qua

ntiNemo
release 2.0.0

User Manual

October 23, 2018

authors
Samuel Neuenschwander
samuel.neuenschwander@unil.ch

Jérdme Goudet
jerome.goudet@unil.ch

Frédéric Michaud
frederic.michaud@unil.ch

website
http://www.unil.ch/popgen/softwares/quantinemo

mailto:samuel.neuenschwander@unil.ch
mailto:jerome.goudet@unil.ch
mailto:frederic.michaud@unil.ch
http://www.unil.ch/popgen/softwares/quantinemo

(© 2014 Samuel Neuenschwander
(© 2017 Frédéric Michaud

Permission is granted to make and distribute verbatim copies of this manual pro-
vided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual un-
der the conditions for verbatim copying, provided also that the sections entitled
Copying and GNU General Public License are included exactly as in the original,
and provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one. Permission is granted to copy and
distribute translations of this manual into another language, under the above con-
ditions for modified versions, except that this permission notice may be stated in
a translation approved by the Free Software Foundation.

Contents

1 Introduction
1.1 Scope
1.2 How to read this Manual
1.3 Main features L
1.4 Input and output
1.5 Availability
1.6 Technical
1.7 License
1.8 Citation
1.9 Acknowledgments oL
2 Getting started
2.1 Imstallation
2.2 Launching quantiNemo
2.3 Minimal settings fileo
2.4 Simulation example
3 Input file structure
3.1 Default value
3.2 Comments e

CONTENTS

3.3 Lineend
3.4 Parameter types. Lo oo
3.5 Temporal parameters
3.6 Keywords
3.7 External files
3.8 Command line parameters
3.9 Macroso
3.10 Batchmode
3.11 Command line help

4 General simulation settings

5 Life Cycle

5.1 Introduction oo
5.2 Mating system
53 Death
5.4 Regulation offspring oL
5.5 Regulation adults
5.6 Extinction Lo

6 Demography

6.1 Dimensions o
6.2 Initialization oo
6.3 Population growth 0 oL
6.4 Dispersal

7 Genotype configuration
7.1 Introduction

7.2 Definingloci o

CONTENTS iii

7.3 Initial genotypes Lo 54
7.4 Mutation. 56
7.5 Multiple traits 60
7.6 Geneticmap 61
8 Quantitative traits and selection 66
8.1 Imtroduction 66
8.2 From genotype to genotypic value 68
8.3 Environmental effect 75
8.4 Selection pressureo 79
8.5 Selection level and position. 88
8.6 Fitness factoro 91
9 Coalescence 93
9.1 Imtroduction 93
9.2 Output 96
9.3 Summary statistics oL 101
10 Ouputs and Statistics 103
10.1 Filesname Lo 104
10.2 Sampling 105
10.3 Summary statisticso 107
104 Raw data 120
10.5 print input file.o oo 127
Bibliography 129
Appendices 131

A technical details 132

CONTENTS iv

C

A.1 Allelic value distribution 132
A.2 Multiple traits with varying types of selection on various patch:
simple case 136
A.3 Multiple traits with varying types of selection on various patch:
matrix expansionl o e e 137
A.4 Selection pressure definition 139
A.5 Simulating sexual chromosome 139
Speeding up simulation 143
B.1 general consideration L. 143
B.2 How to improve simulation time 145
Glossary 147
150

Index

Chapter 1

Introduction

1.1 Scope

QuantiNemo is an individual-based, genetically explicit stochastic simulation
program. It was developed to investigate the effects of selection, mutation, re-
combination, and drift on quantitative traits and neutral marker with varying
architectures in structured populations connected by migration and located
in a heterogeneous habitat. QuantiNemo is highly flexible at various lev-
els: population, selection, trait(s) architecture, genetic map for QTL and/or
markers, environment, demography, mating system, etc.

1.2 How to read this Manual

A full understanding of quantiNemo is not necessary to start using it, and
most of the reader will find themselves only using a small part of the manual,
therefore reading it from the beginning to the end is not recommended.

If you are only interested in simple simulation, you may directly go to getting
started 2, which will help you grasp the very basic concept of quantiNemo,
and then jump to whatever chapter is of interests for you. Most of the
chapters have an introduction which detail the philosophy of the simulation
component. If you are planing to run advanced simulation and want to
have a deeper understanding of quantiNemo, then reading the chapter about

CHAPTER 1. INTRODUCTION 2

settings file 3 and understanding the concept of the life cycle’s chapter 5 is
important. The introduction of chapter 8 and 7 are also important to grasp
the philosophy of quantiNemo. All the other part can be skipped or read in
details depending on the type of simulation that you want to perform. At
the end of the manual, you will find an index with all possible parameters:
see C.

