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Abstract

Although most natural populations are genetically subdivided, they are often analysed as

if they were panmictic units. In particular, signals of past demographic size changes are

often inferred from genetic data by assuming that the analysed sample is drawn from a

population without any internal subdivision. However, it has been shown that a

bottleneck signal can result from the presence of some recent immigrants in a population.

It thus appears important to contrast these two alternative scenarios in a model choice

procedure to prevent wrong conclusions to be made. We use here an Approximate

Bayesian Computation (ABC) approach to infer whether observed patterns of genetic

diversity in a given sample are more compatible with it being drawn from a panmictic

population having gone through some size change, or from one or several demes

belonging to a recent finite island model. Simulations show that we can correctly identify

samples drawn from a subdivided population in up to 95% of the cases for a wide range

of parameters. We apply our model choice procedure to the case of the chimpanzee (Pan
troglodytes) and find conclusive evidence that Western and Eastern chimpanzee samples

are drawn from a spatially subdivided population.
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Introduction

In conservation biology, information on current and past

population size is crucial for determining appropriate

action. For instance, if there is evidence that a popula-

tion has recently declined, some appropriate restoration

measures may be required. On the other hand, if a spe-

cies had a low but stable population size for a long time,

more simple conservation measures may be taken.

Therefore, methods for assessing the demographic his-

tory of a species have a long tradition in applied ecol-
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ogy and conservation biology. Typically, these methods

are based on a survey of census data coupled with

implicit or explicit demographic models (Besbeas et al.

2002). Unfortunately, data sets spanning over more than

a couple of years are rare, and most of these methods

do not allow for inference beyond the time of sampling.

Especially for species with long generation times, such

as large mammals or birds, the typical study duration of

a few years might not encompass a species complete

lifespan. A possible solution is to use paleontological or

archaeological data, or even historical trade records

(Jackson et al. 2001). However, these methods often only

provide incomplete or unsuitable data. Moreover,

because this data typically have not been recorded for

ecological purposes, it might be difficult to obtain confi-

dence intervals for inferred parameters.
� 2010 Blackwell Publishing Ltd
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In the past decade, alternative methods based on the

analysis of genetic data with coalescent methods have

emerged (Kingman 1982; Wakeley 2008), allowing the

estimation of effective population size (Kuhner et al.

1995), population divergence time (Hey & Nielsen 2004)

or population size changes (Cornuet & Luikart 1996;

Beaumont 1999; Drummond et al. 2005; Heled & Drum-

mond 2008).

There are a number of different procedures for esti-

mating or detecting population size changes. First,

some approaches use a specific feature of the data

expected under a given demographic model. For

instance, rare alleles are more likely to be lost in a bot-

tleneck than more frequent alleles (Cornuet & Luikart

1996; Garza & Williamson 2001), and this fact can be

exploited to recognize past bottlenecks. Second, other

approaches try to infer the past demography of a popu-

lation from the rate of coalescent events along a single

genealogy, when compared to that of the standard coa-

lescence process in a stationary population (Pybus et al.

2000; Drummond et al. 2005). A third possibility is the

use of a full likelihood approach to estimate the param-

eters of a model of population size change from multi-

locus data, as for instance implemented in the program

msvar (Beaumont 1999; Storz & Beaumont 2002) specifi-

cally designed to deal with microsatellite data. While

this latter approach should lead to accurate and reliable

conclusion with sufficient data, it still requires the

exploration of a complex multidimensional parameter

space, usually performed using a Markov-Chain Monte

Carlo (MCMC) approach which can become computa-

tionally very intensive when the number of loci is large.

The Approximate Bayesian Computation (ABC) frame-

work (Tavare et al. 1997; Beaumont et al. 2002) was

developed to estimate parameters of more complex

models in manageable computer time. ABC has then

been successfully applied to infer demographic history

for various organisms, such as humans (Fagundes et al.

2007), Arabidopsis thaliana (Francois et al. 2008), or Dro-

sophila melanogaster (Thornton & Andolfatto 2006), and

several implementations of the ABC algorithm have

been published (Beaumont et al. 2002; Excoffier et al.

2005a; Cornuet et al. 2008; Jobin & Mountain 2008;

Wegmann et al. 2009). In the past few years, various

variations of the algorithm have been developed (Beau-

mont et al. 2002; Sisson et al. 2007; Blum & François

2010), but most ABC implementations make inferences

based on a set of summary statistics (e.g. the number of

alleles, heterozygozity) designed to capture most of the

information contained in the original data. In the sim-

plest ABC procedure, a large number of simulations are

performed from the model under consideration, using

random parameter values drawn from some prior dis-

tributions. The summary statistics based on these simu-
� 2010 Blackwell Publishing Ltd
lations (S) are then compared to the summary statistics

of observed data (S*). Using some Euclidean distance

measure d ¼ kS� S � k, simulations are retained if d<e,
an arbitrarily small distance used as a rejection crite-

rion. The posterior parameter distribution is then calcu-

lated from the distributions of the parameters of the

retained simulations using a locally weighted linear

regression step (Beaumont et al. 2002).

