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S

This paper focuses on the Akaike information criterion, , for linear mixed-effects
models in the analysis of clustered data. We make the distinction between questions
regarding the population and questions regarding the particular clusters in the data. We
show that the  in current use is not appropriate for the focus on clusters, and we
propose instead the conditional Akaike information and its corresponding criterion,
the conditional , c. The penalty term in c is related to the effective degrees of
freedom r for a linear mixed model proposed by Hodges & Sargent (2001); r reflects an
intermediate level of complexity between a fixed-effects model with no cluster effect and
a corresponding model with fixed cluster effects. The c is defined for both maximum
likelihood and residual maximum likelihood estimation. A pharmacokinetics data appli-
cation is used to illuminate the distinction between the two inference settings, and to
illustrate the use of the conditional  in model selection.

Some key words: Akaike information; AIC; Effective degrees of freedom; Linear mixed model.

1. I

This paper focuses on model selection for linear mixed-effects models using the Akaike
information criterion,  (Akaike, 1973). We make a distinction between questions with a
focus on population and on clusters; we show that the  in current use is not appropriate
for conditional inference, and we propose a remedy in the form of the conditional Akaike
information and a corresponding criterion. For the conditional , the penalty term is
related to the effective number of parameters of a linear mixed model proposed by Hodges
& Sargent (2001).
The results of a statistical analysis are usually reported based on the final model

choice, which is treated as the ‘true model’. The notion of ‘true model’ is elusive, since
the reality producing the data is always complex, while a statistical model is at best a
simplified approximation of this reality. The likelihood ratio test is commonly used for
model selection between nested models, but hypothesis testing may not be the most suitable
framework for model selection (Burnham & Anderson, 2002, p. 36). Alternatively, model
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selection was viewed by Fan & Li (2001) as maximising a ‘penalised likelihood’, where a
penalty term is introduced for model complexity, and all models considered are nested in
a larger, comprehensive model.
The  is technically a penalised likelihood, but it has a sound theoretical basis in
model-based prediction using the Kullback–Leibler distance. While strictly speaking it
requires the distribution generating the data to belong to the class of fitted models, in
practice it only needs to be ‘close’ to this class (Burnham & Anderson, 2002, p. 65).
In addition, the  can compare nonnested models.
When the model under consideration contains random effects, the definition of the 

is not straightforward. What likelihood should be used? Should the random effects be
counted as parameters or not? In this paper we argue that the answer to these questions
depends on the focus of the research. We identify two kinds of research question: first,
inference concerning the population parameters and, secondly, inference about the para-
meters specific to the clusters. The  will be different in the two cases. The formulae are
similar: =−2 log likelihood+2K, where K is the ‘degrees of freedom’ correction, or
the number of parameters in the model. However, for the population, or marginal, focus,
the likelihood is the marginal likelihood, andK is the number of fixed parameters, counting
mean parameters and variance components. In contrast, for the cluster, or conditional,
focus, the likelihood is the conditional likelihood, and K=r+1, where r is the effective
number of parameters for the mean model defined by Hodges & Sargent (2001), and 1
stands for s2. In practice, we show that a small-sample correction is needed for K.
The distinction between conditional and marginal inference for mixed-effects models was

made as early as Harville (1977). Burnham & Anderson (2002) survey the  literature,
and promote the use of  for model selection. Following Burnham & White (2002),
Burnham & Anderson (2002) use a formula similar to our c but with a different
correction for degrees of freedom, justified by them by analogy with the notion of degrees
of freedom used in the smoothing literature (Hastie & Tibshirani, 1990, p. 158).
Incidentally, the same justification led Hodges & Sargent (2001) to their definition of r.
Our derivation of the conditional  from first principles gives a theoretical justification
of r, and an insight into the analogy of a linear mixed model with a linear model where
the random effects have fewer than full degrees of freedom. Spiegelhalter et al. (2002)
make an implicit distinction between conditional and marginal inference using the idea
of focus of inference for hierarchical models. Their  criterion, based on Bayesian
arguments, is also closely related to our c.

2. M     A 

2·1. Akaike information

Akaike based his information (Akaike, 1973; deLeeuw, 1992) on the Kullback–Leibler
distance I( f , g)=E

f
log f (y)−E

f
log g

h
(y) between the true density f of the distribution

generating the data y, and the approximating model for fitting the data g
h
=g(. |h), for

hµH; E
f
is the expectation with respect to the probability density f . Smaller values of

I( f , g
h
) correspond to a better approximation of f by g

h
, and the minimum is obtained for

some h0µH. If the true distribution f belongs to the fitted class of models G={g
h
, hµH}

then g
h
0

= f and I( f , g
h
0

)=0. In general, f may not be in G, and I( f , g
h
)�0. In practice h

is estimated from the data y, and I( f , g
h
0

) is approximated by I( f , g
h@
), where h@=h@ (y) is

usually the maximum likelihood estimator. The quality of the approximation of the true f
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by the class G is assessed, on average, by the quantity

E
f
I( f, g

h@
)=E

f(y*)
log f (y*)−E

f(y)
E
f(y*)
log g{y*|h@ (y)},

where y* is independent of y. When we are comparing different classes of models, the
constant E

f(y*)
log f (y*) can be ignored, and the relative fit of competing models can be

assessed using the Akaike information,

=−2E
f(y)

E
f(y*)
log g{y*|h@ (y)}. (1)

If we consider the fit of future data y* in (1),  incorporates a prediction aspect, similar
to crossvalidation. The  is an estimator of , given by

=−2 log g{y|h@ (y)}+2K, (2)

where K=d, the number of free parameters in the model G. When h@ (y) is the
maximum likelihood estimator and the approximating class of models G includes f ,
=E()+o (1) as the sample size N�2; that is  is unbiased for  to a first
order of N (Akaike, 1973; Burnham & Anderson, 2002). A second-order approximation
yields =E(

c
)+o(N−1 ), where 

c
is as in (2), but with K given by

K
c
=N(N−d−1)−1d (3)

(Sugiura, 1978; Hurvich & Tsai, 1989; Burnham & Anderson, 2002, pp. 66, 374). For linear
models, 

c
is unbiased for finite sample sizes. More precisely, if f and g are in the class

of linear models,

y=Xb+e, (4)

where X is N×p of full rank and e~N(0, s2I
N
), then d=p+1 and  with

K
c
=N(N−p−2)−1 ( p+1) is unbiased for (1).