The structure of the manual is the following:

1. Chapter Introduction presents the program, giving general information
about it (license, citation, etc) and presents keys features. It is at-
tended for people who wants to know more about quantiNemo, but no
information is provided about how to run it.

2. Chapter Getting started gives the minimal necessary knowledge to
launch a basic quantiNemo simulation and output simple result about
the simulation. Newcomers should start with this chapter.

3. Chapter Input file structure gives deeper information about how to
write an input file. It is recommended for more advanced users and
can be skipped at first reading: simple example given in the chapter
Getting started are already sufficient for simple simulation. It’s more
relevant to advance user.

4. Chapter General Simulation settings gives details information about
the parameters used for meta-information about the simulation, i.e.
relevant but not modifying the scenario itself, like the folder, the num-
ber of replicates, the initial seed, etc.

5. Chapter Life cycle explains a bit more about how the different event
through which all individual go (birth, migration, etc) and give infor-
mation about how to change their behaviors.

6. Chapter Demography contains all the information about how to setup
a specific demographical scenario, tuning the number of individuals,
the population growth model, the dispersal model, etc.

7. Chapter Genotype configuration contains all the information about how
to set the genetic information of all individual, like the number of loci,
their position on the genome, their mutation rate, etc.

CHAPTER 1. INTRODUCTION 3

8.

10.

11.

Chapter Quantitative traits and selection is about how to define quan-
titative traits and add selection pressure to them.

Chapter Coalescence defines all parameters needed to perform a back-
ward in time simulation. This type of simulation is much more efficient
in term of CPU and memory usage (i.e. much faster) but can only
simulate neutral marker and no quantitative traits.

Chapter Outputs and statistics describes in great detail how to output
information about the simulation such as summary statistics or raw
data (like population genome).

In the annex, a few more technical points are discussed. If you have
technical difficulties to implement a scenario, you may want to check if
an annex could help.

1.3 Main features

QuantiNemo consists of several simulation components which may be easily
extended. The simulation components with their corresponding parameters
are described in more detail in the rest of this manual.

Quantitative traits

QuantiNemo allows the simulation of one to multiple quantitative traits
each having its own specifications. Each trait is defined by one to many
loci. The allelic effects at each locus can be drawn from a normal distri-
bution or can be set explicitly. Mutations are implemented with several
models. The trait determinism can be purely additive or include dom-
inance and/or epistatic interactions among loci. Environmental effects
can also be set in different ways. The selection pressure can also be from
different type, from stabilizing selection to arbitrary fitness landscape,
allowing to simulate a large variety of system including deleterious mu-
tation. Last, selection can be soft or hard (Wallace, 1968).

Neutral markers

quantiNemo also allows the simulation of neutral markers, such as mi-
crosatellites or SNPs with different mutation models (K Allele, Step-

CHAPTER 1. INTRODUCTION 4

wise). Different types of neutral markers and/or quantitative trait loci
can be combined within the same simulation.

Genetic map
QuantiNemo has an underlying genetic map, which may consist of sev-
eral chromosomes. This allows an explicit positioning of all types of
loci on the map (quantitative trait loci (QTL) and neutral markers) to
simulate any recombination rate between loci.

Metapopulation
QuantiNemo allows simulating realistic population dynamics. Popu-
lation sizes may vary in space and in time. The user can choose be-
tween several preset migration models (island, 1-D stepping-stone, 2-D
stepping-stone), or specify the full migration matrix. The migration
pattern can change over time, allowing to investigate scenarios of pop-
ulation fragmentation.

Lifecycle

Each individual undergoes a single life cycle (non-overlapping gener-
ations). The life-cycle starts with breeding and reproduction. Sev-
eral mating systems are available: random mating, selfing or cloning
for hermaphrodites; promiscuity, monogamy or polygyny for dioecious
(gonochoric) species. Selection acts by default on the reproductive fit-
ness of individuals, however selection at other life cycle stages is also
supported. After reproduction, juveniles may disperse to other popu-
lations, and then population size is possibly regulated. Environmental
stochasticity can also be introduced, where populations may go extinct
due to an external factor, independent of population size or genetic
constitution of the population.

Coalescence
To simulate larger population size and genome, QuantiNemo offers the
possibility to switch from individual to population based simulation,
using coalescence. In coalescence, a forward in time simulation in first
performed to simulate any complex demographical scenario, followed
by a backwards coalescence simulation. This setup allows for much
more elaborate scenarios than common coalescence tools.

CHAPTER 1. INTRODUCTION 5
1.4 Input and output

Input
QuantiNemo is launched using a settings file. The settings file is a
text file with flexible and easy to understand structure. The file can
be edited with any text editor, and comments may be added for better
readability. We provide also a syntax-highlighting definition for better
readability.