Like all model-based inference procedures, full likeli-

hood approaches assume a fixed demographic model. If

model assumptions are violated or if data have been

generated under a different model, this may of course

lead to erroneous inferences and conclusions. In this

respect, Nielsen & Beaumont (2009) showed that when

data are simulated under a finite island model with a

constant population size, then the program msvar (Beau-

mont 1999) is likely to wrongly infer the occurrence of

a strong population bottleneck, even though the subdi-

vided population size did not change. This erroneous

imputation can be understood by considering the coa-

lescent process in an island model. In a subdivided

population, the coalescence process may be divided into

two distinct phases (Wakeley 1999). During the first

phase, called the ‘scattering phase’, lineages either coa-

lesce or migrate quickly to other demes than those

being sampled, until there is a single lineage left per

deme. In the second phase, called the ‘collecting phase’,

the remaining lineages follow a standard coalescent

process, like in a single population, but on a different

time scale. Thus, the rate of coalescent events during

the scattering phase is larger than in the collecting

phase, which lasts much longer than the scattering

phase. The resulting genealogy and the associated pat-

tern of genetic diversity will thus look very much like

that expected after a recent bottleneck, with an excess

of recent coalescent events (Nielsen & Wakeley 2001;

Ptak & Przeworski 2002). Note that structured and

declining population dynamics may result in virtually

identical genealogies. For instance, it has been shown

that a single expanding population model can lead to

any possible allele frequency spectrum (Myers et al.

2008). What differs between demographic models,

however, is the likelihood with which different gene-

alogies are produced, and we can therefore distin-

guish between different models using a probabilistic

approach.

In this study, we propose to use an ABC model

choice procedure to distinguish between populations

that are structured from populations that are panmic-

tic, but which recently changed in size. We show here

by simulation that our model choice procedure has

high power to assign simulated data sets to the

correct evolutionary model, even with a moderate

number of loci. We finally illustrate our method on a
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large microsatellite data set of the chimpanzee (Pan

troglodytes).
Material and methods

We aim here at evaluating whether observed patterns

of genetic diversity can be better explained by a model

of recent population size change or by a model of sub-

divided populations. To do this, we propose to apply

previously described ABC model selection procedures

(Pritchard et al. 1999; Beaumont 2008) to assign test

data sets to one of our two alternative models.
Models

Population size change (PSC) model. The PSC model we

use is similar to the model with exponential population

size change described in Beaumont (1999), which is also

implemented in the msvar program (Beaumont 1999)

(see Fig. 1a). This model allows for exponential growth ⁄ -
decline at a constant rate starting from the current popu-

lation with size N0, and, going backwards in time, to vary

exponentially over t generations to a population of size

N1 ¼ aN0. Thus, if a > 1, the population has declined in

size, if a < 1 the population has expanded, and if a = 1,

the population is obviously remaining constant in size.

We follow Beaumont (1999) by estimating the scaled

parameters h ¼ N0l and s ¼ t=N0 of the PSC model, but

it was judged more convenient to set up priors on the

natural parameters N0 and t. We therefore used the fol-

lowing prior distributions for the model parameters: N0

� LU(100,50 000), a � LU(10)3,103) and t � LU(1,103),
(a) (b)

Fig. 1 Schematic representation of the two alternative models.

(a) Model of population size change with current population

size N0, ancient population size N1 and t is the time since pop-

ulation size change. We estimate the scaled parameters

h ¼ 2N0l and s ¼ t=N0 from this model, where l is the muta-

tion rate. (b) Recent finite island model with D demes (denoted

d1 … dD) of identical haploid size N, the migration rate

m¢ = m ⁄ (D)1) is identical between all demes, and T denotes

the age of the island model.
where LU(a,b) is a log-uniform distribution with density

fðxÞ ¼ logðbÞ � logðaÞ½ �xf g�1 if x 2 ½a; b� and 0 otherwise.

In all simulations, we used a sample size of n = 25 diploid

individuals.

Recent Finite Island (RFI) model. To realistically model a

subdivided population, we have simulated data from a

finite island model with D demes of size N genes (Wright

1931) where current demes are assumed to have origi-

nated from a single deme of size NA = N some time T ago

(see Fig. 1b), which seems biologically more realistic

than assuming an infinite age for the island model. The

origin of this subdivision could for instance be consid-

ered as the time of a speciation event, the origin of some

invasive species, or a migration out of an ice age refu-

gium. In our RFI model, we simulated 100 demes of hap-

loid size N, with immigration rate m, so that the total

number of genes arriving in any deme is Nm per genera-

tion. While coalescent simulations are performed for a

haploid population, we simulated a diploid sample of

size n. As the sampling scheme may have a major impact

on the resulting genetic diversity (Städler et al. 2009), we

defined an additional sampling parameter S, specifying

that nS individuals are sampled from a single focal deme

and that the remaining n(1)S) individuals are sampled

from demes chosen at random from the whole subdi-

vided population. Thus, if S = 0, individuals are sampled

randomly over all demes, and if S = 1, all individuals are

sampled from the same deme. We have additionally cho-

sen to constrain the product nS to integer values, and S

was thus restricted to n + 1 possible values, between 0

and 1. Prior distributions for this model are Nm �
LU(0.1,100), T � LU(102,105) and nS � dU(0,n), where

dU(a,b) is a discrete uniform distribution on the integers

between a and b. Like under the PSC model, we used a

sample size of n = 25 diploid individuals for all simula-

tions.
Genetic data

Throughout this study, we have simulated and analy-

sed microsatellite data made up of 5, 10, 20, 50, 100, or

200 unlinked loci. Microsatellite data were generated

under a generalized stepwise mutation model as imple-

mented in SIMCOAL2 (Laval & Excoffier 2004). The

mutation rate was allowed to vary between loci, with

locus-specific mutation rates being drawn from a

Gamma distribution Gamma (a, a=�l) (Voight et al.

