
Model Selection 

Day 1 – concepts and theory 



Caveats - warnings 

• Personal views – pragmatic but of course 
theory is important to understand why some 
approaches might work better than others 

• Very complex issues – no simple answer that 
can be used in all cases. Depends on the 
objectives, the data, previous knowledge, … 

• Tools – theory and simulations are important 
to evaluate their properties, not if they are 
«true» 



What is a statistical model and what it 
is used for (Cox 1990) 

• Substantive models 

• Empirical models 

• Randomization theory 

• Indirect models 

 

• Exploratory-Description 

• Confirmatory-Inference 

• Causal-Estimation-Association-Prediction 



Criteria for Models 

• Link with underlying knowledge 
• Link with previous (or future) published work 
• Pointer towards a process that might have generated 

the data 
• Parameters in the primary aspects of the model should 

have specific interpretations 
• Secondary aspects should give adequate description of 

the random variation 
• Model should capture the main features of interest 
• Model should be consistent with the data 
(Cox & Wermuth 1996, p 18:19) 



Criteria for Models 

• Principle of parsimony or Ockham’s razor 
(Lazar 2010 for extensive info on Ockham +) 

«entities or assumptions should not be multiplied 
unnecessarily» 

• Good theories are those that explain all the 
known facts in a fashion as uncomplicated as 
possible 

• simpler models should be preferred until the data 
justify more complex models 



Criteria for Models 

• Chamberlin + Platt: Multiple working hypotheses 

 



How do we measure 
Statistical Evidence 

• P-values 

• Likelihood 

• AIC 

• Bayes factor and BIC 

• DIC 



P-values 

• Test statistic; Xobs=Data, T(Xobs)=Tobs 

• H0: Model for X, generating a distribution for T 

• Large values are unexpected under H0 

• P-val = Prob(T(X)≥Tobs | H0) 

Significance level 



P-values 

• P-val = Prob(T(X) ≥ Tobs | H0) 

• Indirect Evidence against H0 

• NOT    Prob(H0 | Tobs) 

• Two differences 

–  Conditional probabilities, Bayes theorem 

–  T(X) = Tobs  vs  T(X) ≥ Tobs 



Likelihood 

• Statistical Model describing how data can be 
generated, as a function of parameters q: f(y|q) 

• Linear regression model: (xi,yi) 

 q=(b0,b1,s) 

 yi ~ Norm(b0 + b1xi, s) 

• f(yi|q)=
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• Independence:  f((y1,…,yn)|q) =  f(yi|q)𝑛
𝑖=1  



Likelihood 

• lik(q) proportional to f(y|q), as a function of q 

• Use log(lik(q)) because it is simpler and most 
theoretical results refer to this function 

• Linear regression model 

Log(f(yi|q))= -log(2p) -log(s) -(yi-(b0 + b1xi ))
2/2s2 

Log(lik(q=(b0,b1,s))) = -n log(s) −
 (𝑦𝑖−(𝛽0+𝛽1𝑥𝑖))
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Likelihood 

• Estimation of parameters: MLE 

• For a linear regression model 

– minimize SCE to estimate b0 and b1 

–  
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• Illustration using R (liknorm.R) 



Likelihood 

• Likelihood Principle 

Two models A and B 

Likelihoods lik(data | A) and lik(data | B) 

Evidence given by 
lik(data | A)
lik(data | B)

 

• Models with different parameter values 

– Likelihood ratio test 

– Different models – MLE for each model 



Probability, Frequency, Belief, 
Likelihood 

• Probability theory (mathematics) does not care about 
the meaning of probability (axioms-Kolmogorov) 

• Probability comes always with two flavours: long-term 
frequency and belief; one is «objective» (can be 
measured), the other is «subjective» 

• They can be mixed in equations but one should be 
careful about their meanings 

• P-values are frequencies (frequentist statistics),  
prob(H | data) is a belief (Bayesian statistics) 

• They can be mixed (long-term frequencies of Bayesian 
statistics) 



AIC 

• Akaike’s Information Criterion 

– Hirotogu Akaike (1927-2009) 

• Linear models with increasing number of 
predictor variables: SCE↓ as p↑ 

• A «simplistic» application of the likelihood 
principle would lead to choosing the most 
complex model… 



AIC 

• Akaike realized that loglik(𝜃 ), with 𝜃  the MLE, 

is a biased estimate of E[log(f(X|𝜃 ))], where 
the expectation is taken wrt to X and 𝜃  

• The theory behind the derivation is rather 
complicated, and there have been some 
disagreements 



AIC and KL distance 

• Assume a true generating density g 

• KL(g,f(q)) =  𝑔 𝑦  𝑙𝑜𝑔
𝑔(𝑦)

𝑓(𝑦,𝜃)
𝑑𝑦 

– Distance between f(q) and the «truth» 

