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Summary

Many popular methods of model selection involve minimizing a penalized function of the data
(such as the maximized log-likelihood or the residual sum of squares) over a set of models. The penalty
in the criterion function is controlled by a penalty multiplier λ which determines the properties of the
procedure. In this paper, we first review model selection criteria of the simple form “Loss + Penalty”
and then propose studying such model selection criteria as functions of the penalty multiplier. This
approach can be interpreted as exploring the stability of model selection criteria through what
we call model selection curves. It leads to new insights into model selection and new proposals on
how to select models. We use the bootstrap to enhance the basic model selection curve and develop
convenient numerical and graphical summaries of the results. The methodology is illustrated on two
data sets and supported by a small simulation. We show that the new methodology can outperform
methods such as AIC and BIC which correspond to single points on a model selection curve.

Key words: Akaike Information Criterion (AIC); Bayesian Information Criterion (BIC); Generalized
Information Criterion (GIC); linear regression; model selection; model selection curves.

1 Introduction

Suppose that we want to model the relationship between a response vector y = (y1, . . . , yn)T

and an n × p matrix X using a linear regression model. Index the columns of X by {1, . . . , p}
and then let α denote any subset of pα distinct elements from {1, . . . , p}. Let Xα denote the
n × pα matrix with columns given by the columns of X whose indices appear in α and let xT

αi
denote the ith row of Xα . We assume the columnrank of Xα is pα . Then, the linear regression
model α is

yi = xT
αiβα + σαεαi , i = 1, . . . , n, (1)

where βα is an unknown pα-vector of regression parameters, σα is an unknown spread parameter,
Xα and εα = (εα1, . . . , εαn)T are independent, and the εαi are treated as having location zero and
spread one. Let A denote a set of NA statistical models for the relationship between y and X .
(Both A and NA can depend on n but we suppress this dependence for notational simplicity.) The
purpose of model selection is to choose one or more models α from A with specified desirable
properties.

Model selection is a fundamental problem in the practical application of statistics so there
is an enormous and growing literature on the subject. We refer to Miller (2002) and Claeskens
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& Hjort (2008) for a general introduction to subset selection in regression modelling and for
an overview of model selection procedures. Many model selection strategies are based on the
minimization over α ∈ A of a loss function of the residuals plus a penalty term. The penalty
term usually includes a penalty multiplier λn which controls the weight given to the penalty and
determines the properties of the procedure.

In this paper we embed penalized loss functions into a more general framework of model
selection curves that are functions of the penalty multiplier. Our approach is to analyse the
whole curve rather than single points on the curve that is effectively the current strategy—see
Section 2. The analysis of model selection curves gives us new insights into modelling and
model selection, and allows us to select and order models subject to a particular property such
as consistency or efficiency.

In Section 2, we briefly review penalized loss function criteria for model selection consisting
of two additive terms, a description/prediction error component that we call the “Loss” term
and a model complexity component that we call the “Penalty” term. In Section 3, we define
what we mean by model selection curves. We show how to use the curves to capture the
main aim of a model selection strategy, and then define three new model selection criteria. In
Section 4, we introduce a framework for the selection of models using model selection curves.
We show how to use the bootstrap to enhance the insights gained from model selection curves
and discuss the presentation of the results. We then present the analysis of two real data sets
and establish the usefulness of model selection curves. In Section 5, we report some simulation
results, which demonstrate that analyzing model selection curves has the potential to outperform
model selection criteria, which use a single value for the penalty multiplier. We conclude the
paper with some brief remarks and conclusions in Section 6.

2 Review

In this paper, we consider model selection methods which choose models by minimizing an
expression that can be written as “Loss + Penalty”. In this Section, we discuss some of the many
possible choices for both of these terms. Of course, there are other methods such as those based
on adjusted R2 which are not of this form and which we do not consider here.

The ‘Loss’

The classical choice for the ‘Loss’ is minus twice the log-likelihood, −2ll. In the normal
case, this leads to n log{Sn(α)/n}, where Sn(α) = ∑n

i=1(ŷi (α) − yi )2 is the residual sum of
squares and ŷ(α) = Xα(X T

α Xα)−1 X T
α y are the fitted values from model α. If we assume further

that the variance σ 2
α = σ 2 is known and constant for all models containing the non-redundant

variables, then, up to constant terms, minus twice the log-likelihood is −2ll ∝ Sn(α)/σ 2. This
loss function is often applied when σ 2 is unknown by estimating σ 2 from a fixed, baseline
model α f . The fixed model typically has large columnrank pα f and is often chosen to be the
full model pα f = p which contains all p columns of X . However, we do not insist that the fixed
model be the full model because, when p is large compared to n, fitting the full model (and
other very large models) may involve undesirable overfitting. Other “Loss” functions which
can be used include log-quasilikelihoods, least squares, L1 and other loss functions optimized
in parameter estimation. Robust versions of these functions are of particular interest: see for
example, Ronchetti & Staudte (1994), Konishi & Kitagawa (1996), Müller & Welsh (2005,
2009).
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The ‘Penalty’

The ‘Penalty’ term can penalize different aspects of the models. The simplest penalty is of
the form λn fn(pα), where the penalty multiplier λn is a known, non-stochastic sequence and the
penalty function fn is a known, non-stochastic sequence of functions of the number of terms
in the model pα . For the simplest choice fn(p) = p, we can choose the Akaike Information
Criterion (AIC) penalty multiplier λn = 2 (Akaike, 1973; Mallows, 1973), the stepwise test
penalty multiplier λn = 4 or, more generally, λn ≡ λ (Shibata, 1984). The penalty multiplier
can additionally depend on pα f (as in the Risk Inflation Criterion (RIC) penalty multiplier
λn = 2 log(pα f ) of Foster & George, 1994), or on the sample size. The most common choices for
the latter are λn = c log log(n) (Hannan & Quinn, 1979), λn/n → 0 and λn/ log log(n) → ∞ as
n → ∞ (Bai et al., 1986; Rao & Wu, 1989); and the well-known Bayesian Information Criterion
(BIC) penalty multiplier λn = log(n) (Schwarz, 1978) etc. There are a large number of other
choices of fn(p): perhaps the best known of these is fn(p) = (p + 1)/(n − p − 2) used with
λn = 2 by Sugiura (1978) and Hurvich & Tsai (1989).