2005; Fagundes et al. 2007), where �l is the mean muta-

tion rate and a is a shape parameter. Unless mentioned

otherwise �l was set to 5 · 10)4 per generation, which is

a typical value for mammalian microsatellites (Ellegren

2004), and a was treated as a nuisance parameter with

values taken from U(5,20).
� 2010 Blackwell Publishing Ltd
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ABC

We used the ABC procedure with postsampling local

linear regression (2002) to estimate the parameters of

each model. We used the program ABCsampler from

the ABCTOOLBOX package (Wegmann et al. 2009) to

specify the priors and to automatically launch simula-

tions, which were done using the program SIMCOAL2 (La-

val & Excoffier 2004). Six summary statistics were

calculated using a console version of ARLEQUIN 3.12,

called arlsumstat (Excoffier & Lischer 2010): FIS, Garza

& Williamson’s (2001) M, the number of alleles K and

its standard deviation over loci, as well as the heterozy-

gozity H and its standard deviations over loci. These

summary statistics were chosen for the following rea-

sons: For a given sample size, the number of alleles K is

informative not only on population size (Ewens 1972;

Wakeley 1998) but also on inbreeding levels (Fu 1997).

M was specifically developed as a measure for detect-

ing signals of bottlenecks, and we used its modified

definition K ⁄ (R + 1) (Excoffier et al. 2005b), where R is

the allelic range (i.e. the difference in number of repeat

between the longest and the smallest allele) of the mi-

crosatellite. During a bottleneck, R decreases less than

K, leading to M values lower than 1 (Garza & William-

son 2001). Heterozygozity is also assumed to decrease

more slowly than K after a bottleneck (Cornuet & Luik-

art 1996), and it is reduced in a subdivided population

(Wahlund 1928). Finally, FIS typically takes positive val-

ues if the sample is drawn from a subdivided popula-

tion (Wahlund 1928).

Rejection sampling, postsampling locally weighted

linear regression and calculation of posterior distribu-

tions were performed using the program ABCEST2 (Ex-

coffier et al. 2005b). For each model, we performed 106

simulations with values randomly drawn from the

prior. For parameter estimation, we retained the 5000

(0.5%) simulations with associated Euclidean distance

between observed and simulated summary statistics

closest to the observed data set. Parameters were trans-

formed using a log(tan) transformation (Hamilton et al.

2005), to keep posteriors within the boundaries of the

priors.
Inference of population size change from samples
drawn from a subdivided population

In order to check that our ABC procedure recovers the

same effect as that described by Nielsen & Beaumont

(2009) using a full-likelihood approach, namely the

inference of a recent bottleneck if the sample is drawn

from a subdivided population, we estimated the param-

eters of a population size change model via ABC from

two series of 20 000 data sets generated under an RFI
� 2010 Blackwell Publishing Ltd
model. In the first series, sampled genes were chosen

randomly from the whole subdivided population

(S = 0), and in the second series, all genes were sam-

pled from a single deme (S = 1). In both series, T and

Nm were drawn randomly from their respective priors.

For each data set, we estimated the marginal posterior

distribution of the population size change parameter a

of a PSC model assuming no subdivision. To assess the

significance of a, we followed a procedure described in

Lee (2004, but see also Lindley 1965; Zellner 1971), and

calculated P ¼ Prða<1Þ for all data sets by numerical

integration over the estimated marginal density of a.

We assumed that values of P smaller than 0.025 to be

considered as a significant signal of recent bottleneck,

and values of P > 0.975 as a significant signal of popu-

lation expansion under a PSC model.
Estimation precision

As ABC is an approximate inference method, it is

important to check for possible biases in the estimates.

One way to do this is to simulate data sets with known

parameters and then check if we are able to correctly

estimate them. We did this for a total of 21 sets of

parameters, where we simulated 100 data sets with 10,

50 and 200 loci each.