Output

QuantiNemo provides summary statistics for the different simulation
components, including genetic variance estimates, quantitative trait
analysis (e.g. Qgsr), and F-statistics for all types of loci (neutral and
QTL). The summary statistics can be computed for any generation
during the simulation. QuantiNemo can also produce files with the
raw genetic data. The genotypes at all loci can be dumped to file in
the FSTAT (Goudet, 1995) or the Arlequin format (Excoffier, 2010).
Phenotypes, as well as the additive, dominance, and epistatic effect
values can be written to a file and then analyzed with any population
or quantitative genetic software, e.g. to get patterns of differentiation,
study linkage disequilibrium, or scan for QTLs.

1.5 Availability

The website
http://www.unil.ch/popgen/softwares/quantinemo includes executables
for Windows, Linux and Mac, the source code, a detailed user’s manual and
tutorials. All downloads are freely available under the terms of the GNU
General Public License.

1.6 Technical

quantiNemo is a console program and is coded in standard C-++ using an
object oriented approach. This allows compiling quantiNemo on any com-
puter platform which supports standard C++ compilation. There is no limit

http://www.unil.ch/popgen/softwares/quantinemo

CHAPTER 1. INTRODUCTION 6

on the number of populations, individuals, genes, etc that quantiNemo can
handle, apart from the available hardware capacities (CPU and memory).
QuantiNemo was optimized for high computation efficiency in particular for
large simulations on clusters.

1.7 License

QuantiNemo is free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version. quantiNemo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details. You should have received a
copy of the GNU General Public License along with quantiNemo. If not, see
http://www.gnu.org/licenses/.

1.8 Citation

quantiNemo has been published in the journal Bioinformatics. If you are
using quantiNemo for your research please cite it as

Neuenschwander S, Hospital F, Guillaume F, Goudet J, 2008. QuantiNemo:
an individual-based program to simulate quantitative traits with explicit ge-
netic architecture in a dynamic metapopulation. Bioinformatics 24, 1552-
1553.

1.9 Acknowledgments

We are grateful to Elisa Cavoto, Olivier Blaser, Christine Grossen, Ricardo
Kanitz, Sylvain Antoniazza, Elsa Guillot and Pauls Saunders for feedback on
the new version of quantiNemo. We are also grateful to Fardo Witzenburg
who developed most of the tutorials and to Valeria Montano, Guillaume
Dumont and Ana Paula Machado for revising them.

http://www.gnu.org/licenses/

Chapter 2

Getting started

This chapter explains how to use quantiNemo starting from the basics.

2.1 Installation

Executables of quantiNemo for several operating systems can be downloaded
from the web site http://www.unil.ch/popgen/softwares/quantinemo.
The executables are standalones, meaning that quantiNemo does not require
an installation. After downloading the compressed file with the executable
corresponding to your operating system simply extract it to a folder of your
choice. The compressed file includes the executable for your operating sys-
tem, the user manual, and also an example settings file.

2.2 Launching quantiNemo

There are different ways to launch a simulation with quantiNemo. Normally
a simulation is defined using a settings file and the settings file is then passed
to quantiNemo, but it is also possible to specify the simulation parameters
directly as arguments passed to the program. See chapter 3 for more details.

no argument
If no argument is passed to quantiNemo during launching (double-

7

http://www.unil.ch/popgen/softwares/quantinemo

CHAPTER 2. GETTING STARTED 8

clicking on the executable or by launching the executable via a console
(e.g. quantinemo.exe for Windows)) then quantiNemo will automati-
cally use the settings file named quantinemo.ini residing next to the
executable if present. If such a settings file (with the given name) is
not present, then quantiNemo will prompt you for the name of a set-
tings file until a valid name is entered (relative and absolute paths are
accepted) or "exit" is passed as file names (without quotes).

file name
The settings file name may be passed as a parameter to the executable
when quantiNemo is launched. This can be done using a console win-
dow:

> quantinemo.exe settings.ini

Depending on the operating system a ’./’ in front of the executable
is sometimes needed to specify that the executable is located in the
current directory (Linux/Mac OS):

> ./quantinemo settings.ini

2.3 Minimal settings file

Most of the parameters have default values. This allows making short and
clear settings files. This section describes the parameters needed for a min-
imal settings file and describes the simulated model, respectively how the
default values are set.

The following two parameters are needed in every settings file:

generations 500
patch capacity 1000

This minimal settings file allows performing a simulation with a single popu-
lation consisting of 1000 hermaphrodites. The population evolves under neu-
tral random mating for 500 generations keeping the population size constant
at carrying capacity. No genetic data are simulated since no quantitative
traits or neutral markers are specified. The simulation generates no output
apart from the log file. Although this simulation works it makes no sense,
since no output is generated.