Optimality

The penalties discussed earlier are derived under different optimization frameworks: For
example, the AIC penalty 2pα minimizes the Kullback–Leibler distance between the model
and the true density (Akaike, 1973) and is minimax optimal for estimating the regression
function (Yang, 2005); the RIC penalty 2 log(pα f )pα asymptotically minimizes the maximum
predictive risk inflation due to selection when the columns of X are orthogonal; and the BIC
penalty log(n)pα optimizes the posterior probability of the model. Consistent selection of the
true model, the model that actually generated the data, is also a useful criterion. The requisite
asymptotic theory is well presented in Shao (1997) or Claeskens & Hjort (2008). If the true
model is a linear regression model contained in the data we have observed (i.e. it is of the form
(1)), we denote it by α0. We usually require that α0 ⊆ α f = {1, . . . , pα f } because this ensures
that estimates produced by the fixed model are also valid estimates under the true model. If pα0

is fixed, we get consistent model selection when λn → ∞ such that λn/n → 0 as n → ∞ and
we do not when λn → c for some constant c. On the other hand, if pα0 → ∞ then the results
are reversed. These results confirm the empirical experience that penalties with constant λn = c
(like the AIC penalty) produce methods which tend to select larger models and penalties with
λn → ∞ appropriately (like the BIC penalty) tend to choose smaller models, at least once n
is large enough to ensure λn > c. In this sense, the optimal choice of penalty depends on the
true model. Yang (2005) proved that we cannot find a λn which is able to achieve an adaptive
compromise between the AIC penalty and the BIC penalty in the sense of achieving both
consistency and minimax optimality. This result can be misinterpreted to imply that the AIC or
BIC penalties are the only good choices for the penalty but this is not the case. As pointed out
by Casella & Consonni (2009), Yang’s result does not mean that the AIC or BIC penalties are
the only good choices for the penalty when the power is not close to one and in general it is still
well worth considering other choices.

Other ‘Penalty’s’

Other forms of penalty can also be considered, for example we can penalize the parameters
themselves using fn(βα). The best known of these include the ridge penalty fn(β) = ∑p

j=1 β2
j ,

the Lasso penalty fn(β) = ∑p
j=1 |β j | and the smoothing spline penalty. Other penalties include

the Takeuchi Information Criterion (TIC) penalty (Takeuchi, 1976), the GIC penalty (Konishi &
Kitagawa, 1996), the robust C p penalty (Ronchetti & Staudte, 1994), the SIC penalty (Sugiyama
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& Ogawa, 2001), etc. These penalties are generally related to the choice of ‘Loss’ and so tend
to be used in rather specific criteria.

Relationship to Resampling Procedures

Cross validation and the bootstrap can be used either to measure the uncertainty of estimated
best models obtained from other model selection procedures or as model selection procedures in
their own right. Shao (1993, 1996, 1997) considered selection procedures using cross validation
in which the model is fitted to m ≤ n observations and evaluated on the remaining n − m
observations and the m-out-of-n bootstrap in which the model is fitted to m observations
sampled independently with replacement from the data and then evaluated on the original n
observations. He showed that the asymptotic behaviour of these procedures is analogous to that
of the penalized loss function procedures: leave-one-out cross validation (m = n − 1) and the
m = n bootstrap behave asymptotically like procedures with the AIC penalty (for leave one-out
cross validation, see also Li, 1987) while cross validation and the m-out-of-n bootstrap with
m → ∞, m/n → 0 as n → ∞ behave asymptotically like procedures with the BIC penalty.
Ronchetti et al. (1997) robustified the cross validation model selection procedure and Müller &
Welsh (2005) presented a robust bootstrap model selection criterion. Müller & Welsh (2005) also
proposed using stratified resampling to control the proportion of outliers in the bootstrap samples
and ensure that these samples mimic the original data better. This is achieved by stratifying the
data (so that observations with residuals in the tails of the residual distribution are placed in
upper and lower tail strata and the remaining observations in other strata) and then resampling
independently within each stratum (for more details see Section 3 of Müller & Welsh, 2005).

3 Model Selection Curves

The approach we now develop can be applied to general “Loss + Penalty” criteria but it is
helpful, for definiteness, to fix attention on a particular criterion. We consider the generalized
information criterion of Shao (1997) that is equivalent to

Mn(λ; α) = Sn(α)

σ̂ 2
n

+ λpα, λ ≥ 0, α ∈ A, (2)

where Sn(α) = ∑n
i=1(ŷi (α) − yi )2 and σ̂ 2

n is an estimator of the spread parameter based on
the residuals from the fixed model α f . The generalized information criterion (GIC) is applied
by choosing a specified function λn of n and then selecting the model α̂(λn) that minimizes
Mn(λn; α) over α ∈ A. In a slight abuse of terminology, we refer to GIC with λ = 2 as AIC and
GIC with λ = log(n) as BIC.