Unbiased posterior distributions have a well-balanced

coverage property, such that the true value of a param-

eter should be found in q per cent of the times in a q%

credible interval. We checked this by creating 10 000

artificial data sets of 200 unlinked loci for each model,

randomly drawing each time parameters from our prior

distribution. We then estimated the parameter posterior

distributions with ABC and estimated the proportion of

the true parameters contained in 50%, 90% and 95%

credible intervals. To detect regions of the parameter

space where we have potentially inaccurate posteriors,

we further examined local coverage properties for dif-

ferent parameter values. We divided the 10 000 simu-

lated data sets into 20 discrete bins according to the

value of the estimated posterior mode, for each parame-

ter independently. The coverage property was then

assessed for each bin by computing the proportion of

simulated data sets where the true parameter value falls

in 50, 90 or 95% HPD credible interval.
Model comparison

We aim here at calculating the relative probability of

two models M1 and M2 given an observed set of sum-

mary statistics S*, which should lead to the calcula-

tion of a Bayes Factor BF ¼ PrðdatajM1Þ=PrðdatajM2Þ.
Because we do not compute the model likelihoods in

our ABC approach, BF cannot be explicitly computed,



4652 B. M. PETER E T A L.
and we have therefore used two alternative ABC

approaches to estimate the relative probabilities of the

two models M1 and M2.

The first procedure is based on an extension of logistic

regression leading to the estimation of the relative

posterior probabilities of each model as proposed by

Beaumont (2008), which has previously been applied in

an evolutionary context (Fargundes et al. 2007). The sec-

ond procedure follows Pritchard et al. (1999). Simulations

performed under the two models are sorted according to

their Euclidean distance d to the observed summary

statistics, and the relative posterior probabilities of the

two models are estimated as the proportion of simula-

tions coming from each model among a fixed number f of

simulations with smallest distance d. We followed Estoup

et al. (2004) in fixing f to 200, but different values of f had

very little impact on the results (results not shown).

In our Bayesian setting, the decision on which model

is better supported is based on posterior model proba-

bility or on the Bayes Factor BF = Pr(M1) ⁄ Pr(M2), which

differs from a decision process under a frequentist

approach based on a P-value. The P-value in a frequen-

tist settings gives a direct estimate of the probability to

wrongly reject a correct hypothesis (type-I error), and

the Bayes Factor can be used similarly to predict the

probability to wrongly choose a given scenario as

P = 1 ⁄ (BF + 1) (Lee 2004). Indeed, a decision in favour

of a model based on BF = 2 should be wrong in 1 ⁄ 3 of

the cases. In order to assess if the BFs resulting from

our model choice procedures are unbiased, we simu-

lated 10 000 data sets under both the RFI and PSC

model and computed their associated BFs. We then
Table 1 Prior distributions

Model Parameter Distribution Mean

PSC N0 Log-uniform [100,5 · 104] 8029

PSC a Log-uniform [10)3,1000] 62

PSC t Log-uniform [1,103] 144

PSC s s ¼ tN�1
0 0.23

PSC ⁄ RFI n Constant 25

PSC ⁄ RFI l Gamma (a,a ⁄ 0.0005) 5 · 10

PSC ⁄ RFI a Uniform [5,20] 12.5

PSC h h ¼ 2lN0 8

RFI D Constant 100

RFI N Constant 200

RFI T Log-uniform [100,105] 14462

RFI Nm Log-uniform [0.1,100] 14.46

RFI S Uniform [0,1] 0.5

RFI, Recent Finite Island model; PSC, Population Size Change model.

a, N1 ⁄ N0; t, time since population size change; n, sample size (numbe

of Gamma distribution; D, number of demes; N, number of gene copi

immigrant genes per deme per generation; S, Sampling parameter (pr
allocated our data sets to discrete bins of BFs, and we

checked if the proportions of data sets generated under

RFI and PSC models were equal to P and 1)P, respec-

tively, as predicted by the average computed BFs. This

procedure has the advantage not to require us to make

any decision on the origin of each data set.

In order to decide if an observed data set is more

likely to have been generated under model M1 or under

model M2, we used an arbitrary threshold value k ‡ 0.5

as follows: if the relative posterior probability of any

model was larger than k, then the data set was assigned

to that model. If no model posterior probability

exceeded k, then we assumed the outcome to be incon-

clusive and did not assign the data set to any model.

Thus, the number of false positives decreases with

increasing value of k, but at the expense of an increas-

ing number of unassigned data sets.
Application to chimpanzee

We illustrate our model choice procedure by analysing

samples of chimpanzee (Pan troglodytes) from various

origins and analysed for a large number of microsatel-

lites (Becquet et al. 2007). For our analysis, we used

only individuals that were congruently allocated by zoo

records and genetics (Becquet et al. 2007) to either the

western (P. t. verus) or eastern (P. t. schweinfurthii)

chimpanzee populations. This procedure resulted in

data set of sizes nW = 50 individuals and nE = 6 individ-

uals for the western and eastern population, respec-

tively. Each of these two samples was then analysed

separately.
Mode

Quantile

5% 50% 95%

100 136 2236 36646

0.0001 0.0019 1.0 501.2

1 1.41 31.6 708

0.013 0.00016 0.014 1.258

25 25 25 25
)4 — 2.7 · 10)4 4.9 · 10)4 7.7 · 10)4

— 5.75 12.5 12.75

0.1 0.14 2.24 36.6

100 100 100 100

200 200 200 200

100 141 3162 70798

0.1 0.141 3.16 70.8

— 0.05 0.5 0.95

N0, current population size; N1, population size before change;

r of diploid individuals); l, mutation rate; a, shape parameter

es per deme; T, age of the island model; Nm, Number of

oportion of individuals sampled in a given deme, see text).

