
Evolutionary Ecology 1996, 10, 387-404 

The Bumpus house sparrow data: a reanalysis using 
structural equation models 

B R U C E  H. P U G E S E K  1 and A D R I A N  T O M E R  2 
1Southern Science Center, National Biological Service, 700 Cajundome Boulevard, Lafayette, LA 70506, USA 
2Department of Psychology, Shippensburg University, Shippensburg, PA 17257, USA 

Summary  

We analysed the data of H.C. Bumpus on the survival of house sparrows (Passer domesticus) using structural 
equation modelling techniques. Using data on seven morphological variables measured by Bumpus, we tested 
and confirmed a three-factor model that characterized physical attributes for general size, leg size and head 
size. Although males were physically larger than females, we found no difference between males and females 
in the physical attributes as measured by the three factors. Survival increased significantly with increasing 
general size and was unrelated to leg size and head size. Wing length, independent of its relationship to the 
general size factor, was also significantly related to survival. Higher survival was found among birds with 
short wings. Males had a higher survival compared to females. Their higher survival was mediated, to a lesser 
extent indirectly, through greater size and, to a greater extent directly, through effects of unknown origin. We 
favour the use of structural equation modelling methods in studies of selection because of their ability to test 
and confirm or disconfirm hypotheses related to selection events. 

Keywords: Bumpus; evolution; fitness; house sparrow; LISREL; natural selection; Passer domesticus; 
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Introduction 

Bumpus (1899) studied domestic sparrows (Passer domesticus) subjected to the rigours of an ice 
and snow storm. Birds, immobilized by the storm, were collected and transported to the Brown 
University Anatomical Laboratory. Seventy-two sparrows, 51 males and 21 females, subsequently 
revived and 64, 36 males and 28 females, perished. Bumpus determined the sex of birds by 
plumage characteristics and concluded that there was a higher survival rate among males. He also 
measured nine phenotypic characteristics of the sparrows and concluded that seven of the nine 
characteristics provided evidence of 'selective elimination'. Compared to those that perished, 
survivors had a lower body weight, shorter total length and sternums, longer humerus, femur and 
tibio-tarsus lengths and wider skulls. The differences that he observed between live and dead birds 
in wing length and head-bill length were considered nominal and inconclusive. 

A number of investigators have reanalysed Bumpus' data (e.g. Harris, 1911; Calhoun, 1947; 
Grant, 1972; Johnson et al., 1972; O'Donald, 1973) providing a useful means of illustrating and 
comparing ways to measure selection. Lande and Arnold (1983) used Bumpus' data to demonstrate 
methods for measuring the force of directional or stabilizing selection acting on phenotypic 
characteristics. They regressed survival on several phenotypic characteristics treated as independent 
variables. Multiple regression coefficients provided a function, called the selection gradient, for 
computing the shifts in multivariate phenotypic distribution resulting from the selection process. 
They interpreted each coefficient as the direct effect on fitness of a phenotypic characteristic. The 
effects of other correlated phenotypic characteristics are statistically adjusted away. 
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Preliminary multivariate analysis of variance (MANOVA) by Lande and Arnold (1983) showed 
significant differences between the sexes in total length, weight, wing length and humerus and 
sternum length. Therefore, they performed separate multiple regressions on males and females. 
Results of multiple regression analyses indicated significant relationships between survival and 
weight in both sexes and between survival and total length in males only. Male survivors were 
lighter and shorter compared to those that died. 

Several investigators argued that data from selection studies often violate the assumptions of the 
multiple regression model (Endler, 1986; Mitchell-Olds and Shaw, 1987; Crespi and Bookstein, 
1989; Crespi, 1990). Under these circumstances, multiple regression coefficients are unstable 
(Gleser, 1992). Values of the coefficients can fluctuate due to measurement error and the presence 
or absence of other independent variables in the analysis (Crespi and Bookstein, 1989). Thus, 
multiple regression coefficients may not accurately depict relations between phenotypic 
characteristics and measures of fitness (Pugesek and Tomer, 1995). 