From a practical point of view it is important for a model selection procedure to be stable or
at least for a user to be aware when the procedure is unstable. There are various ways to define
stability but a key idea is that small changes should have only small effects. Formally, we say
that a model selection procedure is unstable when we select a model α̂(λn) with dimension pα̂(λn )

but, for some small δ > 0, we select α̂(λn + δ) with smaller dimension pα̂(λn+δ) < pα̂(λn ) and
stable otherwise. To inform ourselves about stability, we investigate what happens to a model
selection criterion in a neighborhood of λn by using model selection curves.

From the definition (2), for fixed α, Mn(λ; α) is a linear function of λ with intercept Mn(0; α) =
Sn(α)/σ̂ 2

n and slope pα , both depending on α. Suppose that Mn(0; α) takes on m ≤ NA different
values so we can reduce A to a set A∗

m = {α∗
1 , . . . , α

∗
m} of the m smallest models that correspond

to these m baseline values. (The largest model in A (which is often the fixed model α f )
appears as α∗

1 when the GIC criterion (2) is used but not necessarily if we use other criteria.)
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Figure 1. An artificial example illustrating the construction of model selection curves. Panel (a) shows m = 4 curves Mn(λ; α)
which correspond to models {α∗

1 , α∗
2 , α∗

3 , α∗
4 }; Panel (b) shows the corresponding rank functions for each model; Panel (c)

shows the four rank selection curves L ( j)(λ;A); Panel (d) shows the model selection curve and the definition of the three
catheti. The values of λ for AIC and BIC are indicated by labelled vertical lines on the plots.

Figure 1(a) shows an artificial example with m = 4. The four functions Mn(λ; α∗
j ), j = 1, . . . , 4

are plotted as straight lines against λ. The standard approach to model selection of fixing the
penalty multiplier corresponds to drawing a vertical line through λ and then ordering or ranking
the m models by the order in which the m lines Mn(λ; α∗

j ) cross the vertical line. Thus, in
Figure 1(a), for λ = 2 (corresponding to AIC), the models are ranked (α∗

1 , α
∗
2 , α

∗
3 , α

∗
4) and

GIC = AIC selects α∗
1 , while for λ = log n (corresponding to BIC), the models are ranked

(α∗
2 , α

∗
3 , α

∗
4 , α

∗
1) and GIC = BIC selects α∗

2 . We can carry out this ranking process for each λ

to show how the rank of a model α changes as λ changes. Formally, for each λ ≥ 0, let the
rank function R(λ; α) = rank(Mn(λ; α)) be the rank of Mn(λ; α) for α ∈ A∗

m . The rank functions
for each of the four models in the artificial example are shown in Figure 1(b). They are step
functions, pairs of which have jumps at the values of λ at which the corresponding lines Mn(λ; α)
cross.
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We define k rank model selection curves L (k)(λ;A) for all λ where no ties of the m values
{Mn(λ; α∗

j )} occur by

L (k)(λ;A) = max{Mn(λ; α); α ∈ Am ∧ R(λ; α) ≤ k}, (3)

and extend the definition to points at which ties occur simply by ensuring that L (k)(λ;A) is
continuous over the entire range of λ > 0. The four rank selection curves for the artificial
example are shown in Figure 1(c). The 1 rank model selection curve is the lower enveloping
curve that can be defined equivalently as

L (1)(λ;A) = min{Mn(λ; α); α ∈ A}, (4)

and we refer to it simply as the model selection curve for convenience. The model selection
curve for the artificial example is shown in Figure 1(d). We can interpret L (1)(λ;A) as the entire
solution path of the model selection criterion as a function of λ.

REMARK 1. Rank selection curves have some nice geometric properties. Here we mention just
two.

i. The 1 rank selection curve L (1)(λ;A) is a convex polygon with at most #(pα) − 1 knot points,
where #(pα) is the number of distinct values of pα for α ∈ A; by construction of the GIC
criterion in (2) all NA curves are lines with slope pα , so the number of distinct values of pα

determines the maximum number of distinct slopes.
ii. The 2 rank selection curve L (2)(λ;A) is a piecewise convex polygon; it is bounded from

below by L (1) so this is a direct consequence of the previous remark. In particular L (2)(λ;A)
is a convex polygon on consecutive points of L (2)(λ;A) ∩ L (1)(λ;A).

Remark 1(i) implies that, regardless of the size of A or A∗
m , at most #(pα) ≤ p models (which

we call the candidate models) can appear on the model selection curve. As the GIC function
Mn(λ; α) has the same slope for all models with the same size pα , the only model from each
size class which can appear on the model selection curve is the model with smallest Mn(0; α).
The candidate models can therefore be identified by computing Mn(0; α) and then ranking the
models at λ = 0. Limiting the range of λ values (as we need to) further reduces the number of
candidate models. Thus the linear structure of Mn(λ; α) greatly simplifies the computation of
model selection curves. With more complicated criteria than (2), we may need to carry out the
computations on a grid of λ values.

