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Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is
generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet,
patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of
the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid
morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of
the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a
temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this
setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by
fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule
gene expression domains observed in response to alterations in bcd dosage.
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Introduction

Developmental patterning requires the translation of cell
position into cell fate. In most prevalent models, positional
information is provided by gradients of signaling molecules,
called morphogens, which induce several cell fates in a
concentration-dependent manner [1]. Prominent examples of
such morphogens include members of the BMP, Wnt and Hh
families of signaling molecules, which play a crucial role in
patterning a broad spectrum of tissues and organisms [2–8].
While a variety of molecular mechanisms involved in the
establishment of morphogen gradients have been described,
the means by which these gradients are decoded are not well
understood. In particular, little is known about the time at
which the morphogen signal is being interpreted by its
downstream targets. Most studies assume that the eventual
pattern is defined according to the steady-state morphogen
profile. Relying on the steady-state profile provides two
obvious advantages. First, it allows for a temporal integration
of a stable gradient, and as such may increase the readout
fidelity. Second, it is relatively insensitive to the precise
readout time and may thus compensate for perturbations
that alter developmental timing.

Recent theoretical studies in several systems, however,
predicted that the underlying cells respond to the pre-steady-
state morphogen profile. For example, numerical simulations
of Shh morphogen formation in the neural tube suggested
that as soon as the morphogen signal increases above some
threshold value, it can induce a given cell fate, implying that
tissue patterning occurs before the morphogen concentra-
tion has reached its steady state [9]. Similarly, based on
numerical simulations of mutant data, other authors argued
in favor of pre-steady-state readouts in the gap gene
interaction network [10] and of the BMP gradient [11] during
early patterning of the Drosophila embryo. However, qual-
itative differences between pre-steady-state versus steady-

state patterning, and their biological implications, have not
been addressed.
A key aspect in developmental patterning is robustness:

patterning is remarkably insensitive to fluctuations in the
external environment or the precise genetic makeup. In fact,
most genetic polymorphisms, or heterozygous mutations in
developmentally related genes, have no detectable effect on
patterning. Recent studies characterized feedback mecha-
nisms that can be employed for shaping morphogen gradients
and buffering their profile against fluctuations in gene dosage
or environmental perturbations [12–21]. Most of the feedback
mechanisms described require some time delay, and are most
effective in steady state. In contrast, the robustness of
decoding the pre-steady-state profile has not yet been
examined.
The early patterning of the Drosophila embryo along its

anterior–posterior axis serves as a classic example of
morphogen-based patterning (see [22] for recent review). A
principle morphogen in this system is Bicoid (Bcd), a
transcription factor that is translated from maternally
provided mRNA localized to the anterior pole of the embryo.
The graded distribution of Bcd was visualized directly,
providing the first molecular demonstration of a gradient
of patterning molecules [23,24]. Bcd binds to the promoters
of zygotic downstream genes (gap genes), and induces their
expression in a concentration-dependent manner [25–30].
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This Bcd-dependent induction, together with cross-interac-
tions between the gap genes themselves, governs the
patterning of the early embryo into distinct domains of gene
expression [30]. Importantly, this patterning proceeds rap-
idly, with gap gene expression observed in less than 90 min
after the onset of embryonic development [31].

Consistent with its presumed function as a morphogen,
changes in bcd gene dosage shift the expression domains of
gap genes such as hunchback (hb) [28,32] as well as the
embryonic fate map [23]. Quantitative measurements, how-
ever, revealed that these shifts are significantly smaller than
expected from a simple morphogen model [23,32]. For
example, in embryos derived from mothers bearing only
one functional allele of bcd, the Hb expression domain shifts
by only ;7% in embryo length (EL), about half of what is
expected theoretically (see Equation 4 and [32,33]). Based on
these apparent inconsistencies, it has been argued that the
Bcd gradient is not sufficient for defining gap gene
expression domains, and that an additional, and yet un-
known, molecular mechanism is required to complement the
Bcd gradient [32,33–36].

Here we report an analysis of the dynamics of gap gene
determination. We found that the apparent anomalous shifts
in gap gene expression domains can be readily explained if
the gap genes start being expressed before the Bcd profile has
reached its steady state. The interactions between gap genes
can stabilize the initial gap expression domains, while the Bcd
profile continues to expand. We show analytically that
decoding the pre-steady-state profile enhances the robustness
to changes in morphogen production rate. Two predictions
of the pre-steady-state decoding were examined experimen-
tally. First, we find that the observed shifts in gap gene
expression domains depend on their position along the
anterior–posterior axis, with more posterior positions being
less sensitive to Bcd dosage. This result can be readily
explained by a dynamic readout, but is inconsistent with
decoding the steady state of the Bcd profile (compare with
[15]). Second, using a reporter gene driven by a promoter
containing Bcd-binding sites, we provide evidence that the
Bcd profile still spreads out posteriorly at the times relevant
for gap gene induction. Taken together, our results suggest

that gap gene expression domains are defined by a transient,
pre-steady-state Bcd profile. This pre-steady-state decoding
reduces the sensitivity of the resulting pattern to changes in
bcd dosage.