CHAPTER 2. GETTING STARTED 9
2.4 Simulation example

This section describes a more realistic simulation example and describes
how the output is stored. The settings file of this example named "quan-
tiNemo2 example.ini" is included in the compressed folders of the downloads
of quantiNemo:

generations 1000

metapopulation

patch number 10
patch capacity 1000
dispersal rate 0.01

selection
quanti_stab sel optima 5
quanti_stab sel intensity 0.1

quantitative trait

quanti_loci 5
quanti_all 255
quanti mutation model 0
quanti mutation rate le—4

statistics
stat {q.adlt.ho}

A simulation based on this settings file named "quantiNemo2 example.ini"
produces the following output to your terminal window:

Program : quantiNemo2 (quantitative genetics simulator)
Version: 2.0.0 [Dec 25 2017; 23:12:33]

Authors: Samuel Neuenschwander (samuel.neuenschwander@unil.ch)
Frederic Michaud (frederic.michaud@unil.ch)&
Jerome Goudet (jerome.goudet@unil.ch)
Department of Ecology and Evolution
University of Lausanne, Switzerland
Reading settings file ’example.ini’
Reading settings file ’example.ini’ done (16 parameters)

CHAPTER 2. GETTING STARTED 10

SETTINGS (example.ini)
Simulation:
individual —based
120 generations
2 replicates
1. of 1 batch simulations
1 threads used
random generator initialized by the time

Loaded traits:
Quantitative trait: 5 loci; 255 alleles; neutral trait;

Life cycle sequence:
1. breed

2. save stats

3. save files

4. aging

5. dispersal
Metapopulation:

10 patches (K_tot=10000)
Migration model: island
Mating system: random mating (hermaphrodite)

Genetic map:
5 independent loci

Output:
(to folder ’example’)
genotype (quanti) computed at 4 generations
statistics (2 statistics) computed at 120 generations

replicate 2/2 [00:00:01] 120/120 RAM: 0.000000 MB

SIMULATION done (CPU time: 00:00:02s) ———

quantiNemo2 terminated successfully!

This output informs you that this simulation was parametrized by the set-
tings file "quantiNemo2 example.ini". The simulation consisted of one quan-
titative trait and one type of neutral markers. The simulated life cycle is
indicated and shows that summary statistics and genotypes or phenotypes
are output. Only one replicate of 100 generations was performed. For each

CHAPTER 2. GETTING STARTED

11

replicates the elapsed time (hh:mm:ss) is printed out to the console and at
the end of the simulations also the total elapsed time. The output of this
simulation was stored in the following structure relative to the executable:

simulation.log
simulation stats.txt
simulation mean.txt
simulation var.txt
simulation legend.txt
simulation g030 rl.dat
simulation g030 r2.dat
simulation g060 rl.dat
simulation g060 r2.dat
simulation g090 rl.dat

FHFF I3

#

#log file to relaunch the same simulation

statistics for each replicate
statistics across replicates
variance across replicates
statistic legends

genotype raw data

genotype raw data

genotype raw data

genotype raw data

genotype raw data

simulation g090 r2.
simulation g120 rl.
simulation g120 r2.

dat
dat
dat

genotype raw data
genotype raw data
genotype raw data

Chapter 3

Input file structure

This section describes the format of the settings file. The settings file is a
text file with in general one parameter per line in a key-value scheme. For
example

patch capacity 1000

sets the parameter patch capacity to the value of 1000. The order of ap-
pearance of the parameters in the settings file does not matter. However, a
particular parameter should appear only once in the settings file. If a pa-
rameter appears several times in the file only the last instance is considered.

3.1 Default value

Most of the parameters have default values. The default value of a parameter
is taken into account when either the parameter is not listed in the settings
file or its argument is missing. The default values are listed behind the
parameter name in this manual and are specified by (default:). The default
values are the most common setting of the parameter. the default values
allow keeping the settings file short and clear.

12

CHAPTER 3. INPUT FILE STRUCTURE 13
3.2 Comments

quantiNemo allows adding comments in the settings file (and all other input
files). There are two different types of comments:

Single line comments
A simple hash character '#’ defines the start of a single line comment.
The hash character and the remaining text of the line are ignored by
quantiNemo.

Block comments
Block comments may start and end at any place in the file. This allows
to comment out multiple lines at once or only a part of a line. A block
comment starts with the characters '#/’ and ends with the characters
'/#’. The starting and ending characters and the text between them
are ignored.

3.3 Line end

In general, a parameter (the key and its argument) has to be written on a
single line (except for matrices and temporal parameters). However, using
a backslash "\’ it is possible to bypass the end of a line and to write an
argument on several lines. Note, that after the backslash any text on the line
is removed.

3.4 Parameter types

There are different types of arguments that a parameter may take. In the
following the argument type is specified within square brackets. Example:

stat log time [integer|

Integer
Integers are whole-numbers, 7.e. a dot-less number. The following
forms are equivalent: 1000 or le3.