� 2010 Blackwell Publishing Ltd
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From a total of 310 available microsatellite loci, we

discarded all loci that were monomorphic for the stud-

ied populations or those present on non-autosomal

chromosomes. Additionally, we removed all loci with

very low levels of heterozygozity (H < 0.2), as they

might characterize loci that are no longer STRs. Alleles

that were imperfect repeats were considered as missing

data, and loci with more than 5% missing data were

further discarded, resulting in a set of 236 loci for the

western population, and of 233 loci for the eastern pop-

ulation.

For each data set, we run ABC under the RFI and

PSC models, with priors customized to more closely fit

the natural population as follows: because the effective

population sizes have been estimated to be around

7000–10 000 individuals for the western population

(Won & Hey 2005; Becquet & Przeworski 2007; Becquet

et al. 2007; Caswell et al. 2008; Wegmann & Excoffier

2010), and to about 15 000 individuals with fairly wide

confidence intervals for the eastern population (Becquet

& Przeworski 2007; Wegmann & Excoffier 2010), we

used a prior of N0 � LU(102,106) under the PSC model,

and we set the prior of local deme size to

N � U(100,1000) under the RFI model, with the number

of demes kept constant at 100. In order to reflect our

uncertainty in chimpanzee mean mutation rate �l we

used a prior on �l � U(10)4, 5 · 10)4) and we used a

wider shape parameter a � U(2,20). Additionally, we

allowed for uncertainty in the size of the ancestral pop-
Nm

T

0.1 1.0 10 100

(a) S = 1

0

105

104

103

102

105

104

103

102

Fig. 2 Relative size change estimated by assuming a panmictic pop

model. We plot in Fig. 2a,b the value of P, the probability of a po

between the ancient and the current population size. A large value

small value of P would indicate that the population has been declinin

eter, Nm: number of immigrants genes per generation, T: age of the

from a single deme; (b) S = 0: the individuals are sampled random

probability P: Pure black and pure white areas represent values of P

20 000 data sets of 200 unlinked microsatellite loci simulated under

distributions shown in Table 1.

� 2010 Blackwell Publishing Ltd
ulation in the RFI model by taking a prior

NA � LU(1000, 50 000). We also set the sample size of

simulated data equal to those of observed data sets, nW

and nE. We accounted for missing data in the chimpan-

zee data set by removing the same number of alleles

missing for each locus and each simulation before cal-

culating the summary statistics (Wegmann & Excoffier

2010).
Results

Effect of population subdivision on estimation of
population size change

We tested the effect of assuming an absence of popula-

tion subdivision when inferring population size change

from genetic data by analysing data sets generated

under an RFI model assuming a PSC model. As shown

in Fig. 2, depending on the type of sampling in the

subdivided population, the age of the island model,

and the amount of gene flow between demes, very dif-

ferent demographic histories may be inferred, ranging

from evidence for large demographic expansions to evi-

dence for strong population decline.

If all the samples are taken from a single deme

(S = 1, Fig. 2a), T is large (T > 5000 generations) and

gene flow is limited (Nm < 5), which closely corre-

sponds to the situation studied by Nielsen & Beaumont

(2009), we also find evidence for a strong population
100.1 1.0 10

Nm

(b) S = 0

0.0

0.2

0.4

0.6

0.8

1.0

(c)

ulation, when data sets are actually generated under the RFI

pulation increase, defined as P ¼ Prða<1Þ, where a is the ratio

of P suggests that the population has been increasing, while a

g. Parameters of the simulated data sets are S: sampling param-

island model (see text). (a) S = 1: the individuals are sampled

ly over the whole subdivided population; (c) Colour code for

outside of [0.025; 0.975]. Each plot is based on the analysis of

the RFI model, with parameters randomly drawn from prior
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decline. This can be understood by considering the coa-

lescent process where we expect a large number of

recent coalescent events in the scattering phase, and a

few much older coalescent events occurring in the col-

lecting phase or in the ancestral population before the

creation of the islands. Under the same conditions, but

with a different sampling scheme, the inference is com-

pletely reversed, as we get significant evidence for pop-

ulation expansion. This is because of the absence of the

scattering phase, very few coalescent events in the

island phase, and most coalescences occurring in the

ancestral population before the onset of the island

phase (see Excoffier 2004 for an analytical treatment of

a similar case under the infinite island model).

Inference appears not to depend on sampling condi-

tions when Nm is above a certain threshold (Nm > 10).

In this scenario, migration is frequent enough that the

effect of sampling becomes negligible. When T is small

(T < 5000 generations), most coalescent events will be in

the ancestral population, leading to a signal of a popu-

lation expansion corresponding to the creation of the

island model. When T is larger (T > 5000 generations),

most coalescent events will occur during the island

phase and less in the ancestral population and the pop-

ulation will thus be close to an equilibrium island

model without size change (Wakeley 1999).
Precision of parameter estimates and coverage
properties

The accuracy of parameter estimation under the island

model is reported in Fig. S1 (Supporting Information).