Results

Pre-Steady-State Decoding Can Explain the Anomalous
Shifts in Gap Gene Expression Domains
Previous attempts to explain the anomalous shifts in Hb

expression domains invoked maternally expressed Hb (mat-
Hb) [37], predicting a significant contribution of mat-Hb to
embryonic patterning. Indeed, translational repression of
mat-Hb by the Nanos protein in the posterior part of the
embryo establishes an anterior–posterior gradient of Hb
protein [38–40], and Hb protein was shown to synergize with
Bcd in patterning the embryo [41–44]. Yet, this proposal was
found to be inconsistent, since gap gene expression domains
in embryos derived from mat-Hb–deficient females are
indistinguishable from wild-type embryos [32,38–40], reflect-
ing the dominance of Bcd-dependent zygotic Hb expression
over the contribution of mat-Hb (compare with Protocol S1).
Alternative explanations invoked the existence of a secon-
dary, yet to be identified morphogen gradient that is linked to
Bcd (e.g., through the use of a common degradation
machinery [33–36]).
Recently, a quantitative model of the gene network

controlling gap gene expression was reported [45,46]. This
model successfully reproduced the gap gene expression
domains under wild-type conditions, and showed that gap
gene patterning is a dynamic process to which the Bcd
gradient only contributes the initial cue. Nevertheless, our
reanalysis of this model for altered bcd dosage failed to
reproduce the observed shifts of the gap gene expression
domains (see Protocol S1). Since most model parameters,
such as diffusion constants, transcription rates, or degrada-
tion rates, are not firmly established, we asked whether under
a different set of assumptions, the gap gene network could
still explain the lower than expected sensitivity of the gap
gene expression domains to an altered bcd dosage.
Previous dynamic models considered a steady-state Bcd

profile [33–37,45,46]. A recent review, however, emphasized
the importance of assessing the dynamics of Bcd explicitly
[47]. We have thus included these dynamics in our simu-
lations. We considered the known interactions between Bcd
and the gap genes, as well as the cross-interactions between
the gap genes [30,45,46] (see Figure 1A and Protocol S1 for
details of our in silico model). We assumed that translation of
bcd mRNA is localized at the anterior pole of the embryo, and
is initiated upon egg laying (defined as time t¼0). Zygotic gap
gene expression begins at a later time (tgap . 0), taken here as
90 min (corresponding to cycle 10 of the synchronous nuclear
divisions of the early embryo, at 25 8C [31]. To characterize
the model we first calculated the pattern of gap gene
expression in wild-type embryos (with two bcd alleles), and
compared these predictions with the experimentally deter-
mined patterns. We then measured the shift in the Hb
expression domain upon a two-fold change in bcd gene dosage
(corresponding to embryos whose mothers had either one or
four functional bcd alleles).
The behavior of the model was analyzed for a range of

realistic Bcd diffusion coefficients, as well as for different

Author Summary

Subdivision of naive fields of cells into separate cell populations,
distinguished by the unique combinations of genes they express,
constitutes a major aspect of organism development. Classically, this
involves the generation of gradients of signaling molecules
(morphogens), which induce distinct cell fates in a concentration-
dependent manner. It has been generally assumed that morphogen
gradients are interpreted only after they reach a spatially fixed,
steady-state profile. Our study re-examines this assumption for the
classical case of the Bicoid morphogen, a transcription factor that is
distributed as a gradient in the early Drosophila embryo. We
propose and present evidence for dynamic, pre-steady-state
decoding of the Bicoid profile. We further show that such dynamic
decoding can directly account for the surprisingly small shifts in the
expression domains of target genes, observed in response to altered
Bicoid dosage, without invoking additional mechanisms or contri-
buting factors. Pre-steady-state decoding can thus provide a simple
explanation for the relative robustness of this classical morphogen
system, which has been a long-standing problem.
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Figure 1. In Silico Simulation of the Gap Gene Network