For each λn , GIC selects the model α ∈ A∗
m for which Mn(λn; α) = L (1)(λn;A), or equivalently

for which R(λn; α) = 1. This can be written in the form

α̂ = argmin
α∈A

∫
ηα(R(λ; α)) d	n, (5)

where ηα(x) = 1 − 1{x = 1} and 	n is the Dirac measure that puts mass 1 on the point λ = λn .
We can use the whole model selection curve rather than a single point on it by replacing the Dirac
measure for the penalty multiplier λ in (5) by other measures such as the uniform distribution
on [λmin

n , λmax
n ]. Geometrically, this measure selects a model α that corresponds to the longest

cathetus (LC) in the truncated polygon L (1)(λ;A), where the truncation is according to the
interval [λmin

n , λmax
n ]. (A cathetus is a side of a right angle triangle adjacent to the right angle:

here the relevant cathetus is the horizontal edge of the right angle triangle whose hypotenuse
is a segment of L (1)(λ;A). For the artificial example, the 3 catheti are shown in Figure 1(d).)
The longest edge (LE) in the truncated polygon (i.e. the length of the hypotenuse in the right
angle triangles from which the catheti are extracted) corresponds to a philosophy that leans
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towards larger models than models selected by the LC criterion, that is the LC criterion is more
parsimonious than LE. The model selected by the longest edge criterion is

α̂ = argmin
α∈A

∫ √
1 + p2

α f
−

√
1 + p2

α · 1{R(λ; α) = 1} dλ. (6)

A somewhat different selection procedure that is sequential and adaptive in nature is the first
substantially long cathetus (FSLC) method, which selects the largest model that corresponds to
an edge of the truncated polygon L (1)(λ;A) with minimal cathetus length of say (c/4) log(n), c ∈
N, if one exists, and selects the model selected by the LC criterion otherwise.

Under a mild condition on the penalty measure used to define the LC and longest edge criteria,
we can show that they are consistent.

LEMMA 1. Let pα0 be fixed, assume ξn < λmax
n satisfy ξn → ∞ and λmax

n /n → 0 as n → ∞,
and let the penalty measure satisfy �n([λmin

n + ξn, λ
max
n ]) → 1. Then the LC and LE selection

criteria are consistent for α0.

Proof. For pα0 fixed, GIC is consistent when λn → ∞ and λn/n → 0 as n → ∞ so it is
consistent for λn = λmin

n + ξn and for λn = λmax
n . Thus,∫ λmax

n

λmin
n

(1 − 1{R(λ; α0) = 1}) d�n ≤
∫ λmin

n +ξn

λmin
n

1d�n +
∫ λmax

n

λmin
n +ξn

(1 − 1{R(λ; α0) = 1}) d�n.

The first term is op(1) and the second is bounded from above by∫ λmax
n

λmin
n +ξn

(1 − 1{R(λmin
n + ξn; α0) = 1}) d�n +

∫ λmax
n

λmin
n +ξn

(1 − 1{R(λmax
n ; α0) = 1}) d�n,

which is op(1). Similarly, for models α �= α0,
∫ λmax

n

λmin
n

(1 − 1{R(λ; α0) = 1})d�n = 1 + op(1). It
follows that LC is consistent and this implies the consistency of LE. �

The lemma applies for example, when �n is the Lebesgue measure, λmin
n = 0, ξn = log log n

and λmax
n = 4 log(n). The result follows from the fact that GIC with the Hannan–Quinn

penalty multiplier ξn and GIC with the (scaled) BIC penalty multiplier λmax
n are consistent

and log log n/ log n = o(1).
We can introduce a wide range of new model selection criteria based on

L (1)(λ;A), . . . , L (m)(λ;A), R(λ; α) or R−1(1; α), which gives the values of λ for which α

is the selected model. In addition, we may be able to gain insight by comparing these criteria
based on different measures of description, such as other more robust measures. We do not
pursue these possibilities here.

As with any model selection criterion, if s columns of X are part of any model that makes
sense, then those s columns can be forced to be part of all models under consideration in A.
In this case, we may reduce all penalties by multiplying λn by the number of free parameters
pα − s instead of pα , making the true model easier to detect.

4 Enhancing and Using Model Selection Curves

In this section we discuss the use of the bootstrap to enhance model selection curves L (1)(λ;A),
useful ways of presenting the results and two examples illustrating the use of the methodology.

The model selection curve L (1)(λ;A) is usefully summarized by tabulating the catheti and their
absolute and relative length on the interval [λmin

n = 0, λmax
n = 4 log(n)]. The upper truncation

point is arbitrary but is chosen to contain the common choices of λn shown in Section 2. For a
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cathetus, we denote the x-coordinate of the lower endpoint lα and the x-coordinate of the upper
endpoint uα so that the length of the cathetus is δα = uα − lα and the relative length is

ωα = δα

λmax
n − λmin

n

= δα

4 log(n)
. (7)

Both δα and ωα measure the range of values of λ over which the model selection procedure
selects the same model and hence present evidence that the model generating this cathetus is the
most stable choice of model.

We use the bootstrap to estimate model detectability as a function of the penalty multiplier
by estimating the probability that model α ∈ A corresponds to the point on the model selection
curve at λ. We do this by calculating the model selection curve L (1)(λ;A) for stratified bootstrap
samples from the observed data. We prefer using stratification based on the residuals from the
fixed model α f because it preserves the robustness properties of estimators (see e.g. Müller &
Welsh, 2005, 2009). The model selection curve for a bootstrap sample can include models which
were not represented on the model selection curve for the observed data so bootstrapping can
expand the number of candidate models. This occurs because the ranking at λ = 0 of the GIC
criterion function (2) can change in different bootstrap samples, allowing additional models to
appear on bootstrap model selection curves. In our experience, this expansion is small and the
total number of candidate models is usually very small, as illustrated in our simulation study in
Section 5.