2·2. Marginal versus conditional focus in the mixed-eVects model

Consider a vector y of data from m clusters, modelled as in Laird & Ware (1982) by

y
i
=X
i
b+Z

i
b
i
+e
i

(5)

with b
i
~N(0, G), independently for each i, where i=1, . . . , m is the cluster index, y

i
is

the vector of n
i
responses for cluster i, b is the p-vector of fixed effects, b

i
is the q-vector

of random effects for cluster i, X
i
and Z

i
are the n

i
×p and n

i
×q matrices of covariates

for the fixed and random effects of full rank, e
i
~N(0, s2I

n
i

), independently of b
i
, and G is

q×q positive definite. Let N=Wm
i=1

n
i
be the total number of observations. Furthermore,

let h be the vector of parameters in the model, including b, s2 and the parameters in G.
The clusters may represent, for example, different subjects for whom several observations
are recorded at different time points. We can write (5) in the condensed form

y=Xb+Zb+e, b~N(0, G
0
), (6)

whereX= (XT
1
, . . . , XT

m
)T isN×p of rank p, Z=diag(Z1 , . . . , Zm ) isN×r block-diagonal

of rank r=mq, b= (bT
1
, . . . , bT

m
)T, e= (eT

1
, . . . , eT

m
)T, and G0=diagm (G) is block-diagonal

with m blocks G on the diagonal. Model (6) without restrictions on X, Z and G0 is more
general than the Laird–Ware model, and our subsequent developments apply to it as well.
Conditionally on b, the likelihood of the model is g(y|h, b), and the marginal likelihood is
g(y|h)=∆ g(y|h, b)p(b|G)db, where p(b|G)=Xm

i=1
p(b
i
|G) is the distribution of the random

effects.
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In the mixed model (5) the interest is either in the population parameters b, population
focus, or in the individual clusters, with the associated random effects b

i
, cluster focus.

For example, in a clinical trial testing the effect of a new treatment versus the standard-
of-care, the subjects are enrolled within hospitals, or clinical units, which determine the
clusters. In the population focus the interest is in the overall treatment effect, b say,
whereas in the cluster focus we want to know the treatment effect at hospital i, b+b

i
say, which may differ from hospital to hospital.
In the population focus the random effect b

i
is a device for modelling the correlation

of the responses within cluster i, and model (5) is equivalent to the linear model with
correlation errors,

y
i
=X
i
b+c

i
, c
i
=Z
i
b
i
+e
i
~N(0, Z

i
GZT
i
+s2I

n
i

). (7)

The prediction in this case refers to a new cluster, with new random effects. No prediction
or inference can be made about the random effects b

i
. The  in current use, which we

call the marginal , m, is appropriate here: m=−2 log g(y|h@ )+2K, where the
likelihood is the marginal observed likelihood, and K is the number of parameters in h,
the fixed mean parameters and variance components, perhaps adjusted with the second-
order correction (3). To see this, note that m is derived with the marginal likelihood
used in (1) and with a new, predictive dataset y* which contains new clusters with new
random effects. In other words, the m is simply the  for model (7).
In contrast, in the cluster focus, the random effects b

i
are themselves of interest. In this

more modern definition, b
i
are parameters to be estimated, tied by the distributional

property that b
i
~p(. |G), independently for each i. The joint parameter estimation

approach of Harville (1977) and Hodges (1998), involving data cases and constraint cases,
implicitly uses this notion of random effects; see also Appendix 1. In this case the choice
of fixed versus random effects b

i
is a legitimate modelling choice. As we show next, the

cluster focus induces a different type of prediction from the population focus, and this
calls for a different  measure.

2·3. Conditional Akaike information

We now define the conditional Akaike information criterion, c, to be used in model
selection for the cluster focus. Prediction at the cluster level is conditional on the clusters,
and the b

i
act as parameters. Therefore, the relevant likelihood is the conditional likelihood

log g{y*|h@ (y), b@}, where h@ (y) is the maximum likelihood estimator of h, and b@=E(b|h@ , y)
is the empirical Bayes estimator. The second key difference from (1) concerns the prediction
dataset y*. Assume that the true, as opposed to the modelling, distribution of y is f (y|u),
and that u is the true random effects vector, with distribution p(u). For the moment assume
that f (y|u) belongs to the class of models (6), that is f (y|u)=g(y|h0 , u) for some h0 ; u
plays the role of b in (6). The prediction dataset is y* such that y* and y are independent
conditional on u and from the same distribution f ( . |u). In other words, y and y* share
the same random effects u, but differ in their error terms.

D. T he conditional Akaike information is defined to be

c=−2E
f(y,u)

E
f(y*|u)

log g{y*|h@ (y), b@ (y)}

=P −2 log g{y*|h@ (y), b@ (y)} f (y*|u) f (y, u) dy* dy du, (8)

where f (y, u)= f (y|u)p(u) is the joint distribution of y and u.
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The c is justified along the same lines as (1), with the two key differences noted above.
The outer expectation in (8) is also with respect to p(u), to account for the random-effects
assumption. The definition (8) covers the following more general settings.

Case 1. The distributions of u and b are not necessarily normal.

Case 2. The true distribution of y, f ( . |u), may lie outside the class of models (6). As
a simple example, assume that f (y|u) is given by y=Pa+Qu+e, with u~N(0, S),
e~N(0, s2

0
I
N
), and P and Q containing covariates different from X and Z.

Case 3. The estimators h@ (y) and b@ (y) can be arbitrary estimators of h and b, such as the
residual maximum likelihood estimator and the posterior mode, respectively. Thus, in
theory (8) can be used to compare not only different classes of models but also different
estimation methods for the same class of models. This point is further explored in §§ 3·2
and 4.

Case 4. The setting is more general than that of linear mixed models, and includes, for
example, nonlinear or generalised linear mixed models.

In practice, c needs to be estimated from the data. In the next section, by analogy
with  we develop an estimator for the c, the conditional , for the case when f
and g belong to the class of models (6).

3. C A  

3·1. Main results

As we will see shortly, c is similar in form to  as in (2) with two important
distinctions: the model loglikelihood is conditional on b@ , and the number of parameters
is related to r, the ‘effective degrees of freedom’ of Hodges & Sargent (2001). Briefly,
r=tr(H1 ) where H1 is the ‘hat’ matrix mapping the observed data vector y into the fitted
vector y@=Xb@+Zb@ , that is y@=H1y; see Appendix 1 for details.

T 1. Assume that data y have true density f (y|u)=g(y|h0 , u) for some h0 and for
some random eVect u with distribution p(u). T he data are modelled by (6), with densities
denoted by g(y|h, b) and p(b). Assume that s2 and G0 are known. L et h@ (y) and b@ (y) be the
maximum likelihood and the empirical Bayes estimators for h and b, respectively.