Crespi and Bookstein (1989) (see also Crespi, 1990) advocated Wright's path analysis (1934) as 
an alternative to multiple regression for modelling selection. They conducted path analyses on the 
Bumpus data in which they created two unmeasured variables (i.e. factors). The first unmeasured 
variable, fitness, used survival as a single indicator. They derived the second unmeasured variable, 
a general factor corresponding to bird size, by a principal components analysis of the phenotypic 
characteristics. Using the size factor in a covariance analysis, they adjusted phenotypic characters 
for the difference in the mean values for live and dead birds. They regressed these size-adjusted 
'shape coefficients' on survival. For each sex, they performed two analyses. One analysis used all 
nine phenotypic variables. The other analysis used the seven phenotypic variables remaining after 
excluding bird length and weight. The length of dead birds was likely to reflect an upwards bias due 
to post-mortem straightening of the spine. Bumpus' measurements of the weights of live birds 
probably reflected a downwards bias due to respiration and excretion between the time the birds 
revived and the time of weighing (Grant, 1972; Johnson et al., 1972). 

In the nine-variable analysis, Crespi and Bookstein (1989) found significant paths to fitness only 
for the shape coefficients of weight in both sexes and also length in males. Survivors were lighter 
and, if males, also shorter. In the seven-variable analysis, a significant path to fitness was found 
only for the shape coefficient of wing length in males. They interpreted this to mean that birds with 
larger bodies relative to wing length were more likely to survive. No significant paths to fitness 
were found for females. While the covariance analysis used by Crespi and Bookstein (1989) 
provided selection coefficients or shape coefficients for characteristics, it did not provide a similar 
coefficient for the general size factor. 

Crespi (1990) argued convincingly for the use of unmeasured variables, such as general body 
size, in selection studies. In this formulation of the selection model, selection may act directly on 
overall size and not only on the individual phenotypic characteristics that make up the size variable. 
Crespi (1990), with Bumpus' seven-variable data set on females, used a three-factor model to 
describe the physical characteristics of the birds. The first unmeasured variable was a general size 
factor derived from the first principal component of a factor analysis of the seven phenotypic 
characters. He derived the remaining two unmeasured variables from the residual correlation matrix 
remaining after extraction of the first factor. The second unmeasured variable, leg size, was a factor 
composed of two phenotypic characteristics, femur length and tarsus length. Crespi (1990) 
introduced this second factor because the residuals of the two components were highly correlated 
and the factor made substantive biological sense. He used the same rationale to formulate the third 
unmeasured variable, head size, a factor composed of head-bill length and head width. As in the 
previous analysis by Crespi and Bookstein (1989), the covariance analysis could not provide a 
selection coefficient for any of the factors. 
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The aforementioned analyses left several unanswered questions about the Bumpus data. 
First, can we interpret the first principal component as a general size factor? To try to answer this 

question Crespi and Bookstein (1989) advocated the investigation of eigenvalues, residual 
correlations and the use of biological intuition as a basis for describing the pattern of relations 
among the phenotypic characteristics. An alternative, constituting in our view a more rigorous 
approach, involves the use of structural equation modelling (SEM) in a confirmatory factor analysis 
that can confirm or disconfirm the hypothesis of a size factor. 

Second, what are the relationships between unmeasured variables based on phenotypic 
characteristics and fitness? 

Third, are the general size, leg size and head size factors, different for males and females? In 
published path analyses, males and females were analysed separately, despite very small sample 
sizes. Do we need to treat males and females with separate analyses? Males were generally larger 
than females and had longer wings, etc. However, this does not imply that the composition of the 
factors differed between the sexes. Factors for males and females are the same unless the 
proportions of measured physical dimensions differ between the sexes. 

Fourth, were sex-related survival differences mediated through the physical attributes measured 
by Bumpus? In particular, does the physically larger size of males explain why they had a higher 
survival rate than females? 

In this paper, we addressed the above questions using SEM methods. In doing so, we pointed to 
several advantages of SEM over other methods of analysis. We preceded the analyses of the 
Bumpus data and their discussion with an explanatory section. This section provides, in a non- 
technical language, some of the basic concepts used in structural equation modelling. 

Structural equation modelling (SEM) 

General background 

SEM encompasses an entire family of models known by many names: covariance structure 
analysis, confirmatory factor analysis, latent variable analysis and often as LISREL analysis. A 
number of books provide introductions to SEM (e.g. Hayduck, 1987; Bollen, 1989; Loehlin, 1994; 
Hair et al., 1995) and to computer software applications (e.g. Hayduck, 1987; Byrne, 1989, 1994). 
As one might expect from a method with so many variations in its application, researchers may 
question what constitutes structural equation modelling. Yet, we distinguish all structural equation 
models by two characteristics: (1) estimation of multiple and interrelated dependence relationships 
and (2) the ability to represent these relationships with latent variables. 