(A) A scheme of the gap gene interactions used: Bcd activates the expression of the gap genes in a concentration-dependent manner. Most gap genes
mutually suppress each other (see Figure 9 in [45,46]). These interactions were modeled by a set of reaction diffusion equations, as specified in Protocol
S1.
(B) Spatial distributions of the different network proteins (color-coded as in [A]), at a time when the Bcd gradient has fully evolved and is close to
exponential are shown for different bcd dosages. The gap genes are expressed in adjacent stripes, consistent with their in vivo expression domains.
(C) The position of the Hb expression boundary in wild-type embryos (with 2 copies of bcd) and in embryos bearing altered bcd dosage (one and four
copies, as shown). The results in our simulation (black circles) are compared to the experimental measurements (blue bars). Also shown is the prediction
based on a steady-state gradient (red bars).
(D) The temporal change in the position of the Hb expression boundary (diamonds) and in the Bcd concentration at this position (circles) are shown. We
considered the wild-type situation (2 3 bcd) and show the behavior following the initialization of gap gene expression.
(E) We performed the simulations for different values of the Bcd diffusion constant D. Shown here is the shift of the Hb expression boundary in embryos
with one bcd allele (1 3 bcd) with respect to the wild-type as a function of D.
(F) Same as in (E) but for different values of the gap gene diffusion constant.
(G) Shifts of gap gene expression domains (center, left and right boundary, if applicable) in embryos with one functional bcd allele (1 3 bcd) as a
function of the wild-type (2 3 bcd) position.
(H) Same as in (G) but simulating embryos with four copies of bcd (4 3 bcd).
doi:10.1371/journal.pbio.0050046.g001
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values of the parameters describing the gap gene network. A
parameter regime was readily identified which reproduced
both the wild-type pattern, as well as the experimentally
observed shifts in Hb expression upon changes in bcd dosage
(Figure 1B and 1C). Surprisingly, analysis of the relevant
parameters suggested that reduced sensitivity to alterations
in bcd gene dosage is achieved when pre-steady-state decoding
is used: the Bcd profile at the onset of zygotic expression was
still far from steady state (Figure 1D). Indeed, increasing the
Bcd diffusion constant significantly enhances the sensitivity
of Hb expression domains to bcd dosage (Figure 1E). Notably,
the Hb expression domain, as well as those of the other gap
genes, displayed only a small drift following their initial
determination, although the Bcd profile continued to evolve
(Figure 1D). This temporal stabilization of gap gene expres-
sion pattern is due to the mutual repression between adjacent
gap genes and their limited diffusibility. Proper patterning
can be achieved for a wide range of parameters, and the exact
choice has only a marginal effect on the level of robustness
(Figure 1F).

Our results thus indicate that the known interactions
between the gap genes are sufficient to account for the
phenotypes of embryos derived from mothers with altered bcd
dosage. Previous studies, which concluded that the exper-
imentally observed shifts in the Hb expression domain are
inconsistent with a simple threshold model, calculated the
expected shifts based on the assumption that the Bcd profile
has reached a steady state [23,24,32]. In contrast, a signifi-
cantly smaller shift is expected if decoding is executed before
steady state has been reached.

Enhanced Robustness of the Pre-Steady-State Profile:
Mathematical Analysis

Our numerical simulations indicate that the sensitivity to
changes in Bcd dosage is lower when decoding is performed
early, before steady state is reached. To better understand
this result, we studied analytically the properties of the time-
dependent morphogen profile. (Readers less interested in the
mathematical details are encouraged to move directly to the
next section.) We considered the canonical model of a
morphogen system, applicable in the absence of feedback
mechanisms affecting morphogen diffusion or degradation.
The model postulates a single morphogen that diffuses in a
naive field, where it is subject to uniform degradation. The
time-dependent morphogen profile M (x,t) is obtained by
solving the reaction-diffusion equation

@M
@t
¼ Dr2M � s�1M þ s0dðxÞ; ð1Þ

where D and s denote the morphogen diffusion coefficient
and degradation time, respectively. We assume that morph-
ogen is produced at x¼ 0 at a constant rate s0. Equation 1 can
be solved analytically (see Protocol S1 for derivation), giving

Mðx; tÞ ¼ ks0
2D

�
expð�x=kÞ � expð�x=kÞ

2
erf c

2Dt=k� xffiffiffiffiffiffiffiffi
4Dt
p

� �

� expðx=kÞ
2

erf c
2Dt=kþ xffiffiffiffiffiffiffiffi

4Dt
p

� ��
:

ð2Þ

As shown in Figure 2A, morphogen spreads away from its
source and assumes a more graded spatial distribution with
time. At steady state, morphogen is distributed exponentially,
M(x) ¼ M0 exp(�x/k), decaying over a typical length-scale

k ¼
ffiffiffiffiffiffi
Ds
p

. Note that the time to reach steady state is controlled
by the typical degradation time s. At early times, t � s, the
system is still far from steady state, whereas for t � s, the
morphogen gradient is close to steady state. Moreover, closer
to the source the morphogen gradient approaches its steady
state faster (Figure 2B).
To examine the robustness of the profile, we considered

gene expression boundaries defined according to particular
threshold levels of morphogen concentration. We then
determined the position at which the morphogen level equals
to that threshold. The exact shift in boundary position caused
by a change in the morphogen production rate can be
calculated numerically using Equation 2 (Figure 2C–2F; see
also Protocol S1). To obtain analytical insight, however, it is
instructive to consider the following phenomenological
approximation for the time-dependent morphogen profile