T hen, an unbiased estimator of the c in (8) is

c=−2 log g{y|h@ (y), b@ (y)}+2r. (9)

The proof is given in Appendix 2.

T 2. Under the set-up of T heorem 1, assume further that s2 is unknown, but
that the scaled variance of b, D0=s−2G0 , is known. T hen, an unbiased estimator of the c
in (8) is

c=−2 log g{y|h@ (y), b@ (y)}+2K, (10)

where K is given by

K=KMLE=
N(N−p−1)

(N−p)(N−p−2)
(r+1)+

N(p+1)

(N−p)(N−p−2)
(11)

and p is the number of columns in X, the number of fixed eVects.
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The proof is given in Appendix 2.
In both theorems, c is unbiased for c not only asymptotically but also for finite

sample size N; KMLE can be interpreted, by analogy with (3), as a small sample correction.
The properties of KMLE are summarised by the following result.

P 1. (i ) An alternative formula for KMLE in (11) is

KMLE=
N

N−p−2q(r+1)−
r−p

N−pr ; (12)

(ii) r+1<
N(N−p−1)

(N−p)(N−p−2)
(r+1)∏KMLE∏

N

N−p−2
(r+1);

(iii ) as N�2, KMLE/(r+1)� 1.

The proof is included in Appendix 2. Part (iii) states that for large sample sizes an
alternative to (11) in the definition of c is the approximation

K
a
=r+1; (13)

in K
a
we count the degrees of freedom as r for the mean term and 1 for s2.

3·2. Residual maximum likelihood estimation

In § 3·1 we have assumed that h@ is the maximum likelihood estimator. The bias-corrected
residual maximum likelihood estimator for s2, s@2

R
, is often preferred to the maximum

likelihood estimator s@2 in the linear model (4) or in the linear mixed model (6). In each
case, the two estimators for b are identical; as in Theorem 2, we assume that D0 is known
for the linear mixed model. Let h@

R
= (b@ , s@2

R
) for either model. Then the simple relationship

s@2
R
={N/(N−p)}s@2 holds. Just as for maximum likelihood, the  and c for residual

maximum likelihood estimators are also defined by (1) and (8) and their estimators by (2)
and (10). However, as it turns out, the correction term K is different.

T 3. Under the conditions of T heorem 2, an unbiased estimator of the c (8)
using the residual maximum likelihood estimator h@

R
is

c=−2 log g{y|h@
R
(y), b@ (y)}+2K

R
, (14)

where

K
R
=

N−p−1

N−p−2
(r+1)+

p+1

N−p−2
. (15)

In other words, K
R
={(N−p)/N}KMLE . Incidentally, it has not been noted, to our

knowledge, that the same relationship holds in the linear model (4) for 
c
: if we use h@

R
,

the unbiased estimator of  (1) is


c
=−2 log g{y|h@

R
(y)}+2

(N−p)( p+1)

N−p−2
. (16)

Set the last term in (16) equal to 2k
R
. Then k

R
={(N−p)/N}K

c
, where K

c
is defined as

in (3). The proofs for Theorem 3 and for (16) are given in Appendix 2. The various criteria
discussed in the paper are contrasted and summarised in Table 1.
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Table 1: Summary of the ’s. Mixed-eVects model: c=−2×conditional
loglikelihood+2K; m=−2×marginal loglikelihood+2K. L inear model:
=−2× loglikelihood+2K. For m, d is the total number of parameters

in b, s2 and D0
Criterion Method Type K Formula for K

Mixed-effects model
c  Asymptotic K

a
r@+1

Finite-sample KMLE
N(N−p−1)

(N−p)(N−p−2)
(r@+1)+

N(p+1)

(N−p)(N−p−2)

 Asymptotic K
a

r@+1

Finite-sample K
R

N−p−1

N−p−2
(r@+1)+

p+1

N−p−2

m  Asymptotic K d

Finite-sample K
c

N

N−d−1
d

Linear model
  Asymptotic K p+1

Finite-sample K
c

N

N−p−2
( p+1)

 Asymptotic K p+1

Finite-sample K
R

N−p

N−p−2
( p+1)

, maximum likelihood; , residual maximum likelihood.

The likelihood in (14) and (16) is the ‘standard’, not the residual, or restricted, likelihood.
The latter is often reported by software, for example by gls() or lme() in R and S-Plus
or proc mixed in SAS, with the proviso that it should only be used for comparing
models with the same mean structure and different variance structures. Furthermore, the
residual-likelihood-based  cannot be compared with a likelihood-based . In con-
trast, (14) and (16) are derived as estimators of  as in (1), and can be used for comparing
models with different mean and variance structures, and indeed for comparing the residual
and standard maximum likelihood estimators.

3·3. T he case of unknown variance G0
We now turn to the case when D0 , and therefore G0=s2D0 , is unknown. Let D=s−2G
be the scaled variance of the random effects b

i
, that is D0=diagm (D). The ‘hat’ matrix

H1 depends on D: H1=H1 (D). If D is estimated by its maximum likelihood estimator DC ,
then y@=HC 1y, where HC 1=H1 (DC ). Accordingly, we distinguish between the observed
r@=tr(HC 1 ) and the true r=tr(H1 ), where H1 is computed at the true D. Strictly speaking,
H1 is not a hat matrix, since it does not map y on to y@ ; however, r, the effective degrees
of freedom if D were known, does reflect the degrees of freedom associated with the model
design without the additional variability induced by not knowing D.
The following simple case shows that the correction for the degrees of freedom in (10)

due to G0 is negligible asymptotically; we consider cluster focus asymptotics with m fixed
and n

i
�2 uniformly.
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Example: T he one-way random-eVects model. Let the data y follow the model

y
ij
=b
i
+e
ij
, (17)

with i=1, . . . , m and j=1, . . . , n, b
i
~N(0, t2 ), independently for each i, and e

ij
~N(0, s2 ),

independently for each i and j. For simplicity we assume that s2 is known. The c has
the form (10), where K is an estimator of the ‘bias correction’ , which is defined by

c=−2E
f(y,u)

log g{y|h@ (y), b@ (y)}+2. (18)

Let l=t2/s2 be the scaled variance of b
i
, playing the role of D, and let l@ be its maximum

likelihood estimator, that is, DC . As shown in Appendix 3, a Taylor expansion for  yields

=r+2/(nl+1)+o(n−1 ). (19)

The term 2/(nl+1) is the degrees-of-freedom correction due to the unknown variance t2.
This correction is of O(n−1 ). It is also less than 2, since l>0. It is small for large numbers
of observations per subject n and/or for large values of l, that is, for a large ratio of
between to within subject variance. The correction does not depend on the number of
clusters m.
Table 2 compares the bias correction  with its estimator K=r@+2/(nl@+1 ), for

different values of n, s2 and l. In all cases  is very close to the true effective degrees
of freedom r. Not knowing D affects K in two ways, through the extra term 2/(nl@+1)
in (19) and through using r@ instead of r. In Table 2 r@ is negatively biased for r when
n=6; for n=26 the bias is smaller. In § 5 we show a simulation where the effect of the
unknown variance D is not negligible for small cluster size.