Latent variables 

Latent variables, sometimes called unmeasured variables or factors, are not measured directly, but 
are composites of directly measured variables called indicators. Latent variables are commonly 
represented by two or more indicators. A biological example of a latent variable is body size in a 
model that relates body size to survival. We can measure body size in different ways (length from 
head to tail, weight, etc.). These are measurements of observed variables that serve as indicators for 
the latent variable body size. By using a number of indicators for a latent variable, the researcher 
is proposing, in fact, a model. The model assumes that the latent variable or factor influences 
substantially the observed variables, which, therefore, can serve as indicators for the factor. This 
model constitutes a confirmatory factor analysis (CFA) model that we typically construct on the 
basis of a theory. As such, the model is in need of estimation and statistical testing. Figure 1 
presents a CFA model for a case in which there are three latent variables, A, B and C, with two 
indicators each. Arrows leading from the latent variables to the indicators denote loadings that 
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Figure 1. A confirmatory factor analysis model in which there are three factors, with two indicators each. 
Latent variables (circles) and indicators (rectangles) are linked together by arrows. Single-headed arrows 
indicate the direction of relationships for model parameters - factor loadings and residual variances. 
Double-headed arrows indicate correlations among the factors. 

represent the influence of  the latent variable on the indicators. Our indicators for the latent variables 
are often imperfect. They are either imperfectly measured and/or they are affected by other 
variables not explicitly included in the model. We indicate this with the additional arrows 
representing error terms that lead to the indicators from the bottom up. These arrows denote the 
contribution of additional variance that is unrelated to the latent variable. Finally, we represent 
correlations between latent variables by double-headed arrows. 

Confirmatory factor analysis can be contrasted with the older exploratory factor analysis (EFA). 
In the latter, researchers do not specify the relationships between latent variables and the indicator 
variables in advance as in CFA. 

The measurement and the structural model in LISREL 

Most SEM models include two parts, a measurement model and a structural model. The 
measurement model corresponds to the confirmatory factor analysis model mentioned above. It 
expresses how the researcher forms the latent variables. The structural model expresses the causal 
relationships between latent variables using a series of interdependent multiple regression 
equations. All relationships, in both the structural and the measurement model, are linear. The 
coefficients in the equations formulating the structural model are called path coefficients. In Fig. 2, 
letters A, B and C denote latent variables, a 1 and a 2 denote indicators for A, etc. Observe that 
variable A determines in part variable B which determines in part C. The direction of the arrows 
indicates the direction of relationships. Note that other variables (indicated by other arrows leading 
from above the latent variables) also affect B and C. These variables remain unspecified by the 
model. 

Figure 2. A representative path diagram of a simple structural equation model with three latent variables, 
with two indicators each. 
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The function of theory 

There are alternative possible connections between latent variables A, B and C and between them 
and the indicators. Therefore, the researcher should provide some justification for the model. This 
justification should be based on theory and previous studies that make the relationships presented 
in Fig. 2 plausible. For example, the researcher might know from previous research that a~ and a 2 
are highly intercorrelated but weakly correlated with both the b and the c indicators. The researcher 
might also be willing to interpret an existing theory to suggest that A should influence B rather than 
vice versa, etc. 

Statistical analyses in SEM 

Researchers can estimate, test, and evaluate models such as the one presented in Figs 1 and 2 using 
computer programs such as LISREL (J6reskog and S6rbom, 1989). The Appendix provides 
additional explanation of model fitting and evaluation. 

The Bumpus data and the present analyses 

Because the process of dying could have strongly biased body length and body weight variables, 
we followed Crespi and Bookstein (1989) by excluding them from the present analyses. We 
performed logarithmic transformations on the remaining seven variables to meet the assumptions of 
normality (see also Lande and Arnold, 1983). We used sex and survival as additional variables in 
some models. In every case, the analysis used a matrix of correlations - tetrachoric, biserial or 
Pearson - according to the variables involved (dichotomous or continuous; see J6reskog and 
S6rbom, 1989). We produced matrices using PRELIS (J6reskog and S6rbom, 1986) and analysed 
using LISREL 7 (J6reskog and S6rbom, 1989) with the maximum likelihood method. 

The measurement models - specification and estimation 

One-factor measurement models. The measurement models for the Bumpus data specify the 
interrelationships between the phenotypic characteristics. We initially assumed that one factor, 
general size, underlies the relationships (correlations) between the seven variables (Fig. 3). In this 
simple model, we assumed the residuals of the indicators (phenotypic characteristics) to be 
uncorrelated. We estimated a stacked model (see the Appendix) simultaneously for males and 
females, assuming different constraints (see the Appendix) across the sexes. The formulation of 
these constraints allowed us to address the question of differences across sex: do male and female 
individuals in this population have the same shape? We evaluated three models to obtain a more 
precise formulation of this question. 