Mpðx; tÞ ¼ M0ðtÞexp½�ðx=kðtÞÞpðtÞ�; ð3Þ

where M0(t) is proportional to the morphogen production
rate. In this approximation, the exponent p(t) decreases
monotonically with time. For a pulse-like morphogen
production, the morphogen distribution at short times (t �
s) resembles a Gaussian distribution, corresponding to p(t)¼2
and kðtÞ ¼ 2

ffiffiffiffiffi
Dt
p

(see Protocol S1). When production is
continuous, the short-time distribution is better approxi-
mated by a smaller exponent, p(t) ’ 1.6 (Figure 2G). At longer
times (t � s), the distribution approaches an exponential
profile, corresponding to p(t)¼ 1 and k(t)¼ k.
Within this approximation, the computation of the shift in

the boundary position is straightforward. Suppose that the
morphogen-production rate is altered by a factor c. We can
approximate the position-dependent shift in morphogen
profile as (see Protocol S1)

DxðxÞ’ @x
@lnM

lnc ¼ 1
p

k
x

� �p�1
klnc; ð4Þ

with p¼ p(t) and k¼ k(t). Clearly, for x � k, the magnitude of
the shift Dx increases with decreasing p . 1. Equation 4
demonstrates that in most of the field (x . k), the shift in
boundary position increases with decreasing p. Since p
decreases in time toward its minimal steady-state value (p ¼
1), a greater degree of robustness is achieved at earlier times,
before steady state is reached. This result also holds for the
exact solution in Equation 2 (see Figure 2F for numerical
analysis). In fact, the system is most sensitive when cell fate
boundaries are defined according to the steady-state morph-
ogen profile. Thus, the capacity to buffer fluctuations in
morphogen production rate is enhanced if decoding is
executed early, when the gradient is still far from steady state.
Notably, at steady state (p ¼ 1), the shift Dx is predicted to

be independent of the position x. Thus, a uniform shift
independent of the distance is a hallmark for the decoding of
a steady-state profile. Indeed, as we have shown previously
[15], this result holds not only for the canonical model studied
here, but for any decoding of a single morphogen steady-state
gradient also in the presence of arbitrary feedback mecha-
nisms affecting morphogen diffusion or degradation. In
contrast, when decoding is based on the transient, pre-
steady-state morphogen levels (p . 1), the magnitude of the
induced shift is position dependent, and decreases with
increasing distance from the source. Again, this effect is seen
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also in the numerical analysis of the full solution in Equation
2 (Figure 2D–2F).

The Spatial Pattern of Gap Gene Sensitivity Is Consistent
with Pre-Steady-State but Not Steady-State Decoding

To further examine the possibility that gap gene expression
domains are defined by the pre-steady-state Bcd profile, we
searched for properties that distinguish between steady-state
and pre-steady-state decoding strategies. This search was
guided by our mathematical analysis of the canonical
morphogen model that takes into account the spatiotemporal
formation of the morphogen gradient (see above). Briefly, we
considered perturbations to the morphogen production rate,
and analyzed the resulting shifts in expression patterns
predicted by this model when decoding is performed at
different timepoints following the initiation of morphogen
production. The most prominent distinction between steady-
state versus pre-steady-state decoding that we observed was
that in the case of steady-state decoding, the extent of the
shift in an expression domain was independent of the spatial
position of this domain (Figure 2C). (This result is valid for
the decoding of any steady-state profile of a single diffusing
morphogen even in the presence of feedback, cooperativity,
or other form of nonlinearity; compare with [15].) In contrast,
when decoding was based on transient, pre-steady-state
morphogen levels, the magnitude of the induced shift was
position dependent, decreasing with increasing distance from
the source (Figure 2D and 2E).

To examine which of these two behaviors is observed in
early Drosophila embryos, we measured the shifts of different
gap gene expression domains induced by altered bcd gene
dosage. We examined embryos derived from mothers carry-
ing only one functional bcd allele, as well as embryos derived
from wild-type females (bearing two functional alleles) and
from females that carry two additional (total of four)
functional bcd alleles. Using existing antibodies [48], we
stained these embryos for the protein products of several
gap genes (hb, Kruppel [Kr], or giant [gt]), and for the
downstream pair-rule gene even-skipped (eve), whose expres-
sion is gap gene dependent. Automated image processing was
used to determine expression domain boundaries (Figure 3A–
3D). As reported previously, when the maternal bcd dosage
was reduced to one copy, all bcd-dependent expression

domains were shifted towards the anterior part of the
embryo, while increasing maternal bcd dosage to four copies
resulted in shifting of all domains towards the posterior end
[23,32].
Yet, the extent of the shifts in gap gene expression domains

was not uniform, but decreased towards the posterior pole,
such that expression domains closer to the source were more
strongly affected by changes in bcd dosage (Figure 3E and 3F).
Moreover, the measured shifts in midembryo positions were
generally consistent with those obtained in numerical
simulations based on pre-steady-state decoding and a Bcd
diffusion constant D ; 1 lm2/s (gray lines in Figure 3E and 3F;
compare also Figure 1G and 1H). Deviations from the
predicted shifts were observed for posterior expression
domains (e.g., posterior Hb), probably reflecting their
dependence on the terminal gap genes tailless and huckebein
[49–51], and on maternally provided caudal [30,52,53].