Table 2: Example. Simulation to study c and the degrees of
freedom due to the scaled variance l in the one-way mixed-eVects
model. Bias correction  is the expected value of the diVerence
between the observed loglikelihood and c/2; K=r@+2/(nl@+1)
is the first-order estimator of ; r@ is the estimated number of degrees
of freedom for the random eVects, as the maximum likelihood esti-
mator of r=m(1+n−1l−1 )−1. Mean values are reported for K and
r@ based on 10 000 simulations. T he Monte Carlo standard errors
are less than 1·5% and 0·25% of  and r@ , respectively. In all cases

m=10 clusters, and t2=0·0367

n s  K r@ r

6 0·0705 9·80 9·78 9·73 9·78
26 0·0705 9·94 9·95 9·94 9·95

6 0·141 9·19 9·18 8·97 9·17
26 0·141 9·79 9·80 9·75 9·80

6 0·282 7·37 7·37 6·74 7·35
26 0·282 9·22 9·23 9·04 9·23

Burnham & White (2002) and Burnham & Anderson (2002) have recently proposed
using

−2 log g{y|b@ (y), b@ (y)}+2(r@+1+c) (20)

as , where c is the number of unknown parameters in the scaled variance matrix D.
Our analysis does not support this way of accounting for the unknown variances D: since
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in (19) the second-order term goes to zero as n or l grows large, a fixed correction c for
the number of parameters in D cannot be correct.
The general case of unknown D is analytically complex: no unbiased estimator for c
such as (9) or (10) exists and no simple correction for D seems to be available. We have
computed a first-order correction when D depends on a scalar parameter; the formulae
are complex and not immediately transparent, and therefore they were not included here.
The general case may require a separate investigation. Based on the evidence of the case
study above and of the simulation in the next section, we propose the use in practice
of the c (10) with the correction (11) for maximum likelihood, or (14) with the
correction (15) for residual maximum likelihood estimation.
It seems inconsistent, at first sight, not to count the parameters of D in (11). The

reason for this becomes apparent in (8): the conditional likelihood g{y*|h@ (y), b@ (y)} does
not depend on D, and therefore D need not be accounted for. However, there is a small
price to pay for not knowing D, in the additional variability in h@ (y) and b@ (y). The less
precise the estimation of D, the higher the price.

4. C : C 

4·1. T he data analysis

To illustrate the use of c and the distinction from m, we analysed as a case study
a pharmacokinetics dataset, the Cadralazine data (Lunn et al., 1999; Wakefield et al.,
1994). The dataset consists of plasma drug concentrations from 10 cardiac failure patients
who were given a single intravenous dose of 30 mg of cadralazine, an anti-hypertensive
drug. Each subject has the plasma drug concentration, in mg/l, measured at 2, 4, 6, 8, 10
and 24 hours, for a total of 6 observations per subject. In the original dataset, two of the
ten subjects had observations at 28 and 32 hours; we removed these, in order to work
with a simple balanced dataset. Also, three concentrations of 0 were replaced with
0·005 mg/l.
The data for a given subject are well described by the one-compartment model

concentration= (dose/V
d
)×exp(−kt),

where ‘concentration’ is the drug concentration at time t, ‘dose’ is the dose of the
drug, i.e. 30 mg, V

d
is the volume of distribution, a scaling factor simplistically interpretable

as the volume of blood over which the drug is distributed, k is the elimination rate
constant, measured in hours−1, and t is the time since drug administration, also in
hours; V

d
and k are the unknown parameters. This corresponds to the linear model

log(concentration)− log(dose)=−log(V
d
)−kt+error, or, in statistical notation,

y
ij
=b
0i
+b
1i

t
j
+e
ij
, (21)

where i=1, . . . , 10 stands for the subject, and j=1, . . . , 6 is the measurement index for
subject i. The plot of the response versus time is given in Fig. 1. The data for each patient
are well described by a straight line, but the slopes and intercepts of the ten regression
lines differ from subject to subject. A main interest of the analysis is to determine the
values of the volume, exp(−b

0i
), and elimination rate constants, −b

1i
, of the 10 subjects

in the study, and their population-level averages.



360 F V  S B

Fig. 1: Cadralazine data. Individual observations of log(concentration/dose) at six time
points, for 10 subjects. The time is measured since the administration of the drug.

Two reasonable models to be considered based on (21) are the following.

Model 1: L inear regression model. The intercepts and slopes, b
0i
and b

1i
, are fixed

parameters, i=1, . . . , m. Note that the effects differ from subject to subject.

Model 2: Mixed eVects model. This has random intercepts and slopes, that is b
0i
=b0+b

0i
and b

1i
=b1+b

1i
, where, independently for each i,

(b
0i

, b
1i

)~N(0, G). (22)

Formally, the linear regression model is an extreme case of the mixed-effects models,
when the variance components go to infinity: G� diag(2 ).
The estimates for the linear regression slopes and intercepts are similar to the two

models; details not included. Based on these and on the residuals plots, Fig. 2, both models
give very similar fits. We want to choose the better fitting model based on the . In
view of the similar fits, we expect the two models to have comparable  values. The
software output from the nlme package in R (Pinheiro & Bates, 2000, p. 283) is surprising:
the mixed-effects model has an  of 11·0, and the linear regression model has an  of
−47·1; see Table 3.
While no rigorous theory is available, Burnham & Anderson (2002, p. 70) suggest that

a difference of at most 2 in  is not reliable for ranking two models, whereas a differ-
ence of 10 is overwhelmingly in favour of the model with the smaller . Based on the
reported , the mixed-effects model appears inferior by an enormous margin. This
blatant favouritism for the linear regression model is all the more intriguing, since the
linear regression model has more parameters, 21, than the mixed-effects model, which
has 6. In the light of § 2, the apparent contradiction between the  values and the model
fits is easily explained: the  for the mixed-effects model is what we call the marginal
, and it is not appropriate for this conditional model comparison. In contrast, c
with K

a
is −44·5, comparable to the linear regression model. The comparison of the

effective degrees of freedom is illuminating: in the mixed-effects model, r+1=19·2, close
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Fig. 2: Application of mixed-effects, , models to the Cadralazine data. (a) Fitted-value plot for population-
focus approach, (b) fitted-value plot for cluster-focus, i.e. subject-specific, approach, (c) fitted value for
linear regression, , (d) residual plot for population-focus approach, (e) residual plot for cluster-focus,

i.e. subject-specific, approach, (f ) residual plot for linear regression.