(1) Model 1 - phenotypic characteristics have the same general pattern in males and females. In 
both sexes the same common faotors (in our initial model, just one common factor) explain the 
relationships among variables. 

(2) Model 2 - as in model 1, both sexes have the same common factor. In addition, we 
constrained the loadings of the variables on the common factors (representing the extent to which 
the factors 'explain' the variables) to be equal in both sexes (see the Appendix). 

(3) Model 3 - as in model 2, both sexes have the same common factor and loadings are 
constrained to be equal. In addition, we constrained the residual variances (accounting for the 
amount of variance unexplained in the morphological characteristics by general size) to be equal in 
both sexes. 

The results of the estimation of these models (Table 1) suggested that even the most constrained 
model, model 3, which assumed the same factorial pattern, the same loadings and the sarne 
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Figure 3. The one-factor measurement model allowing for general size. 

residuals across sexes, fit the data well. The fit of this model was not significantly poorer than the 
fit of the less-constrained model, model 2. The latter did not itself fit the data significantly poorer 
than the most relaxed model, model 1 (Table 1). 

Three-factor measurement models. LISREL's modification indices (see the Appendix) indicated 
to us, however, that we could improve the one-factor model by freeing (see the Appendix) some 
covariances between residuals of the indicators. The modification indices for females were higher 
than 4 for two covariances. The covariance between head length and skull width and that between 
tarsus and femur also made sense biologically and morphologically. The existence of covariances 
between these residuals is also consistent with other analyses of the Bumpus data (Crespi, 1990). 
Figure 4 depicts a one-factor model allowing for the two covariances. These relationships may be 
the result of two additional factors. Each factor corresponds to one pair of variables and creates a 
covariance between these variables beyond and in addition to the covariance induced by general 
size. Following Crespi (1990), we called these factors head size and leg size (Fig. 5). In a simple 

Table 1. Chi-squares and indices of fit for simultaneous confirmatory factor analyses in male and female 
house sparrows - three nested one-factor models 

Model X 2 df p Ax2a Adf GFI b CFI c 

1. Same factorial pattern (one factor) 43.59 28 0.030 0.953 0.975 
2. Same factor loadings 50.39 35 0.045 6.80 7 0.942 0.975 
3. Same factor loadings, same unique variances 62.08 42 0.024 11.69 7 0.931 0.968 

a Successive differences between chi-squares starting from the most restrictive model. No difference attains significance 
at p --- 0.05. 
b Goodness-of-fit index (J6reskog and S6rbom, 1989). 
c Normed comparative fit index (Bentler, 1990). 
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Figure 4. A modified one-factor measurement model allowing for some covariances of residuals 
represented by double-headed arrows. 

(and relatively parsimonious) case, the two factors will be orthogonal (uncorrelated) to one another 
and also orthogonal to the general factor. To make the model identified (see the Appendix), we also 
introduced the simplifying assumption that the factor loadings for the two variables corresponding 
to each factor were equal. We simultaneously estimated this model as a stacked model for males 
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Figure 5. A three-factor measurement model. Factors are orthogonal. 
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Table 2. Chi-squares and indices of fit for simultaneous confirmatory factor analyses in male and female 
house sparrows- three nested three-factor models 

Model X z df p AX2a Adf GFI b CFI c 

1. Same factorial pattern (three factors) 28.82 24 0.227 0.966 0.992 
2. Same factor loadings 35.28 33 0.361 6.46 9 0.956 0.996 
3. Same factor loadings, same unique variances 49.29 40 0.149 14.01 7 0.942 0.985 

a Successive differences between chi-squares starting from the most restrictive model. No difference attains significance 
at p = 0.05. 
b Goodness-of-fit index (J6reskog and S6rbom, 1989). 
° Normed comparative fit index (Bentler, 1990). 

and females imposing sequentially the same constraints across sex that were used in the one-factor 
model. 

The three-factor models fit the data very well, better in fact than the one-factor models (Table 2). 
Moreover, a comparison of the three nested models brought about a conclusion similar to the one 
based on one-factor models: the shape of the phenotypic characteristics was the same in females 
and males, even according to the most stringent definition of structural similarity imposed in model 
3. 

Some of the variables, such as humerus and femur, had high loadings of  0.9 or higher. Other 
variables such as sternum and skull were relatively poor indicators of  the general size factors (Fig. 
6). All loadings were highly significant (t-values > 6) (see the Appendix). The loadings 
corresponding to the other two factors, leg size and head size, were low but nevertheless significant 
(t-values > 4). 