A Reporter Driven by Bcd-Binding Sites Does Not Reach a
Steady State at the Beginning of Gap Gene Expression
As a more direct test of the pre-steady-state decoding

strategy, we wanted to follow temporal changes in the Bcd
profile itself, at a time when gap gene expression domains are
first defined. Gap gene expression is clearly observed at
division cycle 10 (;90 min after egg lay at 25 8C), with some
reports suggesting that it is initiated as early as cycle 8 (;20
min earlier; see [31] and references therein). Recent analyses
have identified a similar time window (65–100 min after
fertilization) as the critical time for perturbing gap gene
expression domains [54]. Moreover, degradation of bcdmRNA
is initiated at cycle 12 [55], further pointing to cycles 10–11 as
relevant for gap gene determination. Examining anti-Bcd
staining images from the FlyEx database [56] we observed that
Bcd profiles in cycles 10–12 appear to have not yet reached an
exponential shape (see Figure 2I).
Direct immunological quantification of the Bcd profile at

early stages is difficult, however, since existing antibodies
provide low and variable staining intensity. To overcome this
limitation, we resorted to a functional assay using a Bcd-
responsive reporter. For this assay we chose to use hb123x3-
lacZ, in which lacZ reporter expression is under the control
of a triplicated fragment of 123 bp derived from the hb
promoter, containing multiple, functional Bcd-binding sites

Figure 2. Properties of the Pre-Steady-State Morphogen Distribution

(A) The morphogen distribution M(x, t) is plotted as a function of position x for different times t (legend). The plots were obtained by solving the
reaction diffusion Equation 1 in one dimension (see Protocol S1). The position x is in units of the decay length scale k ¼

ffiffiffiffiffiffi
Ds
p

, while the time t is in units
of the decay time s.
(B) Same as in (A), except that each profile was rescaled such that it has unit concentration at x¼0 and decays to 1/e at x¼1. Note the logarithmic scale.
At early times, the profile tail decays super-exponentially, while at later times the morphogen distribution is well approximated by an exponential.
(C) Alteration of the steady-state morphogen concentration upon 2-fold reduction in morphogen production rate. The original profile corresponds to
the solid line and the altered profile to the dotted line. Note that the indicated positional shifts Dx¼ jx� x9j at different morphogen thresholds do not
depend on the position x.
(D) Same as in (C) but for the pre-steady-state profile.
(E) The shift Dx is shown as a function of x for different times t (see legend in [A]). For pre-steady-state profiles, Dx decreases as a function of x.
(F) The shift Dx as a function of time t is shown for different positions x, as indicated. While at late times the shift is almost independent of the position,
at early times the shift decreases with increasing distance from the source.
(G) The exact solution for the pre-steady-state profile was fitted to the phenomenological approximation Mp(x, t)¼M0(t) exp[�(x/k(t))p(t)]. The best-fitted
exponent p is shown as a function of time (in units of the decay time s).
(H) To estimate the deviation of the time-dependent solution from an exponential, we compared the residual error obtained for the best-fit p
approximation (Rp) to the residual error obtained when fitting to exponential with p¼1 (Rlin). The ratio of these residual errors is shown as a function of
time.
(I) The best-fitted exponent p for quantitative Bcd profiles corresponding to wild-type embryos between cycles 10 and 14. Data were downloaded from
the FlyEx database [56]. For embryos in cycles 10–12, the average p is significantly larger than 1, indicating superexponential decay, while Bcd profiles at
cycles 13 and 14 are consistent with p ¼ 1. Note, however, the large fluctuations.
doi:10.1371/journal.pbio.0050046.g002
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[28]. An added benefit of this approach is the sharp
transition of reporter expression, which facilitates the
determination of the transcription domain regardless of
the absolute level of expression. Transgenic flies bearing
multiple copies of this reporter were generated as a means to
increase the signal. The expression pattern of this reporter
was previously shown to faithfully reflect Bcd activity, and to
bind Bcd directly [28]. Although we cannot completely rule
out binding of additional factors to this short element, we
note that this reporter also maintains its precise expression
domain in the absence of zygotic Hb [28]. Since the removal
of zygotic Hb was shown to shift the adjacent Kruppel and
Knirps expression domains [41], it is unlikely that the

