0.1193 [-0.56, -0.10] 0.0016 

MDRS attention 0.0161 0.1193 [-0.19, 0.28] 0.9434 

MDRS verbal initiation -0.3659 0.1139 [-0.57, -0.12] 0.0072 

MDRS motor initiation -0.1126 0.1398 [-0.44, 0.09] 0.4792 

MDRS construction -0.1111 0.1442 [-0.45, 0.08] 0.6282 

MDRS concepts -0.2181 0.1281 [-0.51, -0.01] 0.0354 

MDRS memory -0.2213 0.129 [-0.51, -0.01] 0.0348 

STROOP colors -0.1467 0.1367 [-0.38, 0.16] 0.2874 

STROOP words -0.2289 0.1255 [-0.46, 0.04] 0.0828 

STROOP interferences 0.1517 0.1628 [-0.07, 0.55] 0.3534 

WCST % perseverative errors 0.3145 0.1248 [0.12, 0.60] 0.0008 

WCST nr conceptual answers -0.1881 0.1436 [-0.52, 0.05] 0.1416 

WCST nr categories -0.1753 0.1035 [-0.40, 0.01] 0.0688 

WCST items for 1st category 0.2113 0.1428 [-0.01, 0.55] 0.0648 

Phonemic verbal fluency -0.1622 0.1122 [-0.39, 0.06] 0.145 

Semantic fluency -0.2881 0.1004 [-0.48, -0.08] 0.0076 

digit span Total -0.0689 0.161 [-0.35, 0.28] 0.6078 

digit span Direct -0.0215 0.1428 [-0.27, 0.30] 0.815 

digit span Indirect -0.1858 0.1499 [-0.48, 0.11] 0.2096 

Corsi block Total -0.1197 0.1177 [-0.34, 0.13] 0.291 

Corsi block Direct -0.1141 0.1235 [-0.33, 0.15] 0.3402 

Corsi block Indirect -0.1542 0.1094 [-0.39, 0.05] 0.1384 

Block design – visuospatial -0.2329 0.1168 [-0.47, -0.01] 0.0342 

Matrix – abstract reasoning -0.2077 0.101 [-0.42, -0.02] 0.0266 

Information -0.0395 0.1117 [-0.28, 0.16] 0.7672 

MADRS - depression 0.3577 0.1999 [0.01, 0.75] 0.043 

Hamilton – anxiety 0.2477 0.1408 [-0.00, 0.56] 0.0516 

Supplemental file, Table 1. Regression coefficients for CGG repeat length for various 

dependent variables. Bold characters represent significant coefficients. Other explanatory 

variables were age and education. Figure 4 is the visualization of this table. 
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