,274 Femur ~ .130 

. Tarsus ~ .232 

Humerus ~.095 

(Gesn:eral ~ ,573 ~'J Sternum q.672 

Wlng ~ .390 

~ , 3 ~ ~  Head ''426 

sku. I, 5 .8  

Figure 6. Standardized loadings and residual variances for the most constrained three-factor model. 
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Figure 7. The survival model. Three latent variables are related to fitness which affects survival. Direct 
paths from morphological characteristics to fitness are fixed to 0. 

The structural  model  - specification 

The structural model related the latent variables underlying the morphological characteristics to 
fitness. Just one indicator, survival, measured fitness. We fixed the path from fitness to survival to 
1 and the residual variance for survival was fixed to 0. We assumed that Bumpus measured survival 
without error (no dead birds being considered alive or vice versa) (Fig. 7). 

We obtained a relatively parsimonious model by (1) allowing the paths from the three factors to 
fitness to be free and estimated and (2) fixing the direct paths from phenotypic characteristics (the 
indicator variables) to fitness to 0 (Fig. 7). However, some characteristics may have had a specific 
effect on survival independent of the relationships modelled through the path(s) from the latent 
variable(s). A model allowing all phenotypic characteristics to also affect survival is not, however, 
an identified model. We dealt with this problem by estimating first the model that allowed only the 
three factors to affect survival. Then, we freed more paths connecting phenotypic characteristics to 
fitness, if this could improve the fit. We used modification indices supplied by LISREL for this 
purpose. 

The structural  model  - est imation 

We estimated the survival model simultaneously as a stacked model (model 1 in Table 3) allowing 
only paths from the three factors to survival in males and females. Based on the results obtained 
fitting the measurement models, we assumed an invariant structure of morphological characteristics 
across sex. This means that, in both sexes, the same three factors explain relationships among the 
morphological characteristics. In addition, the loadings of the characteristics and the unique., 
variances or residuals are the same in males and females. Males obtained a relatively high 
modification index ( >  8) for the path from wing to survival. For this reason we released the 
constraint on this path. The new model 2 fit the data significantly better (Table 3). New 
modification indices for the paths to survival were low ( <  2) and therefore we decided not te 
release any other path coefficients. 
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Table 3. Chi-squares and indices of fit for simultaneous estimation in male and femal house 
sparrows of three survival models 

Model number and description a X 2 df p GFI b CFI c 

1. Three latent variables 62.72 48 0.075 0.925 0.977 
2. Three latent variables, wing 52.37 46 0.241 0.945 0.990 
3. Three latent variables and wing with equal paths 56.62 50 0.242 0.942 0.989 
in males and females 

a The description indicates the variables that are allowed to affect fitness. 
b Goodness-of-fit index (J6reskog and S/3rbom, 1989). 

Normed comparative fit index (Bentler, 1990). 
Note: model 2 fits significantly better than model 1: X 2 (2) = 10.35, p < 0.01. Model 3 fits the data not 
significantly worse than model 2:×2 (4) = 4.25. 

A further question of  interest was whether or not the strength of  the relationship between the 
latent variables (and, possibly, also phenotypic characteristics) and fitness was the same in males 

and females. We addressed this question by setting the paths to fitness to be equal and by 
comparing the more-constrained model  with the less-constrained model. The model obtained by 
constraining the paths to fitness appears as model  3 in Table 3. The difference in chi-squares 
between model  2 and model  3 was not significant. The parameters estimated in model  3 (Fig. 8) are 
likely to be more robust than the ones estimated in model 2. 

The coefficient for the path f rom the general factor, general size, to fitness was significant. The 
negative sign for this coefficient indicates that a larger size is ' good  for survival ' .  The coefficients 
for the other two latent variables, leg size and head size, did not reach significance. In addition, 
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Figure 8. Standardized path coefficients and residual variances for the survival model (model 3). All 
coefficients and variances are significant, t-values > 2, with the exception of the coefficients from leg size 
and head size to fitness. 
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wing also significantly affected fitness, but this coefficient is positive. A shorter wing length Jis 
related to a greater chance of survival. 

A survival model with sex 

We also specified a model including sex as an independent variable. In this model we allowed sex 
to affect general size (Fig. 9). 