expression domain of the reporter element we are using is
influenced by cardinal gap genes.
In situ hybridization to mRNA provides a sensitive readout

of reporter expression. Expression of lacZ mRNA could be
observed in embryos bearing the reporter beginning at cycle
11. The total level of expression increased with time due to
the elevated efficiency of zygotic gene expression in
subsequent cycles and the increase in the number of nuclei.
A significant shift in the posterior boundary of the lacZ
mRNA expression domain was observed between cycles 11
and 12 (Figure 4), with the lacZ expression domain in cycle
12 embryos positioned ;10% more posteriorly, on average,
compared to cycle 11 embryos. Posterior progression was
observed only until cycle 13, probably due to degradation of
bcd mRNA. However, the clear shift between cycles 11 and
12 is consistent with the proposal that the Bcd profile is still
far from its steady state at the relevant timeframe for
decoding.

Discussion

Subdivision of the early Drosophila embryo into distinct
domains of gap gene expression is arguably the best-studied
paradigm of morphogen-induced patterning. Despite exten-
sive investigation, however, quantitative properties of this
system have proven difficult to explain, prompting the
proposition that additional yet unknown molecules or
mechanisms are yet to be identified. The lower-than-expected
sensitivity of the pattern to bcd gene dosage is one such
mystery, noted repeatedly in studies characterizing the Bcd
gradient [23,32,37]. Our study shows, however, that this
property can be readily explained within the known frame-
work of the gap gene expression network, by assuming that
gap genes begin to be expressed before the Bcd profile has
reached its steady state.
More generally, we have shown that pre-steady-state

decoding of morphogen gradients can enhance robustness
to changes in the rate of morphogen production. This result
was derived within the canonical model of morphogen
gradient formation, assuming that no feedback mechanisms
exist that alter the diffusion or degradation of the morph-
ogen molecules. In previous attempts to explain robustness of
patterning, we and others have focused on the steady-state
distribution, describing feedback mechanisms that reduce
gene dosage sensitivity [12–21]. For example, we have shown
that self-enhanced degradation can ensure high robustness
with respect to fluctuations in morphogen production rate

Figure 4. Analysis of Bcd-Dependent lacZ Reporter Expression over

Cleavage Cycles 11, 12, and 13

The posterior boundary of the lacZ expression domain is shown as a
function of the normalized nuclear density for each embryo (colored
dots). Embryos fall into three classes of nuclear density corresponding to
their cleavage cycle (11, red; 12, green; and 13, blue). Average nuclear
density and domain boundary for each cycle are indicated by big circles,
and whiskers denote standard deviations.
(B) The distribution of the expression boundary is shown for the three
cycles (bin size is 2% EL). Note the progression in time of the boundary.
doi:10.1371/journal.pbio.0050046.g004

Figure 3. Quantitative Effects of Altered Maternal bcd Gene Dosage on Zygotic Target Gene Expression

(A) Dorsal view of a representative cycle-14 wild-type Drosophila embryo stained for the Eve (green) and Kr (red) proteins. The contours of the embryo
were determined from the transmitted light image (blue).
(B) (C) Quantitative analysis of stripe positions was performed by semiautomated software as follows: the positions of the embryo poles and of the first
and last Eve stripes were defined manually. Based on these definitions, a rectangular area (yellow dashed in [A]) corresponding in height to 10% EL was
extracted automatically. Intensity profiles (solid lines in [C]) were obtained by averaging the fluorescence signal along the dorsal–ventral axis in this area
and subsequent smoothing. Stripe positions (green dotted lines in [C]) and boundaries (red dotted lines in [C]) were defined based on local maxima of
these profiles and their first derivative, respectively.
(D) Expression domains of Eve (green) and the gap genes Gt, Hb, or Kr (red; as indicated) in embryos derived from females bearing one, two, or four
copies of bcd. In each panel, the top part displays a representative confocal image, while quantitative results obtained from multiple embryos are
shown at the bottom part. The widths of the stripes correspond to the standard errors (bright) and deviations (shaded). n denotes the number of
embryos used in each analysis.
(E) Observed shifts of target gene expression domains (center, left, and right boundaries, if applicable) in embryos with one functional bcd allele (1 3
bcd) as a function of the wild-type (2 3 bcd) position. Gray lines indicate theoretical predictions for different Bcd decay times (compare with Figure 1G
and 1H).
(F) Same as in (G) but for embryos with four copies of bcd (4 3 bcd).
doi:10.1371/journal.pbio.0050046.g003
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[15]. However, such feedback mechanisms typically rely on
lengthy transcription or translation, and their applicability to
early development, where patterning is rapid, is questionable.
Pre-steady-state decoding may provide a compelling alter-
native for increasing robustness, without the need for any
explicit feedbacks.

