Model Selection

Day 1 – concepts and theory

Caveats - warnings

- Personal views pragmatic but of course theory is important to understand why some approaches might work better than others
- Very complex issues no simple answer that can be used in all cases. Depends on the objectives, the data, previous knowledge, ...
- Tools theory and simulations are important to evaluate their properties, not if they are «true»

What is a statistical model and what it is used for (Cox 1990)

- Substantive models
- Empirical models
- Randomization theory
- Indirect models
- Exploratory-Description
- Confirmatory-Inference
- Causal-Estimation-Association-Prediction

Criteria for Models

- Link with underlying knowledge
- Link with previous (or future) published work
- Pointer towards a process that might have generated the data
- Parameters in the primary aspects of the model should have specific interpretations
- Secondary aspects should give adequate description of the random variation
- Model should capture the main features of interest
- Model should be consistent with the data

(Cox & Wermuth 1996, p 18:19)

Criteria for Models

- Principle of parsimony or Ockham's razor (Lazar 2010 for extensive info on Ockham +)
 «entities or assumptions should not be multiplied unnecessarily»
- Good theories are those that explain all the known facts in a fashion as uncomplicated as possible
- simpler models should be preferred until the data justify more complex models

Criteria for Models

• Chamberlin + Platt: Multiple working hypotheses

 Devising alternative hypotheses;
 Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly as possible, exclude one or more of the hypotheses;

3) Carrying out the experiment so as to get a clean result;

1') Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain; and so on.

Strong Inference

Certain systematic methods of scientific thinking may produce much more rapid progress than others.

How do we measure Statistical Evidence

- P-values
- Likelihood
- AIC
- Bayes factor and BIC
- DIC

P-values

- Test statistic; X_{obs}=Data, T(X_{obs})=T_{obs}
- H₀: Model for X, generating a distribution for T
- Large values are unexpected under H0
- P-val = Prob(T(X)≥T_{obs} | H₀)
 Significance level

P-values

- $P-val = Prob(T(X) \ge T_{obs} | H_0)$
- Indirect Evidence against H₀
- NOT Prob(H₀ | T_{obs})
- Two differences
 - Conditional probabilities, Bayes theorem

-
$$T(X) = T_{obs}$$
 vs $T(X) \ge T_{obs}$

- Statistical Model describing how data can be generated, as a function of parameters θ: f(y|θ)
- Linear regression model: (x_i,y_i)

 $\theta = (\beta_0, \beta_1, \sigma)$ y_i ~ Norm(β₀ + β₁x_i, σ)

•
$$f(\mathbf{y}_i | \boldsymbol{\theta}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}}$$

• Independence: $f((y_1,...,y_n)|\theta) = \prod_{i=1}^n f(y_i|\theta)$

- lik(θ) proportional to f(y| θ), as a function of θ
- Use log(lik(θ)) because it is simpler and most theoretical results refer to this function
- Linear regression model $Log(f(y_i|\theta)) = -log(2\pi) - log(\sigma) - (y_i - (\beta_0 + \beta_1 x_i))^2 / 2\sigma^2$ $Log(lik(\theta = (\beta_0, \beta_1, \sigma))) = -n \log(\sigma) - \frac{\sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2)}{2\sigma^2}$ $= -n \log(\sigma) - \frac{SSE}{2\sigma^2}$

- Estimation of parameters: MLE
- For a linear regression model

– minimize SCE to estimate β_0 and β_1

$$-\frac{\partial LL}{\partial \sigma} = -\frac{n}{\sigma} + \frac{SSE}{\sigma^3} \Rightarrow \sigma^2 = \frac{SSE}{n}$$

• Illustration using R (liknorm.R)

• Likelihood Principle

Two models A and B

Likelihoods lik(data | A) and lik(data | B)

Evidence given by
$$\frac{lik(data \mid A)}{lik(data \mid B)}$$

- Models with different parameter values
 - Likelihood ratio test
 - Different models MLE for each model

Probability, Frequency, Belief, Likelihood

- Probability theory (mathematics) does not care about the meaning of probability (axioms-Kolmogorov)
- Probability comes always with two flavours: long-term frequency and belief; one is «objective» (can be measured), the other is «subjective»
- They can be mixed in equations but one should be careful about their meanings
- P-values are frequencies (frequentist statistics), prob(H | data) is a belief (Bayesian statistics)
- They can be mixed (long-term frequencies of Bayesian statistics)

AIC

- Akaike's Information Criterion
 Hirotogu Akaike (1927-2009)
- Linear models with increasing number of predictor variables: SCE↓ as p↑
- A «simplistic» application of the likelihood principle would lead to choosing the most complex model...