In addition to this, since there may be specific differences between the sexes, we modelled 
pathways from sex to all phenotypic characteristics, except skull. The path to skull was fixed to 0 
to obtain identification of the model. We chose to fix the skull variable because there were few sex- 
related differences in skull measurements. The three factors could also affect survival. Estimation 
of such a model produced a chi-square of 47.44 with 16 degrees of freedom, goodness-of-fit index 
(GFI) = 0.936. An examination of the modification indices produced by LISREL showed the 
existence of a very large modification index for the path between wing and fitness ( >  25). We 
freed this path and obtained a new model with the following indicators of fit: X2(15) = 20.27, p 
= 0.162, GFI = 0.970, comparative fit index (CFI) = 0.994. The new model (Fig. 10) fit the 

data significantly better: X2(]) = 27.17, p < 0.001. The new modification indices for the paths to 
fitness were all small ( < 2) and therefore we made no further modifications. The coefficients from 
the general size factor and from wing to fitness were significant (see Fig. 10). This agrees with the 
results obtained in the previous section. Males had a better chance of surviving. Sex was related 
significantly to two of the phenotypic characteristics, sternum and wing, which are bigger in males. 
The squared multiple correlation for fitness was R 2 = 0.345, substantially greater than 0.145 (for 
females) and 0.154 (for males) obtained by estimating models within sex. The improvement in the 
percentage of explained variance, together with an examination of the path coefficients in Fig. 10, 
suggests that sex played an important role in determining survival, independent of morphological 
characters. 

¢ 

\ 

,x " ~  ~/ 1 Survival 

Figure 9. A survival model with sex as an independent variable. 
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Figure 10. Standardized path coefficients for a survival model with sex. An asterisk denotes significance, 
t-value > 2. For model identification purposes, values of coefficients for general size to wing, and for 
coefficients of indicators of leg size and head size, were set to 1 in the unstandardized solution. For this 
reason, we did not calculate t-values for these coefficients. 

Discussion 

Summary of analyses 
Our main conclusions of the structural equation modelling analyses are as follows. 

(1) The seven phenotypic characteristics analysed here have three underlying unmeasured 
variables or factors and the relationships between the factors and the characteristics are the same in 
males and in females. 

(2) A general size factor affects survival, reflecting an advantage for larger size. 
(3) A short wing length is conducive to better survival. 
(4) Relationships between these characteristics and survival are not significantly different in 

males versus females. 
(5) The sex of the bird affects survival indirectly through conveyance of larger size to males and 

directly giving an advantage to males versus females that is independent of morphological 

characteristics. 

These results are consistent with other results presented in the literature (e.g. Crespi and 
Bookstein, 1989; Crespi, 1990) but they also add to them. We asked and answered, for the first 
time, the question of structural similarity in females versus males. The present analysis also 
continued the line of thought presented by Crespi (1990) and by Crespi and Bookstein (1989) who 
introduced latent variables in their analyses. In addition to the existence of a relationship between 
wing and survival that Crespi and Bookstein (1989) had already established, our analyses 
confirmed the existence of a relationship between a general size factor and survival. Finally, we 
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partitioned the relationship between sex and survival into direct and indirect components mediated 
through body size. 

Methodological comments 

Structural equation modelling (SEM), as illustrated by the LISREL models presented and estimated 
here, can be a very versatile method in the measurement of selection. Our study exposed some of 
the applications of SEM and the LISREL model in the examination of structures of phenotypic 
characteristics and in the comparison of structures in different populations such as males and 
females. In addition, we applied SEM to examine the relationships of phenotypic characteristics to 
fitness by formulating plausible models, by estimating these models and by assessing their fit to the 
data. We also showed how the models could be modified according to various indicators, such as 
modification indices. 

We advocate several caveats concerning our analysis. First, although an exploratory use of SEM 
and of LISREL or equivalent models would be considered legitimate by many methodologists and 
statisticians (e.g. MacCallum, 1986; Anderson and Gerbing, 1988; J6reskog and S6rbom, 1989; 
S6rbom, 1989; Bentler, 1992), it is important to distinguish exploratory use from the purely 
confirmatory use of SEM. In an exploratory use of SEM there is a risk of capitalizing on chance 
that requires us to see the results (the acceptance of one model over another) as tentative and in 
need of further confirmation. We should make this confirmation on the basis of additional data (e.g. 
Raykov et al., 1991). Our use of SEM was, in part, exploratory. We attained our three-factor 
measurement model only after examining the modification indices obtained for the one-factor 
measurement model. Similarly, in the survival model we freed the path from wing to fitness only 
after examining the modification index for this path. The survival model that we estimated and 
found to fit the data well should therefore be considered as a tentative model in need of further 
exploration and confirmation. 