Pre-steady-state decoding assumes that cell fates are
defined before the morphogen profile has reached its steady
state. The time to reach steady state is controlled by the
morphogen decay time s. In particular, enhanced robustness
will be apparent for times that are lower, or comparable to s.
For example, the experimentally measured shifts of gap gene
expression domains are consistent with a decoding time tgap
that is equal to this decay time, tgap¼ s. Interestingly, since the
rate of convergence to steady state at a particular position x
increases with the distance to the source, anterior regions will
appear rather close to their steady state even at t ¼ s. For
example, within our simple model (Equation 2) for t ¼ s the
profile at x ¼ k /2 (;50 lm) has already exceeded 75% of its
steady-state value, whereas at x ¼ 2k (;200 mm) it is still
below 40% of its final value (see Figure S1).

Thus, pre-steady-state decoding will be valid if the Bcd
degradation time is not shorter than ;60–90 min, the time
when gap gene expression is first observed [31]. Although the
Bcd degradation time was not yet measured, a lower bound
for this time can be estimated using the measured Bcd profile
at cycle 14, which has a decay length of k ; 100 lm. A steady-
state profile that extends to this range requires a decay time s
¼k2/D ; 170/Dminutes, where D is the Bcd diffusion constant
(in units of lm2/s). It was recently reported that biologically
inert Dextran molecules with a molecular mass comparable to
that of Bcd, diffuse quite rapidly in the early Drosophila
embryo, with D ; 17 lm2/s [57]. This value, if applicable also
to Bcd, would imply a short decay time of ;10 min, such that
a steady-state profile is reached before decoding. However,
biologically active molecules are known to diffuse at
significantly slower rates within cellular environments, with
measurements consistently finding diffusion constants in the
range of 0.3–3 lm2/s [58–63]. Such values are not consistent
with steady-state decoding. They provide a lower bound of
1–10 h for the Bcd decay time, and strongly support the
notion of pre-steady-state decoding.

A key issue in pre-steady-state decoding is the definition
and execution of a distinct time of decoding. Crucial
questions at the mechanistic level are how the decoding time
is defined and whether decoding is executed simultaneously
in all parts of the embryo. One possibility is that the profile
simply does not reach a steady state during the relevant
developmental window of morphogen production and signal-
ing. Since development is an ongoing dynamic process, the
response to any given morphogen signal is limited to a
specific time window, independently of whether the profile
has reached its steady state or not. Accordingly, cell fate
determination often involves an irreversible transition
(commitment), rendering gene expression independent of
the inducing signal. A second, conceptually related possibility
is that gene expression is determined during the expansion of
the morphogen profile, and loses its sensitivity to further
changes in this profile. A recent model of neural tube
patterning in vertebrates described such a mechanism,
showing that a sharp boundary of gene expression is elicited
early on in the evolution of the Shh gradient. Self-reinforcing

interactions maintain the boundary spatial position even as
the Shh gradient itself evolves, moving past the location
where the boundary was initially specified [9].
In the case of the gap gene expression domains, the

repression between adjacent gap genes can function to
stabilize the pattern once it is formed. The gap genes first
begin to be expressed at cycles 9–10, when all nuclei reach the
periphery, capturing the early Bcd profile. Once gap genes
expression is initiated, however, mutual repression between
adjacent gap genes stabilizes their spatial expression pattern,
and it remains fixed despite further evolution of the Bcd
profile. Consistent with this scenario, Yucel and Small have
recently argued that measurements of the Bcd gradient
during late blastoderm stage (cycle 14) may not accurately
reflect the shape of the gradient that defines the gap gene
expression domains [47]. Indeed, bcd mRNA starts to degrade
at cycle 12 [55], and its protein levels begin to fade [24,55].
Moreover, at cycle 14, gene expression becomes a combina-
tion of Bcd-dependent and Bcd-independent activation [47].
The increasing number of nuclei could also function to

slow down Bcd diffusion and maintain its pre-steady-state
profile. Bcd synthesis is initiated at egg lay, when the embryo
consists of a single cell with a single nuclei, and continues
throughout the initial set of 14 syncytial nuclear divisions,
which increase the number of nuclei to ;6,000. Interaction of
Bcd with the nuclei, or with the cytoplasm surrounding the
nuclei, can function to slow down its kinetics, effectively
scaling the time to reach steady-state with the number of
nuclei (see Protocol S1). Importantly, this apparent stabiliza-
tion changes the effective time scale of the profile evolution,
but does not alter its pre-steady-state characteristics.
By showing that the relative insensitivity of the gap gene

expression domains to bcd dosage can be readily accounted
for by pre-steady-state decoding, our study provides a simple
and parsimonious explanation of one of the long-standing
mysteries of the Bcd morphogen system. Additional quanti-
tative issues such as the robust scaling with EL [32,64] and the
apparent insensitivity to temperature [54] still remain
unexplained. These unresolved issues are similarly likely to
reveal new features of the Bcd patterning system.