AIC

- Akaike realized that loglik(θ̂), with θ̂ the MLE, is a biased estimate of E[log(f(X|θ̂))], where the expectation is taken wrt to X and θ̂
- The theory behind the derivation is rather complicated, and there have been some disagreements

AIC and KL distance

- Assume a true generating density g
- $KL(g,f(\theta)) = \int g(y) \log \frac{g(y)}{f(y,\theta)} dy$
 - Distance between $f(\theta)$ and the «truth»
 - MLE $\hat{\theta}$ aims at providing the best parametric approximation inside the class f(θ) to g

AIC and KL distance

- $KL(g,f(\hat{\theta})) = \int g(y) \log \frac{g(y)}{f(y,\hat{\theta})} dy$ = $\int g(y) \log g(y) dy - \int g(y) \log f(y,\hat{\theta}) dy$ • $Q_n = E_g [\int g(y) \log f(y,\hat{\theta}) dy]$
- Naive estimate: $\hat{Q}_n = \frac{1}{n} \sum_{i=1}^n \log(f(y_i, \hat{\theta}) = \frac{1}{n} l_n(\hat{\theta})$
- $E(\hat{Q}_n Q_n) = p^*/n$
- AIC(M) = $-2l_n(\hat{\theta}) + 2 \text{ length}(\theta)$
- -2 for «historical» reasons, $2l_n(\hat{\theta})$ = deviance
- Sometines defined without -2, with 2, divided by n...

AIC and AIC_c

- AIC is an unbiased first-order estimate
- Asymptotically unbiased, biased for small samples
- For linear models $Y=X\beta+\epsilon$, with dim(X)=(n,p):

•
$$AIC_C = -2l_n\left(\hat{\theta} = (\hat{\beta}, \hat{\sigma})\right) + 2\frac{n(p+1)}{n-p-2}$$

– $\hat{\sigma}$ is the MLE of σ , known to be a biased estimate

•
$$AIC_{C2} = -2l_n\left(\hat{\theta} = (\hat{\beta}, \widehat{\sigma^*})\right) + 2(p+1)$$

 $\widehat{\sigma^*}$ being the unbiased estimate SSE/(n-p-2)
Claeskens and Hjort: not obvious why one is better

 No theory to justify the same correction for other models (eg generalized linear models)

AIC and Evidence

- AIC : relative likelihood and weights
 - scale AIC values relative to minimum value: ΔAIC
 - Relative Likelihood Model i: $\exp\left(-\frac{1}{2}\Delta AIC_i\right)$

• AIC weights =
$$\frac{\exp(-\frac{1}{2}\Delta AIC_{i})}{\sum_{model \ 1}^{model \ n} \exp(-\frac{1}{2}\Delta AIC_{j})}$$

 Unclear what it is when e.g. B&A define prob(Model_i|Data)

Bayes factors

- Two hypotheses H₁ and H₂
- Prior probabilities (beliefs) p(H₁) and p(H₂)
- Likelihood p(data | H₁) and p(data | H₂)
- Posterior probabilities

 $p(H_1|data) = p(data|H_1) p(H_1) / p(data)$ $p(H_2|data) = p(data|H_2) p(H_2) / p(data)$

- Ratio of posterior probabilities $\frac{p(H_1|data)}{p(H_2|data)} = \frac{p(H_1)}{p(H_2)} \frac{p(data|H_1)}{p(data|H_2)}$
- Bayes factor = p(data | H₁) / p(data | H₂)

Bayes factors

- If the two hypotheses involve parameters
- H₁: β and H₂: θ $\int p_1(y|\beta)\pi_1(\beta)d$

 $\mathsf{BF} = \frac{\int p_1(y|\beta)\pi_1(\beta)d\beta}{\int p_2(y|\theta)\pi_2(\theta)d\theta}$

Where $\pi_1(\beta)$ and $\pi_2(\theta)$ are prior distributions of the parameters

- Parameters are integrated out (LRT: use MLEs)
- Can be calculated numerically (examples in R)
- Can be sensitive to the choice of priors

Bayes Factors and BIC

- BIC as an approximation to Bayes Factors
- BIC = 2 loglik($\hat{\theta}$) log(n) length($\hat{\theta}$)
- $\exp\left(-\frac{1}{2}\Delta BIC_i\right)$
- BIC weights

DIC

- Developed in the context of MCMC simulations for Bayesian modelling
- Deviance $D(y, \theta) = -2\log(f(y, \theta))$
- Prior distribution $\pi(\theta)$; posterior $\pi(\theta|data)$
- DIC = D(y, $\bar{\theta}$) + 2 p_D
 - $-\, \bar{ heta}$ is the posterior mean
 - p_D is the effective number of parameters

$$-p_D = \overline{D(Y,\theta)} - D(Y,\overline{\theta})$$

Measuring the goodness of fit of a statistical model

- Assumptions of statistical models
- Systematic component (main structure)
- Stochastic component
 - Independence
 - Variance function
 - Distribution

Goodness of Fit

- Not all assumptions are equally important
- Linear Models
 - 1) Independence
 - 2) Constant Variance
 - 3) Normal Distribution
- Mixed Models

Constant variance of residuals <u>and</u> random effects