The empirical bootstrap estimate π∗(λ; α) of the probability of selecting model α when we
use the penalty multiplier λ can be used to compute π∗(α) = ∫ λmax

n

λmin
n

π∗(λ; α) d�n , where for
simplicity �n is U(λmin

n , λmax
n ). Here π∗(α) is a bootstrap estimate of the marginal probability

of selecting model α. A comparatively large ωα does not imply a large π∗(α) and ωα = 0 (i.e.
model α does not produce an edge on the model selection curve) does not imply that model α is
not a possible optimal model, unless π∗(α) is also close to zero. The bootstrap probability π∗(α)
is somewhat related to the coverage probability of a confidence interval in classical statistical
estimation as it approximates the probability that a given model α ∈ A generates an edge on the
model selection curve. As not all models that have large π∗(α) are part of the model selection
curve, we consider all models with π∗(α) > 4%, allowing at most 0.04−1 − 1 = 24 additional
models that do not appear on the model selection curve, although based on our experience it is
very unlikely that more than three to five additional models have to be taken into account. (It
is tempting to interpret π∗(α) < q as the critical region of a level q test of the hypothesis that
α is the best model in A but this is not true in a mathematical sense.) If a model has clearly
the largest π∗(α), particularly if it is greater than 50%, then this is a strong indication that for
λ ∈ [λmin

n , λmax
n ], this is the best model.

Aggregating π∗(λ; α) or π∗(α) over models with the same dimension or over models that
have at least one common variable gives access to diagnostic measurements for the best model
dimensionality and for statements regarding the inclusion or exclusion of particular variables
in the final model. More precisely by aggregating over dimension j = 1, . . . , pα f we mean
calculating

π∗d
j (λ) =

∑
α:pα= j

π∗(λ; α) or π∗d
j =

∑
α:pα= j

π∗(α),

and by aggregating over a particular variable k = 1, . . . , pα f we mean calculating

π∗v
k (λ) =

∑
α:α�k

π∗(λ; α) or π∗v
k =

∑
α:α�k

π∗(α).
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There are many ways of visualizing information from a model selection curve. We have
found the following four plots of particular value for (1) determining a single best or a few
candidates for the best model, (2) determining the optimal model dimension, and (3) ranking
and quantifying the importance and contribution of variables to the final list of best model
candidates.

(a) Rank plot: R(λ; α) against λ for the candidate models α.
(b) Single model plot: π∗(λ; α) against λ for the candidate models α and other models which

have π̄∗
α > 4%.

(c) Dimensionality plot: π∗d
j (λ) against λ for all j.

(d) Variable detection plot: π∗v
k (λ) against λ for all k.

The variable detection plot is like the Lasso coefficient path plot (see e.g. Hastie et al., 2001).
We illustrate the use of these plots in two examples.

4.1 Cement Data

We first consider the well-known data of Woods et al. (1932) on the heat generated during
the hardening of Portland cement. Following Hald (1952; pp. 635–649), the heat generated is
traditionally modelled as a function of four chemicals; we refer to Piepel & Redgate (1998) for
an analysis based on the original data that uses more than four explanatory variables. We use
the same n = 13 observation vectors as shown in Table 5.1 in Flury & Riedwyl (1988) with
components heat evolved (Y ), tricalcium aluminate (x1), tricalcium silicate (x2), tetracalcium
alumino ferrite (x3), and dicalcium silicate (x4). For simplicity, we denote the intercept vector
as x0 and, as we include the intercept in all our models, omit it when we describe a model.
Thus {2, 4} is shorthand for {0, 2, 4} etc. With λmax

n = 4 log(13), three models appear on the
model selection curve, α∗

1 = α f = {1, 2, 3, 4}, α∗
2 = {1, 2, 4} and α∗

3 = {1, 2}. Three further
models appear frequently, i.e. they have π∗(α) > 0.04. There are only 16 possible models
with an intercept so we include all models with π∗(α) > 0.01 in the diagnostic Table 1. The
observations were assigned to three strata according to the rank of their absolute residual from
the fixed model {1, 2, 3, 4}: the first five central residuals were placed in the first stratum and
the four intermediate and the four most extreme residuals were placed in strata two and three,
respectively. We carried out 1,000 bootstrap replications.

Based on Table 1, the best model is {1, 2} which is also the model selected by AIC and BIC. It
is interesting to note that the full model has little support. The model {1, 2, 4} is the least likely
among the models with three slope parameters but it appears on the model selection curve while
{1, 2, 3} does not. According to the bootstrap, {1, 2, 3} is five times more likely than {1, 2, 4}.
We conclude that a model with dimension four is not as good as one with dimension three.

Table 1
Diagnostic table for Hald data.

Model α pα lα uα δα ωα π∗(α)

{1, 2, 3, 4} 5 0 0.01 0.01 0.00 0.05
{2, 3, 4} 4 - - - - 0.04
{1, 3, 4} 4 - - - - 0.03
{1, 2, 4} 4 0.02 1.66 1.64 0.16 0.02
{1, 2, 3} 4 - - - - 0.11
{2, 4} 3 - - - - 0.02
{1, 4} 3 - - - - 0.21
{1, 2} 3 1.67 10.26 8.59 0.84 0.53
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Figure 2. Diagnostic plots for cement data: (a) rank plot; (b) single model plot; (c) dimensionality plot; (d) variable detection
plot.

This is supported by the aggregated bootstrap probabilities by dimension which provide clear
evidence that the best model should have dimension 3 (i.e. two slope parameters):

π∗d
5 = 0.05, π∗d

4 = 0.19, π∗d
3 = 0.75, π∗d

2 = 0.00, π∗d
1 = 0.00.

The aggregated bootstrap probabilities by variable reveal that x1 and x2 are clearly much more
important than x3 and x4, confirming the chosen best model:

π∗v
1 = 0.94, π∗v

2 = 0.75, π∗v
3 = 0.24, π∗v

4 = 0.36.

The four diagnostic plots in Figure 2 support these findings. We make several comments
about the plots.