CHAPTER 3. INPUT FILE STRUCTURE 14

Decimal

Decimals are floating-point numbers. The following forms are equiva-
lent: 0.0001, .0001 or le-4.

String
Strings are text arguments. If the string contains spaces the argu-
ment has to be enclosed within quotation marks "...". When a string
is enclosed by quotation marks it may be written over several lines.

Example of a string with a space:

folder "first simulation"

Matrix

Matrices allow passing several numbers (integer or decimal) to a param-
eter. This may be necessary for example to specify carrying capacities
(see section 1D Matrix), or to pass a dispersal matrix (see section 2D
Matrix) to quantiNemo. Matrices are enclosed between curly brackets
{ }’, and numbers are separated by at least a space. Matrices may be
written on several lines and may also contain comments. There is no a
priori restriction on the size of the matrix.

1D Matrix
A one dimensional matrix (vector) consists of data in a single di-
mension. There are three different ways to write a one dimensional
matrix, which are all equivalent:

patch number 4

patch capacity { 20 10 20 10 }
patch capacity { {20 10 20 10} }
patch_capacity { {20} {10} {20} {10} }

2D Matrix
Some parameters need a second dimension for their argument. A
second dimension is obtained by enclosing the inner rows of the
matrix again within curly brackets { }’.

patch number 4
disp _rate {

o O OO
=R O
o O OO
=N OO
OO OO
N O b
——

CHAPTER 3. INPUT FILE STRUCTURE 15

This example shows the pairwise dispersal matrix for 4 patches
(4x4). Each row specifies a source patch from which emigrants
emigrate. Each column specifies the target patch receiving the
immigrants. The diagonal of the matrix specifies the proportion
of individuals remaining in the natal patch.

Matrix length adjustment
Usually, matrices are defined in whole, i.e. the number of carrying
capacities in the 1D matrix example above meets the number of
patches (4 patches). However, if there is a repeating pattern in
the matrix, it is also possible to define only the repetition. In this
case, the matrix will be repeated as needed. For instance, the 1D
matrix above could also be written in one of the following ways as
there is a repetition in it:

patch number 4
patch capacity {20 10}

Note, that rows and/or columns are repeated as needed. If the
number of columns (or rows) is not an entire subset a warning will
be returned and the simulation will adjust the matrix as:

patch number 5
patch capacity {20 10}

In this example we have 5 patches, however, the carrying capaci-
ties are only specified for 2 patches. As 2 is not an entire subset of
5 a warning will be returned and the patches will have the follow-
ing carrying capacities: 20, 10, 20, 10, 20. If all values of a matrix
are identical one may leave out the brackets. In the following
example all three declarations result in the same simulation:

patch number 4

patch capacity {20 20 20 20}
patch capacity {20}

patch capacity 20

Unbalanced matrices
Usually, a matrix is balanced, 7.e. each row has the same num-
ber of columns. However, some parameters (such as the parame-
ter quanti_loci_positions) allow having unbalanced matrices,
1.e. rows do not necessarily contain the same number of columns.

CHAPTER 3. INPUT FILE STRUCTURE 16

Other parameters (such as the parameter quanti_loci_positions)
allow to skip a row, i.e. some rows do not contain any data. A
row can be skipped by explicitly indicating the rank of the row
just after the beginning of the row followed by a colon ":". The
ranking starts with 1. If a row has no explicit rank it is assumed
to follow the preceding row. Here is an example for the genetic
map of a quantitative trait:

quanti_loci 11

quanti_ loci positions { {1: 10}
{3: 20 40 60 80 100}
{ 20 40 60 80 100} }

In this example, the quantitative trait is defined by 11 loci located
on three out of four chromosomes. The first chromosome contains
a single locus at position 10 ¢cM. No locus is located on the second
chromosome. The third and fourth chromosome have the same
structure: 5 loci are located on each of the two chromosomes, and
the distance between adjacent loci is 20 cM.

3.5 Temporal parameters

An important feature of quantiNemo is that some parameters may change
over time during a simulation. Such parameters are indicated as "temporal"
in this manual. Temporal arguments are enclosed within two parentheses
’(...)". For each change of the argument over time a pair consisting of a
generation index and a corresponding argument is needed. The values of a
pair are separated by at least one space. Pairs are separated by a comma
" or by a semi-colon ;. The first value of a pair specifies the time, i.e.
before which generation the change happens. The second value is the new
argument. A parameter may change as often as any generation. A simulation
starts at generation 1. Therefore the first change has to have the time value 1
otherwise the parameter cannot be initialized leading quantiNemo to return
an error. A temporal argument may be written over several lines.

patch capacity (1 100,
50 200,
100 500)

CHAPTER 3. INPUT FILE STRUCTURE 17

Here, the carrying capacity is 100 for the first 49 generations, 200 from
generation 50 on, and 500 from generation 100 on.