Table 3. Comparison of ’s for the mixed-eVects and linear regression
models for the Cadralazine dataset. T he finite-sample corrected  and
m include second-order correction (3) for , and (16) for ; the
c is computed from (10), with K=K

a
for the asymptotic version, and

K=KMLE for  or K
R

for , for the finite-sample corrected version.
T he m for  was omitted, since it is based on the residual likelihood,

and therefore not comparable with the other values in the table

Mixed-effects model Linear regression model
Method Type m c 

 Asymptotic 11·0 −44·5 −47·1
Finite-sample corrected 12·6 −42·3 −22·8

 Asymptotic — −44·5 −42·8
Finite-sample corrected — −43·7 −40·6

, maximum likelihood; , residual maximum likelihood.

to the linear regression model value of p+1=21. For practical purposes the random
effects act almost as unconstrained parameters, which explains why the two model fits are
so similar.
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Interestingly, the finite-sample corrected ’s using (11) and (3) make an important
difference, with a large penalty for the fixed effects model. The values are c=−42·3
and 

c
=−22·8, suggesting a clear modelling advantage for the mixed-effects model;

see Table 3. The poor 
c
value is in fact due to the high bias of the maximum like-

lihood estimator for s2, and it can be avoided by using instead the residual maximum
likelihood estimator, which is unbiased. For the residual maximum likelihood estimators
the c values for the mixed-effects model are −44·5, using K

a
, and −43·7, using K

R
,

and the  values for the linear regression model are −42·8, asymptotic, and −40·6, for

c
from (16); see Table 3. The finite-sample corrected values still favour the mixed-effects

model over the linear regression model, but the difference is much smaller than for maxi-
mum likelihood estimation. For both the residual and maximum likelihood estimation,
the adjustment due to the finite-sample correction in the c is small, since the number
of fixed effects in the model is small. The comparison of the finite-sample corrected c
between the two estimation methods, which is possible, as discussed in § 3·2, slightly
favours the residual maximum likelihood estimation.
The distinction between the population and cluster, i.e. subject-specific in this context,

focuses is well illustrated by Fig. 2, which shows plots of the observed versus fitted values,
and residuals versus fitted values, for the mixed-effects model corresponding to the two
focuses, Figs 2(a), (b) and Figs 2(d), (e) and for the linear regression model, Figs 2(c), (f ).
For population inference the fitted values are y: ij=b0+b1tij and the residuals are y

ij
−y: ij ,

whereas for individual inference the fitted values are y@
ij
=b
0i
+b1itij and the residuals are

y
ij
−y@
ij
. Only Figs 2(b), (e) are directly comparable to the linear regression. The finite-

sample  values associated with the two focuses are m=12·6 and c=−42·3,
whereas the  for the linear regression is =−22·8. Thus, the graphical comparison
makes it clear that the marginal and conditional levels convey different information, and
that the appropriate comparison for the regression model is at the conditional level.

4·2. Cluster focus versus population focus

When faced with analysing clustered data, a statistician has to decide whether the
substantive questions of interest refer to the particular clusters, or subjects, in the dataset,
or to the general population. Accordingly, the instruments for model selection will
differ in the two cases. In some situations, both kinds of question are of interest; however,
the different model selection schemes for the conditional and marginal inference may
lead to different final models. The cluster versus population dichotomy is of particular
interest in pharmacology. In a population study we may be interested in comparing the
pharmacokinetic parameters, such as absorption and elimination rate constants, for, say,
two different age groups, while for therapeutic drug monitoring we are interested in the
subjects’ parameters of drug exposure, for the purpose of intervention.
To consider the cluster focus in the Cadralazine study, assume first that the 10 subjects

are of interest. We limited ourselves to models arising from (21) where the subject-specific
parameters are possibly random. The intercepts b

0i
and the slopes b

1i
could be either

fixed, random, of the form b
0i
=b0+b

0i
, b
0i
~N(0, t2

0
), or they could be common to all

subjects, that is b
0i
=b
0
or b
1i
=b1 for all i. Table 4 lists the possible models in the order

of their c values using KMLE . Note that the random intercept and slope model has the
best c fit.
In the case of the population focus, the inference is about population parameters only,

and the relevant criterion is m. Table 4 lists five such models, with values in the m
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Table 4. Comparison of models based on subject-specific focus, c, and
population focus, m. (i ) ‘common’, (ii ) ‘random’ and (iii ) ‘subject-specific’
mean that the corresponding parameters b

ki
(i=1, . . . , 10) are as follows:

(i ) all equal, b
ki
=b
k
; (ii ) b

ki
~N(0, s2

k
), independently; (iii ) b

ki
are diVerent,

fixed parameters; d is the total number of parameters in the model, with
d=r@+1 for the subject-specific mixed-eVects models; K=KMLE for c,
and K=K

c
for  and m. For the population model, there are 2 degrees

of freedom for the mean in all cases

Subject-specific Population
Model c d K m d K

: intercept random, slope random −42·3 19·2 20·2 12·6 6 6·8
: intercept and slope subject-specific −22·8 21 33·2 — — —
: intercept common, slope random −12·0 12·0 12·6 22·3 4 4·4
: intercept common, slope subject-specific −7·8 12 15·3 — — —
/: intercept common, slope common — — — 42·1 18 26·3
: intercept random, slope common 85·6 10·8 11·4 100·4 4 4·4
: intercept subject-specific, slope common 91·2 12 15·3 — — —
: intercept common, slope common 122·3 3 3·2 122·3 3 3·2

, mixed-effects model; , linear regression model; /, generalised estimated
equations/generalised least squares approach, with unstructured correlation matrix.

column. The population-focus random intercept and slope model also has the smallest
m.
Several models appear in both columns of Table 4. The parameters in these models are

either random or common to all clusters. The marginal and conditional  are the same
for the model with common intercept and slope. For the other three models, c and
m differ, according to the focus of the model.
The models with fixed, subject-specific parameters cannot be included in the population

focus, since the population focus does not allow for subject-specific inference. In contrast,
the model denoted by / may only be used for population focus, no inference being
made for the individual effects.