Second, while we believe the models considered here are plausible and fit the data well, it is 
always possible that there are other variables and/or causal assumptions that may generate models 
as 'successful' as the one considered here (e.g. Breckler, 1990) and these models may provide 
alternative interpretations. 

Third, we estimate models on the basis of statistical assumption. One assumption in the use of 
the maximum likelihood method of estimation is multivariate normality of the variables included 
in the model. While much more relaxed assumptions can replace this distributional assumption, 
typically this requires very large sample sizes (Browne, 1984). 

Sample size results in a fourth limitation. We estimate and compare models based, in part, on a 
statistic that is distributed asymptotically as a chi-square variable under the assumption of 
multivariate normality. Samples have to be large enough to use the statistic for tests of overall fit 
reliably, as well as to avoid non-convergence of the iterative procedure used for the maximum 
likelihood solution. There is uncertainty regarding the 'minimum sample size'. Boomsma (1985) 
suggested sample sizes of at least 100. Hayduck (1987) suggested samples of at least 50. A 
researcher planning to use the techniques and the type of models presented here should ideally 
collect data from a sample of 200 or more to avoid problems of convergence and/or validity of the 
chi-squares (Boomsma, 1982). 

Finally some authors, albeit a minority (e.g. Bookstein, 1986; Freedman, 1991), oppose any use 
of LISREL or equivalent programs for structural equation models in areas in which the theory is 
still rudimentary and/or imprecise. Notwithstanding these limitations, we believe that, used 
judiciously, SEM may be a powerful tool in the measurement of selection and in advancing the 
formulation of theoretical models of selection. 
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Appendix 
Data analysis in SEM 

Data are collected about the indicators and used to evaluate the model. Input for the statistical 
analysis is the variance-covariance matrix or the correlation matrix. The statistical analysis has two 
main functions. One function is to estimate the free parameters (path coefficients, loadings and 
error terms) of the model. This function is analogous to the estimation of regression coefficients in 
a multiple regression analysis. However, coefficients are frequently derived using the maximum 
likelihood method of estimation (rather than the least squares that is commonly used in multiple 
regression). The researcher can fix some of the parameters of the model while formulating the 
model. For example, there is no arrow leading from A to C in Fig. 2, indicating that the path 
coefficient for this relationship was fixed to zero. Other parameters may be fixed in order to define 
a scale for the latent variables. The researcher can accomplish this by fixing to unity one loading 
per latent variable. The fixed parameters are not estimated, but rather assumed to be true as part of 
the model. 

The second function of the statistical analysis is to determine how well the model fits the data. 
The researcher can use a chi-square statistic to determine that the likelihood of obtaining tile 
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data, given that the model is true, is not too low. If the likelihood is high enough, the researcher 
will not reject the hypothesis of 'good fit'. However, there are problems with using this test with 
small or large samples. We recommend instead using goodness-of-fit (GOF) indices. We discuss 
GOF indices further in the next section. 

As previously explained, a complete model includes a measurement model and a structural 
model. Anderson and Gerbing (1988, 1992) advocated a two-step approach starting with the 
measurement model. If  the measurement model fits the data well, indicating the satisfactory 
measurement of the latent variables, the researcher may proceed to fit the structural model. 

What allows the investigator to evaluate model fit? 
In a regression equation, variances and covariances will determine the regression coefficients and 
vice versa. However, no test of the 'regression model' is possible. In a typical SEM application, 
constraints imposed by the researcher on the relationship between variables by fixing parameters 
make such a testing possible. The reason for this is that a model that we constrain 'enough' (i.e. is 
overidentified) has more variances and covariances than there are parameters to be estimated. For 
example, we have an overidentified model in Fig. 2. In this model there are six observed variables 
that provide 21 variances and covariances. It is possible to show that we need to estimate only 14 
parameters (Fig. 11). The basis for testing this model or, indeed, any overidentified model, is the 
following. A model, including the estimated parameters, implies that the variances-covariances in 
the population have certain values. We can compare the model-implied variance-covariance matrix 
to its counterpart obtained from the data using the chi-square test mentioned earlier. In addition, we 
use the ratio xZ/df to evaluate the degree of fit: values of 2 or less are considered to indicate good 
fit (Carmines and McIver, 1981). Another method of evaluation is based on indices that quantify 
the distance between the obtained and the implied matrix. Examples of such indices are the 
goodness-of-fit index or GFI (J6reskog and S6rbom, 1989) and the normed comparative fit index 
or CFI (Bentler and Bonett, 1980; Bentler, 1990, 1992). 