3.6 Keywords

quantiNemo supports keywords in the settings file. A keyword may be de-
fined using the word ’set’, followed by the keyword and the argument. The
keyword can be used in parameter arguments and quantiNemo will replace
all keywords by their defined arguments. A keyword supports any argument
which makes sense for the parameter where the keyword is used, including
macros and temporal parameters.

set NUM_GEN runif (1, 100, 1000)
generations NUM_GEN
stat log time NUM GEN

In this example the keyword 'NUM GEN’ is defined as a random macro.
Consequently both parameters generations and stat log time are set
to the same value. In other words, this settigns file allows to easily define
randomly the number of generations to simulate between 100 and 1000 gen-
erations and to compute the statistics at the last generation.

3.7 External files

In general, arguments are written directly after the parameter name on a
single line. However, arguments may be sometimes large (e.g. big matrices,
temporal parameters, ...) leading to poorly readable settings file. Using
external files for large arguments allows keeping the settings file clear and
well readable. An external file may be used for any parameter. Instead of
writing the argument directly after the parameter name, the name of an
external file is written after the parameter name. In order for quantiNemo
to recognize the argument as a file name the prefix ’$’ has to be added
before the file name. The external file must contain the argument of the
parameter. Only a single argument per external file is possible, however, the
same external file may be used for several parameters. The format of the
argument in the external file follows the same rules as in the settings file,

CHAPTER 3. INPUT FILE STRUCTURE 18

except that line breaks are ignored, i.e the character "\’ between lines is not
necessary. Here is an example:

settings file:

disp_rate $dispersal file.txt

external file named "dispersal file.txt":

dispersal rates
{ {0.2 0.0 0.0

oo oo
O = N
o O OO
oo oo o
=N OO
O OO OO
OO O
v N e

=~ N O

3.8 Command line parameters

Parameters are normally defined in a settings file which is then passed to
the command line. All parameters and their arguments may also be passed
directly to the command line. Command line options provide a convenient
mechanism to override commonly altered parameter values. Parameters and
their argument passed to the command line override the arguments defined
in the settings file. To do so, the argument must be specified after the name
of the input file. The parameter itself should have two — in front, and the
value it takes should be right after it, separated by a space:

On Windows:

quantiNemo .exe settings.ini —generations 1000

On Linux or Mac OS:

./ quantiNemo settings.ini —generations 1000

3.9 Macros

QuantiNemo supports several macros allowing to write more easily the set-
tings file. Several macros allow drawing random deviates from a given dis-

CHAPTER 3. INPUT FILE STRUCTURE 19

tribution. Note, that the random deviates are only drawn once, i.e. all
replicates have thus the same numbers. The names and parameters of all
macros follow as good as possible the equivalent functions in the statistical
package R. To understand or control the outcome of a macro the log file (see
parameter logfile type) may be consulted. This log file may either contain
the macros as they were specified or the interpreted macros.

option "Time"
Adding this option to most of the macro allows generating temporal
arguments. If this option is used with a macro allowing to draw random
deviates it is possible to simulate temporal fluctuations. In principle,
the macro draws for the given time interval random numbers following
the specifications and generates a corresponding temporal argument
with nb intervals. The option Time has to follow directly the macro
name, e.g. rnormTime for the macro rnorm and the arguments of the
macro have to be extended at the end by two values which are the start
and the end time, e.g. rnorm(nb, mean, sd, timeFrom, timeTo). In this
example the number of random deviates (nb) specifies the number of
regular temporal changes between timeFrom and timeTo. The time
intervals are generated internally as seq(timeFrom,timeTo,nb). An
example of such a temporal macro is shown with the macro seq below.

seq(from,to,nb.steps)
seqTime(from, to, nb.steps, timeFrom, timeT o)

With this macro it is possible to specify a sequence of data points.
seq works similar as seq in the statistical package R though length.out
is used by default instead of by. The macro needs three arguments
separated by a comma: from is the first data point of the sequence, to
is the last data point of the sequence and nb.steps specifies the number
of data points including the edges. from and to may be single values
or matrices while nb.steps has to be a number. If the matrices of from
and to do not have identical dimensions the matrices are adjusted to
each other. Example of seq:

patch capacity {seq (100, 1000, 10)}
patch capacity {100 200 300 400 500 600 700 800 900 1000}

Both specifications of the carrying capacities are identical, i.e. the
macro seq translates its arguments to the lower specification.
The command seq can also be used for temporal sequences:

CHAPTER 3. INPUT FILE STRUCTURE 20

patch capacity (seqTime (200, 1000, 5, 1, 5))
patch capacity (1 200, 2 400, 3 600, 4 800, 5 1000)

patch stab sel optima (seqTime({{1 10}},{{10}{1}}, 10, 1
patch stab sel optima (1 {{1 9}{1 9}},
> {{2 9}{1 8}}.
3 {{3 91 7}
4 {{4 9}{1 6
5 {{5 9}{1 5
6 {{6 9}{1 4
7 {{7 9}{1 3
8 {18 91{1 2
9 {{9 9}{1 1