(a) Rank plot (top left): Plots the rank function R(λ; α) against λ for models α on the model
selection curve and shows the catheti. The figure also shows that, for the full model,
R(λ; {1, 2, 3, 4}) is almost linearly increasing in λ, that for model {1, 2}, R(λ; {1, 2}) linearly
decreases until it plateaus at minimal rank for λ ≥ 1.67. Model {1, 2, 4} almost behaves as
the full model is expected to behave, that is to have minimal rank on [0, c], 0 < c < 2 and
then to increase until all smaller models have smaller rank.

(b) Single model plot (top right): Plots the bootstrap probability π∗(λ; α) against λ for models
α on the model selection curve or with π∗(α) > 4%. It is interesting to note that model
{1, 2} has largest π∗(λ; α) slightly before it appears on the model selection curve and is
considerably larger on the entire interval [1.67, λmax

n ]. Out of the models that appear on the
model selection curve, {1, 2} has the largest bootstrap probability for λ’s as small as around
0.7.
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(c) Dimensionality plot (bottom left): Plots π∗d
j (λ) against λ for all j. The dimensionality plot

reveals that a model with dimension 2 is the natural dimension if the main purpose is to
choose a model with good predictive ability. On the other hand a model of dimension three
could be of some additional value if the main focus is on the description of the data. We base
this statement on the fact that for λ < 2 a model of dimension three is more or approximately
as likely as a model of dimension two.

(d) Variable detection plot (bottom right): Plots π∗v
k (λ) against λ for all k. It is interesting that x4

becomes more important than x3 for large λ suggesting that it is more important for prediction
but x3 is better for description. This is underlined by the fact that π∗({1, 2, 3}) = 11% even
though this model does not appear on the model selection curve. The plot demonstrates
clearly that both variables, x1 and x2 have excellent description and prediction qualities
because their bootstrapped probabilities are almost constantly close to 1 and 0.8, respectively,
over the full range of relevant λ’s.

4.2 Physical Measurements

In order to demonstrate the usefulness of our diagnostic tools when the number of possible
models is large, say greater than 1,000, we analyze the physical measurement data from the
Australasian Data and Story Library. The data together with a brief description are available from
http://www.statsci.org/data/oz/physical.html. The weight (Y ) of n = 22 male
subjects is potentially explained by 10 different physical measurements such as the maximum
circumference of the forearm (x1) or the maximum circumference of the head (x10). As in the
cement data example, we denote the intercept vector by x0 and omit the intercept when specifying
models. We consider all 210 = 1, 024 possible linear regression models.

With λmax
n = 4 log(22), nine models appear on the model selection curve but five of these

are supported by catheti with length smaller than 1. Only five models appear frequently on the
bootstrapped model selection curves with π̄∗

α > 0.04: two of these models are not on the model
selection curve for the observed data. Model {1, 6} is selected most frequently in the stratified
bootstrap data with an empirical selection probability of 9.0%. This low value means that the
determination of a single best model for this data set is, to say the least, challenging and more
likely not sensible. In Table 2 we present the results for the 11 candidate models, an initial
reduction of models by almost a factor of 100. The observations were assigned to four strata
according to the rank of their absolute residual for the fixed model {1, . . . , 10}: the first six and
second six central residuals were assigned to two strata of size 6 each and the 10 most extreme
residuals were assigned to two further strata of size 5 each. The number of bootstrap replications
was again 1,000.

Table 2
Diagnostic table for physical measurement data.

Model α pα lα uα δα ωα π∗(α)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 11 0 0.01 0.01 0.001 0.030
{1, 2, 3, 4, 6, 7, 8, 9, 10} 10 0.02 0.11 0.09 0.009 0.002
{1, 3, 4, 6, 7, 8, 9, 10} 9 0.12 0.34 0.22 0.018 0.001
{1, 3, 6, 7, 8, 9, 10} 8 0.35 0.90 0.55 0.044 0.001
{1, 6, 7, 8, 9, 10} 7 0.91 1.01 0.10 0.001 0.005
{1, 6, 7, 9, 10} 6 1.02 2.28 1.26 0.102 0.016
{1, 6, 7, 9} 5 2.29 5.21 2.92 0.236 0.048
{4, 6, 8} 4 - - - - 0.045
{1, 6} 3 5.22 11.32 6.10 0.494 0.090
{5, 6} 3 - - - - 0.071
{1} 2 11.33 12.36 1.03 0.0.083 0.044
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Figure 3. Diagnostic plots for physical measurement data: (a) rank plot; (b) single model plot; (c) dimensionality plot; (d)
variable detection plot.

From Table 2, the best candidate models have dimension between 6 and 3 that enables a
further reduction to five candidate models only. This is supported by the aggregated bootstrap
probabilities by dimension which provide further evidence that the best model should have
dimension 3–5 (i.e. 2–4 slope parameters):

π∗d
11 = 0.030, π∗d

10 = 0.032, π∗d
9 = 0.034, π∗d

8 = 0.053, π∗d
7 = 0.059,

π∗d
6 = 0.096, π∗d

5 = 0.135, π∗d
4 = 0.230, π∗d

3 = 0.256, π∗d
2 = 0.065.

The aggregated bootstrap probabilities by variable reveal that x6 has the strongest claim (π∗v
6 =

83.9%) to be included in the selected model, followed by x1 with π∗v
1 = 51.6%:

π∗v
1 = 0.516, π∗

2 = 0.195, π∗v
3 = 0.265, π∗v

4 = 0.249, π∗v
5 = 0.370,

π∗v
6 = 0.839, π∗v

7 = 0.418, π∗v
8 = 0.394, π∗v

9 = 0.336, π∗v
10 = 0.277.

The four diagnostic plots in Figure 3 support these findings and provide deeper insight.