Indices of fit provide continuous values ranging typically from 0 to 1. Indices of magnitude of 
above 0.8, preferably 0.9, are considered to indicate a reasonably good fit. 

While indices of fit deal with the overall fit of the model, the researcher is also interested in the 
estimates of particular parameters, such as path coefficients. For example, in the model presented 
in Fig. 1, of particular interest are the path coefficients from A to B and from B to C. Typically, we 
divide the estimated values for these coefficients by estimated standard errors to generate t-values. 
We use t-values to determine the precision of the estimated value as well as its statistical 
significance (J6reskog and S6rbom, 1989). 

Identification 
It is also possible that the number of parameters left free for estimation is so large (in relation to 
the information available) that no unique identification is possible. A simple example is an equation 

1 * 1 -k 

Figure 11. Free parameters in the structural equation model from Fig. 1 are represented by asterisks on the 
paths (for path coefficients) or in the tails (for additional variances). Note that one free parameter, the 
variance of A, is not explicitly represented in the figure. 
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Figure 12. A more relaxed model allowing for A to affect C directly. The model in Fig. 2 is 'nested' within 
the model presented here. 

with two unknowns ('free parameters'), var(y) = ~01 + t%, where var(y) represents the variance 
of an observed indicator and co 1 and to 2 are two unmeasured parameters. The equation constrains 
possible values for the unknowns but not enough to allow unique identification. In this case we 
have an unidentified model that has an infinite number of solutions (sets of values for free 
parameters). However, adding a second equation o~ 1 = o~ 2 ensures identification since both 
parameters have a unique solution in o~ l = 1.o 2 = var(y)/2. A similar, albeit more complex 
situation applies to SEM models. Unique estimates must be obtained for all model parameters. For 
example, including a path going from B back to A in the model presented in Fig. 2 will make the 
two path coefficients unidentified. There is not enough information to estimate the causal 
relationships in both directions. 

Comparisons of nested models 

Researchers can compare models through a process of freeing or fixing parameters. For example, 
we can 'relax' the model presented in Fig. 2 by freeing the path from A to C. We estimate the 
parameter in a new model rather than fix it to 0 (see Fig. 12). The model in Fig. 2 is nested within 
the model presented in Fig. 12. Estimation of an additional path will improve the fit of the model 
in Fig. 12 relative to the fit of  the model in Fig. 2. We obtain this improvement at the price of 
complicating the model by increasing the number of parameters. The two models can be compared 
using a chi-square test (based on the difference between the chi-squares corresponding to the two 
models - see Steiger et al. (1985)). If this difference is not significant, the researcher should retain 
the more parsimonious model presented in Fig. 2. For considerations of parsimony see Mulaic et 
al. (1989). 

Multi-group analyses (stacked models) 

It is often of interest to compare samples from different groups or populations. An example would 
be a splitting of the sample by sex into two groups. In these cases it is possible to estimate a model 
separately within each group. This approach will not, however, answer questions related to the way 
the model might differ in different populations. This objective can be accomplished using 
LISREL's ability to conduct multi-group analyses. In a multi-group analysis, the researcher stacks 
groups together and estimates a single model simultaneously for all groups. This procedure allows 
the use of constraints across groups to test for the ways in which the models differ. In Fig. 13, the 
model from Fig. 2 is presented as a stacked model using two groups. Heavy arrows indicate 
coefficients that we allow to differ. We constrain all other coefficients to have equal values in both 
groups. We compare this model (via nested models) with a second model in which all coefficients 
are allowed to differ. If the more constrained model did not fit the data more poorly, the conclusion 
would be that the two groups were invariant in their measurement model. 
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Figure 13. A stacked model for comparing two groups, males and females. Constraints imposed on the 
models allow for a statistical test of the similarity of the measurement models of the two groups. 

Respecification and modification indices 

Ideally, the user of SEM has a strong theory on which they can base the models. Models are more 
typically tentative and entertained as crude approximations. The researcher can use SEM to 
estimate and to evaluate these models and, on the basis of various indicators, propose a 
respecification of the model (e.g. Saris et al., 1987). Estimation proceeds on the new respecified 
models using the same set of data. The researcher can use modification indices provided by 
LISREL (J6reskog and S6rbom, 1989; S6rbom, 1989) to guide model respecification. A large 
( > 4) modification index for a fixed parameter of the model indicates that releasing the parameter 
to be freely estimated will significantly improve the model. 