5. A  

We conducted a simulation study to investigate the properties of the c estimator (10).
Ideally, this estimator would display a small bias for small sample sizes, and would be
consistent, when n

i
�2 uniformly; in cluster-focus asymptotics, m is fixed by design,

similarly to the number of covariates in a regression model.
We simulated data from the model (21) with random effects (22). The variance
matrix G is unstructured, with c=3 free parameters. In all simulations m=10, b0=−2·78,
b1=−0·186 and G=var(b

i
) were chosen as the estimated values from the Cadralazine

data: var(b
i1
)=0·0367, var(b

i2
)=0·00279 and cov(b

i1
, b
i2
)=−0·00126. The time points

in the simulation were evenly spaced at 5-hour intervals, from 0 to 25, giving n=6,
0 to 125, giving n=26, and 0 to 250, giving n=51, respectively; in the Cadralazine data,
these times were t=2, 4, 6, 8, 10 and 24 hours.
To study the influence of the variance ratios, that is D, on c, we considered three

cases: s=0·141, from the Cadralazine dataset analysis, and half and double this value,
namely s=0·0705, and s=0·282. We present maximum likelihood estimates throughout;
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we also looked at residual maximum likelihood estimates, which were very similar.
We compared c with its estimator c. The value of c was computed by Monte
Carlo simulation, with 10 000 and 1000 iterations respectively for the outer and inner
expectations in (8). We compared the mean correction termKMLE with the ‘bias correction’
 given by (18). The results are included in Table 5. For comparison, we also computed
the large-sample correction K

a
and Burnham & White’s (2002) correction (r@+1+c). In

KMLE and K
a
, the maximum likelihood estimate r@ was used for r.

Table 5: Simulation study. Comparison of
various corrections for degrees of freedom for
c as in (10): KMLE and K

a
are computed

using r@ ; r@+1+c is Burnham & W hite’s (2002)
correction (20). T he number of observations
per cluster is n. In all cases, m=10 clusters
and c=3 variance components. Mean values
are reported for r@ , KMLE and K

a
based on

10 000 simulations. T he Monte Carlo standard
errors are less than 1% and 0·2% of  and

r@ , respectively

n s  KMLE K
a

(r@+1+c)

6 0·0705 21·5 21·2 20·1 23·1
26 0·0705 21·1 21·1 20·8 23·8
51 0·0705 21·1 21·0 20·9 23·9

6 0·141 20·0 19·0 18·0 21·0
26 0·141 20·6 20·3 20·1 23·1
51 0·141 20·8 20·6 20·5 23·5

6 0·282 17·4 15·4 14·6 17·6
26 0·282 18·9 18·2 18·0 21·0
51 0·282 19·7 19·3 19·2 22·2

In general KMLE gives a very good approximation to , with a small negative bias.
The bias has two sources: we do not account for the influence of the unknown G, and we
use r@ instead of r. As the sample size n increases, the bias of KMLE decreases. The approxi-
mation is more precise for smaller s, closer to the limiting case s/|G|=0, when r=20
which is the number of parameters of the mean in the fixed-effects model.
The asymptotic K

a
is valid for n=26 and n=51, but it is inadequate for n=6, which

is more typical in applications, proving the need for the finite-sample correction KMLE
instead of K

a
. The correction (r@+1+c) is clearly biased, with a bias stabilising at the

value c=3 for small s, as n increases. For s=0·282, (r@+1+c) is more accurate for
n=6, but then becomes increasingly biased as n grows.

6. D

Theorem 1 gives a theoretical justification for the use of Hodges & Sargent’s (2001)
definition of r. This investigation gives further appeal to the idea of thinking of a linear
mixed model in the conditional focus as behaving similarly to a standard linear model,
but with the random effects counting as a ‘fraction’ of the degrees of freedom, for a total



365Conditional Akaike information

of r degrees of freedom for the mean. The c allows for comparison of models with
different random effects structures, as well as comparison of mixed-effects models
with cluster-specific models where the parameters are fixed.
There is a close connection between our conditional Akaike information and the

deviance information criterion proposed for Bayesian inference by Spiegelhalter et al.
(2002). Under a flat prior, these authors show that the Bayesian measure of model
complexity is the same as r, and therefore the c takes the same value as a  for a
mixed-effects model focus with known variances.
The conditional Akaike information has an interesting connection to recent work in

the smoothing literature. In P-spline smoothing, the observed data y are a smooth function
h(X) of the covariates, plus error. The unknown function h can be modelled by maximising
the likelihood of the linear mixed model (6), where Z is related to the basis of a smoothing
spline, with coefficients b (Eilers & Marx, 1996; Kammann & Wand, 2003). The fit of the
model is measured by a mean squared error criterion, related to Mallows’ C

p
for a linear

model, which has exactly the form (9); see Kauermann (2005).
One criticism of  is that it is less adept than the  at identifying the ‘true model’

generating the data, in that it tends to fit too complex a model. Our view is that the
purpose of modelling is usually not to find the ‘true model’, which is, in practice, almost
always much more complex than the statistical models we consider, but rather to find
a good approximation thereof, adequate to the amount of data and the amount of
information it contains. This goal is usually formalised as model prediction, and is con-
vincingly advocated by Breiman (2001). It is in this setting that the  and its relatives,
such as c, are most effective and useful, by finding a balance between the bias and
variance of model predictions.
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A 1
Hodges & Sargent’s rho

Hodges & Sargent (2001) show that the maximum likelihood estimator for model (6) can be
obtained as a weighted least squares solution from a linear model with added ‘pseudo-data’; see
also Hodges (1998) and Lee & Nelder (2001). Write (6) formally as y=Xb+Zb+e, 0=−b+b
or equivalently

Y=Ud+e, (A1)

where

Y=A y0
r
B, d=AbbB , U=AX Z

0 −I
r
B , e=A ebB .
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In (A1) the random effects b formally play the dual role of parameter, in d, and error, in e. Then
var (e)=diag(s2I

N
, G0 )=s2 diag (IN , D0 ). Since D0 is positive definite, for some r×r matrix D

we have that D0= (DTD)−1 ; put C=diag(IN , D). In what follows we specify dimensions for the
matrices I and 0, and for the vectors 1 and 0, only when they are not clear from the context.
Pre-multiply both sides in (A1) by C, to obtain