Not surprisingly, we find estimations to be more precise

with larger number of studied loci. The age of the island

model (T) and the number of gene exchanged between

demes (Nm) are very well estimated over the whole

parameter range The parameter describing the sampling

scheme S is also relatively well recovered for low to

moderate amount of gene flow (Nm = 0.3 and 3, respec-

tively). However, this parameter is more difficult to esti-

mate when gene flow is high between demes (Nm = 30),

because in that case the level of genetic diversity is inde-

pendent of the exact place of sampling as genes move

rapidly between demes and the whole subdivided pop-

ulation resembles more a panmictic population.

Except for the population size ratio a, the precision of

estimates under the population change model depends

heavily on the timing of the decline s = t ⁄ N0 (Fig. S2,

Supporting Information). As we fixed the onset of pop-

ulation decline t to 100 generations, the first set of simu-

lations with N0 = 100 corresponds to s = 1, which

results in good estimates for both N0 and t. This is

because most coalescent events will occur during the

population size change, and the varying rate of
coalescent events will provide information on the popu-

lation size change and the timing of this change. On the

other hand, if s is too small (implying that the popula-

tion decline occurred very recently), there will be very

few coalescent events during the population size change

and thus little information to infer this process, and the

rate of coalescence will only provide information on the

ancestral size N1 and give little signal of population size

change. As mentioned earlier, a seems to be well esti-

mated over the whole parameter space, with credible

intervals declining with both increasing a and increas-

ing number of loci.

The coverage of the posterior distributions seems

overall relatively correctly estimated for the PSC model,

whereas the posteriors obtained under the RFI model

are slightly too narrow as the coverage of the 90% and

95% credible intervals is underestimated by about 5%

for the three parameters of this model (see Table S1). A

closer look at Fig. S3 (Supporting Information), where

we report the coverage of the posteriors for different

parameter values, shows that this is mainly because of

small values of T, whereas the posteriors of larger T are

correctly estimated. Nm posteriors are also too narrow

for values of Nm < 1, but much better estimated for lar-

ger values (Fig. S3d, Supporting Information). Further-

more, we observe that posteriors are too narrow for

some extreme values of several parameters, such as

very small values of s and large values of h and a under

the PSC model, as well as for small Nm values and

large S values under the RFI model.
Model choice accuracy

In Fig. 3, we report the posterior probability of the PSC

model estimated for various data sets generated under

PSC and RFI models and in Fig. 4 the accuracy of the

model choice procedure for different k values and dif-

ferent number of loci, as inferred with the logistic

regression method of Beaumont (2008) (results based on

Pritchard et al. (1999) method give very similar results

and are given in the supplementary Fig. S4, Supporting

Information).

As expected, the accuracy of the model choice proce-

dure increases with the number of loci and the models

are very well discriminated with more than 20 loci

(Fig. 3). In Fig. 4, we see that for the least stringent

threshold of k = 0.5, 89.5% and 95.1% of the pseudo

observed data sets are correctly assigned when using 10

and 200 loci, respectively. A k value of 0.5 implies that

all the remaining simulations are assigned to the

‘wrong’ model. Fortunately, the number of false posi-

tives quickly decreases with k. For k = 0.8, <5% of all

simulations are assigned incorrectly for all data sets,

and <2% for data sets are incorrectly assigned with 50
� 2010 Blackwell Publishing Ltd



Fig. 3 Accuracy of the model choice procedure. The boxplots show the lower and upper quartiles, the median and the limits of a

95% interval. Pr(PSC): Relative probability that data were generated under a PSC model; Pr(RFI): Relative probability that data were

generated under an RFI model. Each boxplot is based on 1000 replicates, with model parameters drawn randomly from the priors

shown in Table 1. B: Procedure of Beaumont (2008), P: Procedure of Pritchard et al. (1999) (see text).

Fig. 4 Accuracy of model assignment using the model choice procedure of Beaumont (2008). For a given k value (x-axis), the grey

area gives the proportion of data sets that were correctly assigned to the model they were simulated from. The black area gives the

proportion of data sets that were assigned to the wrong model, and the white areas correspond to simulations that could not be

assigned unambiguously for the respective k value. Note that the x-axis is on a logarithmic scale.
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or more loci. With k = 0.95, <1% of all data sets are

assigned incorrectly.

To see to which extent the Bayes Factors computed

from our ABC approach are informative about the accu-

racy of the model choice, we performed our model

choice procedure on 10 000 data sets randomly gener-

ated under the RFI model and on 10 000 others gener-

ated under the PSC model. We computed the Bayes

Factor associated with each of these data sets, and

report in Fig. 5 the proportion of data sets generated

under a PSC model showing a given Bayes Factor in

favour of the RFI model vs. its expectation based on the

Bayes Factor. We can see in Fig. 5 that the simulated

proportions match very well those expected from the

Bayes Factors. We note however a slight excess of data

sets generated under the RFI model in the bins below
� 2010 Blackwell Publishing Ltd
1 ⁄ 30 (log10(BF) < )1.5), implying that we overestimate