Both specifications of the linear increase of the carrying capacities and
selection optima, respectively, over time are identical. Again the macro
seqTime translates its arguments into the lower specification.

seq2D (zlim, ylim, patchl D1, patchI D2, valuel, value2, steps))

This macro allows generating a two-dimensional cline of values. For
example, this allows generating a cline of carrying capacities across a
two-dimensional landscape. Since the macro does not know the other
parameter arguments all necessary information has to be passed to the
macro, i.e. some information may be redundant in the settings file.
In principle, the cline is defined by the values at two patches and the
number of steps between these two patches to interpolate. The changes
of numbers are vertical to the line between the two patches. xlim and
ylim are the matrix dimensions, patchl D1 and patchI D2 are the patch-
IDs for which the values will be defined and the corresponding values
are valuel and value2, respectively. step is the number of changes
between these two patches, following the macro seq.

seq2Db(zlim, ylim, patchI D1, patchl D2, valuel, value2, steps))
This macro is similar to the previous one seq2D but the interpolation
for the cline follows another rule: The value of any patch is defined by
the ratio of the distances from this patch to the two specified patches.

rep(text, number)
With this macro it is possible to specify a repetition of the text. rep
works similar to rep in the statistical package R. The macro needs

CHAPTER 3. INPUT FILE STRUCTURE 21

two arguments separated by a comma: the first one is the text to be
repeated, and the second argument specifies the number of repetitions.
Example:

patch ini_ size {1000 rep (0, 9)}
patch ini_ size {1000 0 0 0 0 0 0 0 O O}

Both specifications of the initial population sizes are identical, i.e. the
macro rep translates its arguments to the lower specification. In this
example only the first patch is populated at the start of the simulation,
allowing to simulate a colonization scenario.

runif(nb)

runif(nb, min, max)

runifTime(nb, timeFrom, timeT o)

runifTime(nb, min, maz, timeFrom, timeT o)
Random numbers may be drawn from a uniform distribution. nb spec-
ifies the number of random deviates to draw. min and max specify
the range of the distribution. If min and max are not specified the
random deviates are drawn within 0 and 1. The returned values are al-
ways decimal numbers. To obtain entire random deviates of an uniform
distribution the macro has to be set within the macro cel.

rnorm(nb, mean, sd)

rnormTime(nb, mean, sd, timr From, timeT o)
Random numbers may be drawn from a normal distribution, where
mean is the mean of the normal distribution, sd the standard deviation
of the normal distribution, and nb specifies the number of random
deviates to draw. mean and sd may be single values or matrices, while
nb has to be a number.

rnorm(nb, mean, sd, min, max)

rnormTime(nb, mean, sd, min, mazx, timr From, timeT o)
Same as above but random numbers are drawn from a truncated normal
distribution, with min as lower bound and ma as upper bound. min
and max have to be single numbers.

rlnorm(nb, meanlog, sdlog)
rlnormTime(nb, meanlog, sdlog, timeFrom, timeT o)
Random numbers may be drawn from a log normal distribution, where

CHAPTER 3. INPUT FILE STRUCTURE 22

meanlog is the mean of the log normal distribution on the log scale
(log(mean)), sdlog the standard deviation of the log normal distribu-
tion on the log scale (log(sd)), and nb specifies the number of random
deviates to draw. meanlog and sdlog may be single values or matrices,
while nb has to be a number. Note that the parameters to pass to the
function are not the mean and standarddeviation of the underlying
distribution. The statistics of the underlying distribution mean and sd
may be obtained as follows:

2
meanlog+ %

mean = €

sd = \/(esdlog2 _ 1)62meanlog+sdl092

If these equations are transformed it allows to compute the input pa-
rameters meanlog and sdlog for the macro if the statistics of the un-
derlying distribution are known (i.e. mean and sd):

1 d \’
meanlog = log (mean) — §log ((micm) + 1)

sd \?
sdlog = | log ((mean) + 1)

rlnorm(nb, meanlog, sdlog, min, max)

rlnormTime(nb, meanlog, sdlog, min, max, timeFrom, timeT o)
Same as above but random numbers are drawn from a truncated log
normal distribution, with min as lower bound and ma as upper bound.
man and max have to be single numbers.

rgammal(nb, shape, scale)

rgammaTime(nb, shape, scale, timeFrom,timeT o)
Random numbers may be drawn from a gamma distribution, where
shape is the shape of the gamma distribution, scale the scaling factor,
and nb specifies the number of random deviates to draw. shape and
scale may be single values or matrices, while nb has to be a number.