(a) Rank plot (top left): R(λ; α) against λ for models α on the model selection curve. When
there is a large number of models, the plot can be difficult to read. The full model has a
rank of more than 50 for λ around 1 and consequently quickly disappears from the relevant
section of this plot. The same is true for the second and third largest models. The fourth
largest model stays a little longer in the relevant range having a rank around 10 for the AIC
λ value of 2 and a rank around 20 for the BIC λ value of log(n) = 3.091. The fifth largest
model shows similar behaviour. This provides evidence that models of dimension larger than
seven and possibly even six are clearly too large. The model chosen by the BIC {1, 6, 7, 9}
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has low rank for λ as small as 1.5 and up to λ = 2.5 log(n). The model of dimension two is
not even in the top fifty for the AIC λ and enters the picture only later with low rank after
the BIC λ value.

(b) Single model plot (top right): π∗(λ; α) against λ for models α on the model selection curve
or with π∗(α) > 4%. Assuming that a model of dimension two is too small, we can neglect
the additional model {5, 6} and see that there are really two strong contenders, namely the
model of dimension four {1, 6, 7, 9} and the model of dimension three {4, 6, 8}.

(c) Dimensionality plot (bottom left): π∗d
j (λ) against λ for all j. We see that models of dimension

three to five dominate the most important range of λ, i.e. from the AIC value to about twice
the BIC value. A model of dimension three is too small considering that the best model,
{4, 6, 8}, is not well-embedded into the larger models as it has only x6 in common with the
best model of dimension four. Therefore we suggest restricting the natural dimension of the
best model to dimension four or five.

(d) Variable detection plot (bottom right): π∗v
k (λ) against λ for all k. Variable x6 is clearly the

dominating variable. Variable x7 is very important for description but less important than
x1 for prediction. The variables x5 and x1 as well as x8 and x9 seem to be in competition
with each other, but the latter pair seems to be better if x6 is included in the model. The
variables x2, x3, and x4 seem to be the least important variables as can be seen from the
aggregated bootstrap probabilities by variable. Variable x10 is excellent for description but
least important for prediction.

5 Simulations

For comparison with other published results, we ran a simulation study based on the solid
waste data of Gunst & Mason (1980). The same settings were used in Shao (1993, 1996, 1997),
Wisnowski et al. (2003), and Müller & Welsh (2005) in the context of model selection. Thus,
we consider the model

yi = β0x0i + β1x1i + β2x2i + β3x3i + β4x4i + εi ,

where i = 1, . . . , 40, the errors εi are independent and identically distributed standard normal
random variables, x0 is the column of ones, and the values for the solid waste data variables
x1, x2, x3, and x4 are taken from Shao (1993, Table 1). These explanatory variables are highly
correlated as can be seen from their estimated Pearson correlation matrix

ĉorr(X{1,...,4}) =

⎛
⎜⎜⎜⎝

1.00 0.91 0.93 0.89

0.91 1.00 0.92 0.79

0.93 0.92 1.00 0.90

0.89 0.79 0.90 1.00

⎞
⎟⎟⎟⎠ .

We considered models with regression parameter β = (2, 9, 6, 4, 8)T , β = (2, 9, 0, 4, 8)T , β =
(2, 0, 0, 4, 8)T and β = (2, 0, 0, 4, 0)T . Hence the dimension of the true model varies between 5
and 2. In each of the 4 × 250 Monte Carlo simulation runs, we calculated the diagnostic table for
the model selection curve, the relative length ωα , the empirical bootstrap probability π∗(α) for all
models with π∗(α) > 4%, and the aggregated bootstrap probability over model dimensionality
π∗d

j . The number of bootstrap replications is again chosen to be 1,000. The observations were
assigned to four strata of size 10 according to the rank of their absolute residual for the fixed
model {1, 2, 3, 4}. With our R code the calculation of one simulation run takes of the order
of 2–4 minutes (iMac, 2 GHz Intel Core 2 Duo, 2 GB 667 RAM): the time is influenced
mostly by the number of models NA, the number of evaluated λ’s, and the number of bootstrap
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Table 3
Absolute and relative frequencies based on 250 simulation runs: (a) the true model appears on the model selection curve
M(1); (b) the bootstrap probability for α0 satisfies π∗(α0) > 4%.

(a) α0 ∈ M(1) (b) π∗(α0) > 4%.

True Model α0 (Detectability) abs rel abs rel

{1, 2, 3, 4} 250 1.000 250 1.000
{1, 3, 4} 247 0.988 250 1.000
{3, 4} 250 1.000 250 1.000
{3} 250 1.000 250 1.000

Total 1,000 0.997 1,000 1.000

Table 4
Absolute and relative selection frequencies of the true model for some selection criteria: (a) AIC; (b) BIC; (c) longest cathedus;
(d) maximal bootstrap probability max π∗(α).

(a) AIC (b) BIC (c) LC (d) max π∗(α)True Model α0
was selected abs rel abs rel abs rel abs rel

{1, 2, 3, 4} 249 0.996 247 0.988 232 0.928 245 0.980
{1, 3, 4} 221 0.884 235 0.940 223 0.892 234 0.936
{3, 4} 175 0.700 225 0.900 248 0.992 235 0.940
{3} 153 0.612 214 0.856 246 0.984 236 0.944

Total 798 0.798 921 0.921 949 0.949 950 0.950

replications. We can only report some condensed information from this simulation study here,
but all 1,000 diagnostic tables and the R code used in our simulation are available from the
authors.

The first interesting result is that, in some of the simulation runs, the true model does not
produce an edge on the model selection curve but is still identified as an important model by
satisfying π∗(α0) > 4%. With the least squares estimator, this can only happen for true models
smaller than the fixed model.