Y=Md+w, (A2)

where

CY=Y , w=Ce=A eDbB , M=CU=AX Z

0 −DB .
We now have w~N(0, s2I ). Formally, the least squares estimator of d from (A2) is

d@=Ab@b@ B= (MTM)−1MTY= (MTM)−1AXTZTB y. (A3)

In (A3), b@ coincides with the estimator of Harville (1977, p. 323, formula (3·8)), and b@ with the
empirical Bayes estimator b@=E(b|y, b@ ). The fitted vector is

y@=Xb@+Zb@=H
1
y, H

1
= (X Z)(MT M)−1AXTZTB . (A4)

Hodges & Sargent (2001) define the effective number of degrees of freedom for model (A1) as
r=tr(H1 ).
Unlike for a linear model, H1 is not a projection matrix, but it is the top-left submatrix of the
projection matrix H=M(MTM)−1MT, that is

H=A H1 H
12

H
21

H
2
B , (A5)

where H1 and H2 are square, of orders N and r respectively, and H12=HT
21
is N×r; rank(H)=

rank (M)=p+r.

A 2
Proofs of main results

Proof of T heorem 1. We want to estimate the bias correction  in (18), with f ( . |b) and g(. |h, b)
in the class of models (6). Since s2 and D0 are known, only b is unknown, that is h=b. With
a slight abuse of notation, let b be the true random effect in f (y|b), and let b, s2 and D0 be
the true parameters in f (y|b). Write y=m+e, y*=m+e*, that is m=E

f
(y|b)=Xb+Zb, and

e, e*~N(0, s2I
N
), independently of each other and of b. Then

=E
y
log g{y|h@ (y), b@ (y)}−E

y
E
y*
log g{y*|h@ (y), b@ (y)}

=E
yq− n

2
log (2ps2 )−

1

2s2
dy−y@d2r−E

y
E
y*q− n

2
log (2ps2 )−

1

2s2
dy*−y@d2r

=E(dy*−y@d2−dy−y@d2 )/(2s2 )

=[Edy*−md2+Edy@−md2−2E{(y*−m)T (y@−m)}]/(2s2 )

−[Edy−md2+Edy@−md2−2E{(y−m)T (y@−m)}]/(2s2 ) (A6)

=E{(y−m)T (y@−m)}/s2 (A7)

=E{(y−m)Ty@}/s2. (A8)
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In (A6) we expanded the square norm dy−y@d2=d(y−m)− (y@−m)d2, and similarly for
dy*−y@d2 ; in (A7) we used the facts that, conditionally on b, Edy*−md2=Edy−md2, and
E{(y*−m)T (y−m)}={E(y*−m)}TE(y−m)=0; and (A8) uses the fact that, conditionally on b,
E{(y−m)Tm}=0. We dropped the distribution of the expectation when there was no risk of
confusion.
From (A4) y@=H1y, where H1 only depends on X, Z and D0 , and not on the data y. Therefore,

=E{(y−m)TH
1
y}/s2=E{(y−m)TH

1
(y−m)}/s2

=E[tr{H
1
(y−m) (y−m)T}]/s2

=tr[H
1
E{(y−m) (y−m)T}]/s2=tr (H

1
)

=r, (A9)

since E{(y−m) (y−m)T |b}=var (y|b)=s2I
N
.

It follows that c=−2 log g{y|b@ (y), b@ (y)}+2r is an unbiased estimator of the condi-
tional Akaike information (8). %

Proof of T heorem 2. In the set-up of Theorem 1, assume now that s2 is unknown but D0 is
known. Using the ‘pseudo-data’ augmented vectors Y= (yT , 0)T, Y *= ((y*)T, 0)T, YC= (y@T, (Db@ )T )T
and mA= (mT, 0)T, we have, since s@2=dY−YC d2/N (Pinheiro & Bates, 2000, p. 65, eqn (2·12)),

=Eq 1

2s@2
(dY *−YC d2−dY−YC d2 )r=E{dY *−YC d2/(2s@2 )}−N/2

=−N/2+E[dY *−mAd2/(2s@2 )+dYC−mAd2/(2s@2 )−2(Y *−mA )T{(YC−mA )/(2s@2 )}]

=−N/2+Ns2E(s@−2 )/2+E{dYC−mAd2/(2s@2 )},

since E(Y *−mA |b)=0 and E(dY *−mAd2 |b)=Ns2. It is easy to see that YC=HY . Then

s@2=dY−YC d2/N=Y T (I−H)Y /N.

Using (A2) and (I−H)M=0 we obtain further that

s@2=wT (I−H)w/N. (A10)

Since w~N(0, s2I ) and (I−H) is a projection matrix of rank (N−p), it follows that, similarly
to a linear regression model, Ns@2/s2~x2

N−p
. In particular, E(s@−2 )=N(N−p−2)−1s−2 (Gelman

et al., 2003, Appendix A).
Put Q=dYC−mAd2/(Ns@2 ), which is the ratio of two quadratic forms. We need to compute E(Q).

Using (A2), we have YC=H(Md+w)=Md+Hw; mA=Md+diag(0, I )w. Therefore,

dYC−mAd2=dHw−diag (0, I )wd2=wTAw,

where A=diag (H1 , I−H2 ) and H2 is given by (A5). Using (A10) we obtain

Q=wTAw/{wT (I−H)w}.

The spectral decomposition for the projection matrix (I−H) of rank (N−p) yields

I−H=L diag (I
0
, 0)L T, (A11)

where L is an orthogonal matrix, and I0=diag (IN−p , 0p ).
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Put s−1L Tw=v, and write vT= (vT
1
, vT
2
), where v1 contains the first (N−p) components of v,

such that wT (I−H)w=s2vT
1
v
1
. Then v~N(0, I ). Also,

Q=
vT (L TAL )v

vT
1
v
1
=

vT
1
B
1
v
1

vT
1
v
1
+2

vT
1
B
12

v
2

vT
1
v
1
+

vT
2
B
2
v
2

vT
1
v
1

, (A12)

where

B= (L TAL )=A B1 B
12

BT
12

B
2
B

is partitioned such that B1 is a square matrix of order (N−p).
Since v1 and v2 are independent, with zero expectations, the middle term in the last expression

for Q has expectation zero; for the last term, we have

E{vT
2
B
2
v
2
/(vT
1
v
1
)}=E(vT

2
B
2
v
2
)E(vT
1
v
1
)−1=tr (B

2
)/(N−p−2). (A13)

Finally, in the first term, the ratio is independent of its denominator (Durbin & Watson, 1950;
von Neumann, 1941), and therefore