large Bayes Factors favouring the PSC model. However,

this effect would only bear on a relatively small number

of simulations (0.6% of all simulations) that would not

be correctly assigned if a decision was made on the

basis of these Bayes factors. Nevertheless, this bias

should be considered when decisions are made. On the

other hand, we do not observe a similar bias for data

sets leading to large Bayes factors in favour of the RFI

model.
Application

For both the eastern and western chimpanzee popula-

tion, we simulated 1 million data sets under the PSC

and RFI models. We then applied both model choice
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procedures. The RFI model was strongly favoured in

both populations. For the western population, the prob-

ability of the RFI model was 0.98 using Pritchard

et al.(1999) method, and >0.99 using the method of

Beaumont (2008). For the eastern population, the

method of Beaumont (2008) again strongly favoured the

RFI (>99% probability), and support from Pritchard

et al.’s (1999) method was slightly lower at 94% proba-

bility for the RFI model. This higher support for this

model of population subdivision is also confirmed by a

visual inspection of pair-wise scatter plots of the sum-

mary statistics (Figs S5 and S6, Supporting Informa-

tion). For the RFI model, the retained simulations nicely

cluster around the observed values, whereas the

retained simulations are much more widely spread for

the PSC. Furthermore, as our results are strongly sup-

porting the RFI model, they should not be affected by

the possible bias reported in Fig. 5, Supporting Infor-

mation, as this only occurs for the PSC model.

Our analysis supports previous results of Becquet

et al. (2007) who found evidence of internal population

structure within the western chimpanzee subpopulation

based on a principal components analysis, and of Leu-

enberger & Wegmann (2009), who obtained a similar

result using a different Bayesian approach. Our findings

further support the hypothesis of Wegmann & Excoffier

(2010) that the signal of chimpanzee population decline

reported by Caswell et al. (2008) may have indeed been

caused by internal population structure.

It has to be noted that individuals belonging to the

eastern chimpanzee population have been captured sev-

eral hundred kilometres apart from each other (Becquet

et al. 2007), and that the true origin of many individuals

of the western population is unknown. Therefore, the

assumption of population subdivision and heteroge-

neous sampling from several demes is very likely.
We clearly see in Figs S5 and S6 (Supporting Infor-

mation) that the high observed FIS values are extremely

difficult to obtain under a simple model of population

size change. Such high values of FIS are typically attrib-

uted to inbreeding, and we cannot rule out the possibil-

ity of inbreeding, but given the sampling scheme, the

presence of hidden population structure seems like a

more plausible explanation for these results (Leuenber-

ger & Wegmann 2009).
Discussion

Effect of population subdivision on population size
change inference

We globally find that inferences on population size

change can be drastically affected when population sub-

division is not properly accounted for. While the inter-

pretation of inferences under a wrong model makes little

sense per se, it is interesting to see that data drawn from

an island model can show extremely different patterns,

concordant with declining, constant or increasing popu-

lation sizes. Whereas we confirm that the analysis of a

sample of genes drawn from a single deme belonging to

an island population gives a signal of a recent bottleneck

(Nielsen & Beaumont 2009), very different inferences can

be obtained if the sample includes individuals from sev-

eral demes, if the population has been recently subdi-

vided, or if the amount of gene flow between demes is

large (see Fig. 2). While it remains to be tested, we

believe that many real samples are drawn from subdi-

vided populations, and it might therefore be appropriate

to be cautious when interpreting the output of programs

inferring past population size changes assuming popula-

tion panmixia (e.g. msvar Beaumont 1999; or beast

Drummond et al. 2005; see also Leblois et al. 2006).
� 2010 Blackwell Publishing Ltd
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Model choice accuracy

Not surprisingly, the available number of loci is one of

the main factors determining the precision of the model

choice procedures, and even better results would cer-

tainly be obtained with more than the 200 loci we simu-

lated (see Figs 3 and 4). Interestingly, even for large

numbers of loci there are still quite a number of simula-

tions that cannot be assigned to the correct model. For

the RFI model, we show in Fig. S7 (Supporting Infor-

mation) that this is primarily because of simulated cases

when both T and Nm are large. This result makes sense

because a subdivided population exchanging many

migrants tends to behave like a large panmictic popula-

tion. For data generated under the PSC model, we find

that models are more difficult to distinguish when a < 1

(expansion), and both N0 and t are large (Fig. S8, Sup-

porting Information). This assignment problem is likely

due to the fact that star-shaped genealogies obtained

under such old and strong expansions look indeed very

similar to those obtained under our RFI model. Addi-

tionally, we find that data sets where populations do

not drastically change in size (a � 1), are also prone to

wrong assignment, as these data sets may resemble

those generated under an old island model with large

levels of gene flow.

Overall, our ABC model choice provides satisfying

results (Figs 3 and 4), even when used with as few as

10 loci. In that case, when using a threshold value of

k = 0.8 for model probability assignment, the error rate

is below 5% for the logistic regression method of Beau-

mont (2008), and about 60% of the simulations can be

unambiguously assigned to the correct model. With 50

microsatellite loci, which is still a reasonable figure for

conservation genetics studies, the error rate goes down

to 1.8% for k = 0.8, and 78.6% of the simulations are

unambiguously assigned to the correct model.