Materials and Methods

Drosophila genetics. Females bearing the normal two copies of the
bcd gene were used as the wild-type strain. The bcd gene dosage was
doubled (43 bcd) in female progeny of a cross between yw females and
P(bcdþ5þ8) males, a strain which harbors two additional, transgenic
copies of the bcd gene on the X chromosome [19]. Females
heterozygous for a chromosomal deficiency encompassing the bcd
locus, and thus bearing only a single copy of the bcd gene (1 3 bcd),
were derived from a cross between Df(3R)MAP117/TM3 and yw.

Embryo immunostaining. Eggs 2–4 h old laid by females bearing
various dosages of bcd and crossed to yw males were collected on agar
plates at 25 8C. Egg fixation (3.5% formaldehyde) and preparation for
immunostaining were according to standard protocols [65]. Immu-
nostaining of fixed embryos was carried out for 16 h at 4 8C using the
following primary antibodies: guinea pig anti-Hb (diluted 1:300),
guinea pig anti-Kr (1:300), rabbit anti-Gt (1:500), and rabbit anti-Eve
(1:500). Secondary antibodies (Cy3-anti-guinea pig, Cy2-anti-rabbit,
and Cy3-anti-rabbit; Jackson Laboratories, http://www.jax.org) were
applied for 2 h at room temperature. Double stainings were
performed simultaneously, except for Gt/Eve, which was performed
sequentially, since both primary antibodies are derived from rabbits.

Microscopy and image analysis. Images were obtained using a Bio-
Rad Laboratories MRC-1024 confocal system (http://www.bio-rad.
com), utilizing an argon-krypton mixed-gas laser and mounted on a
Zeiss Axiovert microscope (http://www.zeiss.com). Analysis was re-
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stricted to cellularizing embryos displaying a distinct seven-stripe Eve
pattern. Images were imported and analyzed using software pro-
grammed in Matlab (MathWorks, http://www.mathworks.com).

Monitoring the Bcd activity gradient over time. A fragment
containing three copies of a 123 bp Bcd-responsive element from
the hb promoter (hb123x3-lacZ; [28]) was inserted into the pH-Pelican
lacZ reporter [66] and used to generate transgenic lines. To maximize
the signal, a fly line homozygous for a chromosome carrying two
insertions of the hb123x3-lacZ construct was used. To detect
expression of the reporter construct, RNA in situ hybridization was
performed with a lacZ RNA probe according to the protocol specified
in http://superfly.ucsd.edu/;davek/intro.html, with hybridization tem-
perature of 65 8C. In addition, a 1:50 dilution of NBT/BCIP (catalog
number 1,681,451; Roche, http://www.roche.com) was used as a
substrate for alkaline phosphatase. To detect the nuclei, embryos
were then incubated for 30 min with a 1:200 dilution of the nuclear
dye TOPRO (Molecular Probes, http://probes.invitrogen.com) follow-
ing treatment with RNAse (10 lg/ml for 30 min). To dynamically
monitor the Bcd gradient, the location of the transition point from
the signal zone to nonsignal zone of the lacZ gradient was measured
in embryos of different ages with different nuclear densities.
Microscopic images were obtained using a Bio-Rad Radiance 2100
confocal system. A transmitted light image of the lacZ gradient was
obtained in the midfocal plane of a given embryo, and nuclei were
viewed by fluorescence of the TOPRO dye. The two corresponding
sets of images were analyzed with automated image processing tools
developed in MatLab in order to measure the lacZ transition point
and the nuclear density as proxy for the embryo’s age (Protocol S1).
Staining was first detected in embryos at cycle 11, and its intensity
increased with embryo stage. We were worried that the increase in
staining intensity could lead to the apparent shift in the transition
point. This could be the case, for example, if the reporter expression
boundaries remained in fact unchanged between different stages, but
the minimal expression level cannot be detected at early stages due to
low staining intensity. In this case the transition point (determined at
half value between minimal and maximal intensity) would actually

move posteriorly with increasing total intensity. To control for this
possibility, we measured also the spatial distance over which the
profile decayed from 80% to 20%. If the changes in transition points
are due to changes in staining intensity, the distance over which the
profile decays is also expected to increase with staining intensity. In
contrast, we observed that the distance over which the profile decays
in fact decreases with increasing staining intensity. Thus, it is unlikely
that the shift in transition point is due to lower staining intensity at
earlier times.

Supporting Information

Protocol S1. Supplementary Information

Found at doi:10.1371/journal.pbio.0050046.sd001 (1.1 MB PDF).
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