E(vT
1
B
1
v
1
/vT
1
v
1
)=E(vT

1
B
1
v
1
)/E(vT

1
v
1
)=tr (B

1
)/(N−p). (A14)

Putting (A12)–(A14) together, we obtain

E(Q)=
tr (B
1
)

N−p
+

tr (B
2
)

N−p−2
. (A15)

We show now that tr(B1 )=r−p and tr(B2 )=r. Partition

L=AL 11 L
12

L
21

L
22
B ,

where L 11 is N×N. The N×N top-left corner of B=L TAL is B11=L T
11

H
1
L
11
+L T
21

(I−H
2
)L
21

.
Then

tr (B
1
)=tr diag (B

1
, 0
p
)=tr (I

0
B11I
0
)=tr (I

0
L T
11

H
1
L
11

I
0
)+tr{I

0
L T
21

(I−H
2
)L
21

I
0
}

=tr{H
1
(L
11

I
0
L T
11

)}+tr{(I−H
2
) (L
21

I
0
L T
21

)}

=tr{H
1
(I−H

1
)}+tr (I−H

2
)2,

since from (A11) it follows that I−H1=L 11I0L T11 and I−H2=L 21I0L T21 .
Writing the equation (I−H)= (I−H)2 according to the partitioned H, we obtain that

I−H1= (I−H1 )2+H12H21 and I−H2= (I−H2 )2+H21H12 , and therefore

tr (B
1
)=tr H

1
(I−H

1
)+tr (I−H

2
)2=tr H

12
H
21
−tr H

21
H
12
+tr (I−H

2
)

=tr (I−H
2
)=tr (I−H)−tr (I−H

1
)= (N−p)− (N−r)

=r−p. (A16)

Since tr(B)=tr (A)=2r−p, we have that tr(B2 )=tr(B)−tr (B1 )=r. Finally,

E(Q)= (r−p)/(N−p)+r/(N−p−2).

Replacing E(Q) in  gives =KMLE , and therefore the c in (10) is unbiased for c. %

Proof of Proposition 1. Part (i) is immediate. For part (ii), we have that tr(I−H2 )=r−p, for
example from (A16). The diagonal elements of (I−H2 ) are also diagonal elements of (I−H). As
(I−H) is a projection matrix, all its diagonal elements are nonnegative, and therefore r−p�0.
Then, the right-most inequality in (ii) then follows from (i). The middle inequality follows from
the definition of KMLE , equation (11). Part (iii) is immediate. %
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Proof of T heorem 3. With the notation of the proof of Theorem 2, we have

=EC 1

2s@2
R
{dY *−YC d2−dY−YC d2}D

=
N−p

N
EC 1

2s@2
{dY *−YC d2−dY−YC d2}D=N−p

N
KMLE

=K
R
,

which shows that (14) is unbiased for c. %

Proof of (16). Sugiura (1978) and Hurvich & Tsai (1989) showed that 
c
(2) with K

c
given

by (3) is unbiased for . Just as in the proof of Theorem 3, with obvious notation, for the residual
maximum likelihood 

c
, ={(N−p)/N}K

c
={(N−p)/(N−p−2)}( p+1), so that (16) is

unbiased for .

A 3
T he one-way analysis of variance example

We show here that the bias correction of the , when f ( . |b) and g(. |h, b) are in the class of
models (17) and s2 is known, is =r+2/(nl+1)+o(n−1 ).
As in (A8), =E{(y−m)Ty@}/s2=E(eTy@ )/s2. We replace y@ by HC 1y, where HC 1=H1 (l

@ ). A Taylor
expansion of H1 (l) around the true l yields HC 1−H1= (l@−l) (dH1/dl)+o

p
(1). Then

=E(eTH
1
y)/s2+E{eT (HC

1
−H
1
)y}/s2

=r+Eq(l@−l)eTAdH
1

dl B yrNs2+o(1), (A17)

where r in (A17) is obtained as in (A9). The mixed-effects model matrix is Z=diag
m
(1
n
), where 1

n
is a n-vector of 1’s. There is no fixed-effects model matrix X, that is p=0. Then ZTZ=nI

m
,

and H1=Z(ZTZ+l−1I−1
m

)−1ZT= (n+l−1 )−1J, where J=ZZT=diag
m
(J
n
), and J

n
is the square

matrix of order n with all elements equal to 1. It follows that dH1/dl= (nl+1)−2J.
We compute now the maximum likelihood estimator l@ , by maximising the marginal loglikelihood
for (17). The loglikelihood is l(l)=−N/2−yT (I−H1 )y/(2s2 )−m log (nl+1)/2, as in Pinheiro &
Bates (2000, p. 64), with score function l∞(l)=yTJy/{2s2 (nl+1)2}−mn/{2(nl+1)}. This yields
l@=yTJy/(mn2s2 )−1/n.
We can now replace the formulae for dH1/dl and l

@ in the second term in the bias correction
(A17), which we will denote by U:

U=Eq(l@−l)eTAdH
1

dl B yrNs2
=E(yTJyeTJy)/{Nn(nl+1)2s4}−E(eTJy)/{n(nl+1)s2}.

Put e:i=Wj
e
ij
/n for all i, and e:= (e:1 , . . . , e:m )T. Note that e: and b are independent, and that

e:~N(0, s2n−1I
m
). Then ZTe=ne:, ZTy=ZT (Zb+e)=n(b+e: ). Since J=ZZT we obtain E(eTJy)=

E(eTZZTy)=E{n2e:T (b+e: )}=Ns2.
The numerator of the first term in U is

E{(yTJy)(eTJy)}=E[{n2 (b+e: )T (b+e: )}{n2 (e:Te:+bTe: )}]

=n4E{(bTb)(e:Te: )}+2n4E(bTe:e:Tb)+n4E(e:Te:e:Te: ); (A18)

the remaining terms have zero expectations. The first term in (A18) is

n4E(bTb)E(e:Te: )=n4 tr{var (b)} tr{var (e: )}=n3m2ls4.
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The second term in (A18) is 2n4E(bTe:e:Tb)=2n4E tr (bTe:e:Tb)=2n4 tr{E(bbT )E(e:e:T )}=2n3mls4. For
the last term in (A18), first put W=ns−2e:Te:. Then W~x2

m
, and

n4E{(e:Te: ) (e:Te: )}=n2s4E(W 2 )=n2s4{var (W )+E2 (W )}=n2s4 (2m+m2 ).

Putting everything together we obtain, after simplification, U=2/(nl+1), and, from (A17),
=r+2(nl+1)−1+o(n−1 ).
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