Interestingly, the specific structure of the island

model has little impact on the outcome of the test:

When we simulate data sets under finite island models

with different number of demes and different deme size

than those used to test the reference RFI model, the

results of the model choice procedure are barely

affected (Fig. S9, Supporting Information). It suggests

that the composite parameter Nm is more important in

defining the population structure than are the actual

number of demes and deme size, provided that the

number of demes is sufficiently large.

Quite remarkably, we find that the performance of our

model choice procedure is not very sensitive to the total

number of simulations performed under each model. As

shown in Fig. S10 (Supporting Information), the distri-

bution of model posterior probabilities estimated from

just 10 000 simulations are overall very similar to those
� 2010 Blackwell Publishing Ltd
estimated with 1 million simulations, and the simulation

of 100 000 data sets under each model should therefore

be enough to obtain accurate model relative probabili-

ties. It suggests that even though precise parameter esti-

mation still requires a large number of simulations (the

exact number depending on the complexity of the

underlying model), models can be correctly told apart

even if their parameters are not accurately estimated.

This makes sense because model choice based on ABC is

actually nothing more than estimating a single parame-

ter with only two possible states: our two models.

An important summary statistic which certainly

allows one to distinguish between the two competing

models is the inbreeding coefficient FIS. Under the RFI

model, FIS may take values up to 0.8 (see Figs S5 and

S6, Supporting Information), while FIS hardly ever

reaches values higher than 0.05 without population sub-

division (Leuenberger & Wegmann 2009). This Wahlund

effect occurs here because we sampled at least two

genes per deme to mimic the sampling of diploid indi-

viduals, and this pair of genes is obviously more related

than a pair taken at random when gene flow is limited

between demes, while non-zero FIS values only occur

because of the sampling variance in panmictic popula-

tions (Wegmann & Excoffier 2010). However, the other

statistics still provide information for model choice, as

shown in Fig. S11 (Supporting Information) where we

report model posterior probabilities computed without

the use of FIS. PSC model posterior probabilities for data

generated under the PSC model are hardly affected by

not taking FIS into account, while RFI model posterior

probabilities of data generated under the RFI model are

lowered, but still sufficiently high to allow correct model

choice (Fig. S11, Supporting Information). Indeed, for

k = 0.5, the difference caused by FIS is small, with only

about 1% less simulations correctly assigned when FIS is

removed, independent of the number of loci used. For a

k value of 0.8, however, the pattern is strikingly different,

while the addition of FIS has little effect for data sets sim-

ulated under the PSC model, up to 35% of data sets pre-

viously assigned correctly to the RFI can no longer be

assigned. Thus, the inclusion of FIS considerably

increases the power to correctly identify the RFI model.

Suitability of the ABC approach

The ABC approach has been used here to distinguish

between two alternative models and to estimate param-

eters under these models. A study of the properties of

the inferred parameter estimates (Figs S1 and S2, Sup-

porting Information) and their posteriors (Table S1 and

Fig. S3, Supporting Information) shows that the param-

eters of these two models are reasonably estimated and

that the coverage of the posteriors is quite accurate over
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a wide range of the estimated parameter values.

Inferred posterior distributions appear too narrow for

some extreme values of the parameters when there is

not much information in the data about these parame-

ters (e.g. when a population size change is too recent to

affect patterns of diversity, Fig. S3a, Supporting Infor-

mation), and in that case may depend too much on the

prior we used. We note that full-likelihood approaches

(Beaumont 1999) may reveal more appropriate than our

ABC approach to estimate parameter and their associ-

ated posterior distributions, but as mentioned earlier,

the full evaluation of the properties of these methods

and their integration into model choice procedure

remain to be carried out. While we are indeed able to

correctly discriminate between panmixia and an island

model with our ABC approach (Figs 3 and 4), other

and potentially more powerful approaches to compare

models and estimate parameters might be developed.

Analytical approaches to calculate parameter likeli-

hoods under an island model with an instantaneous

population size change (Wakeley 1999; Wakeley et al.

2001) could be extended to incorporate additional muta-

tion models and be compared to results from a PSC

model (Beaumont 1999) with AIC- or BIC-based tests

(Schwarz 1978; Akaike 1981). Another way to compare

models might be the use of a Bayesian model choice

procedure based on reversible jump MCMC (Green

1995; Huelsenbeck et al. 2004; Foll & Gaggiotti 2008),

which is more powerful than ABC when it can be

implemented (for instance, see Appendix in Fagundes

et al. 2007). However, we have shown here that the

power of the present ABC approach was already quite

high with sufficient number of markers (Fig. 3), and we

did not find any evidence for a significant bias in our

model choice results (Fig. 5). Moreover, ABC

approaches are easy to customize to one’s own need as

demonstrated with the chimpanzee data set where we

could add further complexity in the mutation model

and implement a correction for missing data. An inter-

esting advantage of ABC approaches is that they can be

easily validated by using the same set of simulations to

estimate parameters and estimate model posterior prob-

abilities over the whole parameter space, which is

unfortunately impossible for most full-likelihood meth-

ods taking days of computations for a single inference.

ABC approaches seem therefore well suited to extend

model choice procedures to more realistic situations

and to customize them for species having particularly

complex demography or peculiar life-history traits.
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