– MLE 𝜃  aims at providing the best parametric 
approximation inside the class f(q) to g 



AIC and KL distance 

• KL(g,f(𝜃 )) =  𝑔 𝑦  𝑙𝑜𝑔
𝑔(𝑦)

𝑓(𝑦,𝜃 )
𝑑𝑦 

 =  𝑔 𝑦  𝑙𝑜𝑔 𝑔 𝑦 𝑑𝑦 -  𝑔 𝑦  𝑙𝑜𝑔 𝑓 𝑦, 𝜃 𝑑𝑦 

• Qn = Eg [ 𝑔 𝑦  𝑙𝑜𝑔 𝑓 𝑦, 𝜃 𝑑𝑦] 

• Naive estimate: 𝑄 𝑛 = 
1

𝑛
 log (𝑓(𝑦𝑖

𝑛
𝑖=1 , 𝜃 ) = 

1

𝑛
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• E(𝑄 𝑛 − 𝑄𝑛) = p*/n 

• AIC(M) = - 2𝑙𝑛(𝜃 ) + 2 length(q) 

• -2 for «historical» reasons, - 2𝑙𝑛(𝜃 ) = deviance 

• Sometines defined without -2, with 2, divided by n… 



AIC and AICc 

• AIC is an unbiased first-order estimate 
• Asymptotically unbiased, biased for small samples 
• For linear models Y=Xb+e, with dim(X)=(n,p): 

• 𝐴𝐼𝐶𝐶 = − 2𝑙𝑛 𝜃 = 𝛽 , 𝜎  + 2 
𝑛 𝑝+1

𝑛−𝑝−2
 

– 𝜎  is the MLE of s, known to be a biased estimate 

• 𝐴𝐼𝐶𝐶2 = − 2𝑙𝑛 𝜃 = 𝛽 , 𝜎∗  + 2(p+1) 

 𝜎∗  being the unbiased estimate SSE/(n-p-2) 
 Claeskens and Hjort: not obvious why one is better… 
• No theory to justify the same correction for other models 

(eg generalized linear models)  



AIC and Evidence 

• AIC : relative likelihood and weights 

–  scale AIC values relative to minimum value: DAIC 

– Relative Likelihood Model i: exp −
1
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• AIC weights = 
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• Unclear what it is when e.g. B&A define 
prob(Modeli|Data) 



Bayes factors 

• Two hypotheses H1 and H2 

• Prior probabilities (beliefs) p(H1) and p(H2) 
• Likelihood p(data|H1) and p(data|H2) 
• Posterior probabilities 
 p(H1|data) = p(data|H1) p(H1) / p(data) 
 p(H2|data) = p(data|H2) p(H2) / p(data) 
• Ratio of posterior probabilities 

𝑝(𝐻1|𝑑𝑎𝑡𝑎)

𝑝(𝐻2|𝑑𝑎𝑡𝑎)
=

𝑝(𝐻1)

𝑝(𝐻2)

𝑝(𝑑𝑎𝑡𝑎|𝐻1)

𝑝(𝑑𝑎𝑡𝑎|𝐻2)
 

• Bayes factor = p(data|H1) / p(data|H2) 
 



Bayes factors 

• If the two hypotheses involve parameters 

H1: b and H2: q 

BF=
 𝑝1 𝑦 𝛽 𝜋1 𝛽 𝑑𝛽

 𝑝2 𝑦 𝜃 𝜋2 𝜃 𝑑𝜃
 

Where 𝜋1 𝛽  and 𝜋2 𝜃  are prior distributions of 
the parameters 

• Parameters are integrated out (LRT: use MLEs) 

• Can be calculated numerically (examples in R) 

• Can be sensitive to the choice of priors 



Bayes Factors and BIC 

• BIC as an approximation to Bayes Factors 

• BIC = 2 loglik(𝜃 ) - log(n) length(𝜃 ) 

• exp −
1

2
∆𝐵𝐼𝐶𝑖  

• BIC weights 



DIC 

• Developed in the context of MCMC 
simulations for Bayesian modelling 

• Deviance D(y, q) = -2log(f(y, q)) 

• Prior distribution p(q); posterior p(q|data) 

• DIC = D(y, 𝜃 ) + 2𝑝𝐷 

– 𝜃  is the posterior mean 

–  𝑝𝐷 is the effective number of parameters 

– 𝑝𝐷 = 𝐷(𝑌, 𝜃)  − 𝐷 𝑌, 𝜃  



Measuring the goodness of fit of a 
statistical model 

• Assumptions of statistical models 

• Systematic component (main structure) 

• Stochastic component 

– Independence 

–  Variance function 

–  Distribution 



Goodness of Fit 

• Not all assumptions are equally important 

• Linear Models 

1) Independence 

2) Constant Variance 

3) Normal Distribution 

• Mixed Models 

Constant variance of residuals and random effects 