In Table 3, we report the frequency with which selected models were detected. In all 1,000
simulation runs, the true model has π∗(α0) > 4%. In three simulation runs the true model
{1, 3, 4} does not appear on the model selection curve: For runs 14, 69, and 150, the π∗(α0)
values are 5.06%, 28.12%, and 11.4%, respectively. This means that a model other than the true
model can have the largest π∗(α) for some realizations.

We report in Table 4 the frequency with which selected models were detected by AIC, BIC,
the LC criterion and the criterion based on maximizing π∗(α).

The simulation shows that using π∗(α) as a single criterion has the potential to outperform
fixed λn GIC criteria even for standard situations (normal errors, least squares estimators). The
LC criterion performs particularly well if the number of parameters in the true model are half
or less than the number of parameters in the full model. As the frequencies in Table 4 suggest,
there are a number of simulation runs where, particularly for the true model {3}, neither AIC
nor BIC select the true model but both LC and π∗(α) select the correct model.

Table 5
Diagnostic table for simulation run 1 for true model {3, 4}.

Model α pα lα uα δα ωα π∗(α)

{1, 2, 3, 4} 5 0 0.16 0.16 0.01 0.019
{2, 3, 4} 4 0.16 3.23 3.07 0.21 0.255
{3, 4} 3 3.23 14.76 11.53 0.78 0.673
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Table 6
Diagnostic table for simulation run 12 for true model {3}.

Model α pα lα uα δα ωα π∗(α)

{1, 2, 3, 4} 5 0 0.00 0.00 0.00 0.050
{1, 2, 3} 4 0.00 1.96 1.96 0.13 0.180
{2, 3} 3 1.96 4.44 2.48 0.17 0.133
{3, 4} 3 - - - - 0.041
{3} 2 4.44 14.76 10.32 0.70 0.519

We report for illustration the diagnostic tables for two typical simulations runs, namely run 1
for the true model {3, 4} (Table 5) and run 12 for the true model {3} (Table 6). In Table 5, there
were no additional models with π∗(α) > 4% whereas, in Table 6, the four models on the model
selection curve were supplemented by an additional model, namely {3, 4} with π∗({3, 4}) just
over 4%.

The conclusion from this simulation study is that, in most runs, the true model is clearly chosen
as the best model in that π∗(α0) is larger than 50% and all the other bootstrap probabilities are
small. This outcome is reflected in the model having a large corresponding edge on the model
selection curve. A small fraction of the simulation runs show inconclusive diagnostic tables.
In those cases there are typically two or at most three remaining candidate models that can be
analyzed further.

6 Conclusions

In this paper, we have embedded model selection criteria used in methods like AIC and BIC
inside a model selection curve which enables us to study the criterion function as a function of
the penalty multiplier instead of simply at single values of the penalty multiplier. This approach
allows us to explore the stability of criterion functions and hence selected models. It leads to
new insights into model selection and new proposals on how to use model selection curves to
select models. We used the bootstrap to enhance the basic model selection curve and developed
convenient numerical and graphical summaries of the results. We illustrated the methodology
on two data sets and in a small simulation study.

We argue that model selection curves are both philosophically and practically important. In
the first case, when we select a particular point on a model selection curve (as when we use
AIC, BIC, etc.), we obtain a solution that is explicitly or implicitly linked to a specific point
of view on predictive versus descriptive performance. Using the whole curve is less tied to
a specific viewpoint and, in fact, when enhanced by bootstrapping, gives useful insight into
these tradeoffs. In the second case, using the whole curve with enhancement can outperform
single point methods. Simulation examples can be constructed to show the superiority of model
selection criteria based on the model selection curve over GIC criteria, independent of the choice
of the penalty multiplier.

Finally, we have restricted our discussion to particular (linear regression) models and a
particular model selection method (GIC) for definiteness and simplicity but it is clear that the
methodology can be extended to other cases. In particular, any model selection method which
involves minimizing, over a set of models, a penalized function of the data in which the penalty
is controlled by a penalty multiplier can be embedded in an appropriate model selection curve,
and this opens up the possibility of using methods such as we have developed in this paper in
other contexts.

International Statistical Review (2010), 78, 2, 240–256
C© 2010 The Authors. Journal compilation C© 2010 International Statistical Institute



On Model Selection Curves 255

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the
Second International Symposium of Information Theory, Eds. B.N. Petrov, F. Csáki, pp. 267–281. Akadémiai Kiadó:
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Résumé

Beaucoup de méthodes populaires de sélection de variables impliquent la minimisation d’une fonction pénalisée des
données (comme la vraisemblance maximisée ou la somme résiduelle carrés) sur un jeu de modèles. La pénalité dans la
fonction de critère est contrôlée par un multiplicateur de pénalité λ qui détermine les propriétés de la procédure. Nous
reconsidérons d’abord des critères de sélection modèles de la forme simple ‘Perte + Pénalité’ et proposons ensuite
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256 S. MÜLLER & A. H. WELSH

d’étudier de telles fonctions comme les fonctions du multiplicateur de pénalité. Cette approche peut être interprétée
comme l’exploration de la stabilité de fonctions de critère par ce que nous appelons des courbes de choix modèles. Il
mène à de nouvelles compréhensions dans le sélection de variables et de nouvelles propositions de la façon d’utiliser
ces fonctions de critère pour sélectionner de variables. Nous utilisons le bootstrap pour augmenter des courbes de choix
modèle et développent les résumés numériques et graphiques des résultats. La méthodologie est illustrée sur deux jeux
de données et soutenue par une petite simulation. Nous montrons que la nouvelle méthodologie peut surpasser des
méthodes comme AIC et BIC qui correspond aux points simples sur une courbe de choix modèle.
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