rbeta(nb, alpha, beta)
rbeta(nb, alpha, beta, from, to)
rbetaTime(nb, alpha, beta, timeFrom, timeT o)

CHAPTER 3. INPUT FILE STRUCTURE 23

rbetaTime(nb, alpha, beta, from,to, timeFrom,timeT o)

Random numbers may be drawn from a beta distribution, where alpha
and beta define the shape of the beta distribution, min and max spec-
ify the range of the beta distribution, and nb specifies the number of
random deviates to draw. If min and max are not specified the random
deviates are drawn in the standard beta distribution ranging from 0 to
1. alpha, beta, min, and to may be single values or matrices, while nb
has to be a number.

rpois(nb, mean)

rpoisTime(nb, mean, timeFrom, timeT o)
Random numbers may be drawn from a discrete poisson distribution,
where mean is the mean of the poisson distribution, and nb specifies
the number of random deviates to draw. Note, since the poisson distri-
bution is discrete the macros rpois() and rpoisi() are identical. mean
may be a single value or a matrix, while nb has to be a number.

rbinom(nb, size, prob)

rbinomTime(nb, size, prob, timeFrom, timeT o)
Random numbers may be drawn from a discrete binomial distribution,
where size is the number of trials, prob is the probability of success
on each trial, and nb specifies the number of random deviates to draw.
size and prob may be single values or matrices, while nb has to be a
number.

rsample(nb, with _replacement?, eleml1, elem2, elem3, ...)
rsampleTime(nb, with _replacement?, elem1, elem?2, elem3, ..., timeFrom, timeT o)

This macro allows sampling within the given elements (numbers or text
supported). nb specifies the number of elements to output. The second
parameter specifies if the numbers are randomly drawn with replace-
ment (1) or not (0). Any following element separated by a comma is
considered as an element allowed to be sampled. Note, that without
replacement the number of possible elements to draw may not exceed
the number of input elements.

round (elements)
This macro rounds all numbers within the brackets to entire numbers.

CHAPTER 3. INPUT FILE STRUCTURE 24

ceil(elements)
This macro ceils all numbers within the brackets to entire numbers, i.e.

to the next higher entire number.

floor(elements)
This macro floors all numbers within the brackets to entire numbers,

1.e. to the next lower entire number.

trunc(elements)
This macro truncates the numbers at zero, ¢.e. all negative numbers
are set to zero.

equation(...)
This macro allows solving simple equations from left to right. Sup-
ported are arithmetics on single values, matrices, or a combination of
them. It supports the arithmetics plus, minus, product and division.
Values and arithmetic signs have to be separated by any space.

In principle macros may be combined within each other or may be concate-
nated:

patch capacity {rnorm (1000, 1000, 6)}
{1032.52 968.315 1006.58 1009.23 974.836 976.087}

patch capacity {round(rnorm (1000, 1000, 6))}
{972 1001 998 998 973 1003}

patch capacity {rep(round(rnorm (1000, 1000, 3), 2))}
{942 1055 1035 942 1055 1035}

In all three examples the mean carrying capacity is 1000, however, the ca-
pacity of the individual patches varies following a normal distribution with
variance 1000. By default, the random generator draws double deviates as
shown in the first example. Note, that this argument will be accepted by
quantiNemo, however since this parameter expects entire numbers quan-
tiNemo will round the numbers down to the next smaller entire number.
By adding the I for integer to the distribution name the double values are
rounded to the next entire number as shown by the second example. The
third example illustrates how the macros may be encapsulated with each
other resulting in two patches having always the same capacity.

CHAPTER 3. INPUT FILE STRUCTURE 25

3.10 Batch mode

QuantiNemo allows performing multiple simulations by executing a single
command. There are two ways to perform such batch simulations. Note,
that these two types may not be mixed, i.e. be used at the same time.

3.10.1 Multiple settings files

A normal simulation can be launched by passing the settings file name as
parameter to the executable. It is also possible to pass several settings file
names to the executable. In this case a simulation for each settings file is
executed consecutively:

> quantinemo.exe siml.ini sim2.ini

In this example quantiNemo is launched with two settings files (siml.ini
and sim2.1ini). The simulations will be executed one after the other leading
to the following console output:

Reading settings file ’siml.ini’ ...
Reading settings file ’siml.ini’ done (29 parameters)

Reading settings file ’'sim2.ini’ ...
Reading settings file ’sim2.ini’ done (29 parameters)

— SIMULATION 1/2

——— SIMULATION 1/2 done (CPU time: 00:00:15s) ——

——— SIMULATION 2/2

——— SIMULATION 2/2 done (CPU time: 00:00:16s8) ——

CHAPTER 3. INPUT FILE STRUCTURE 26

3.10.2 Sequential parameters

A batch simulation may also be launched by a single settings file if so-called
sequential parameters are used. Sequential parameters are any parameter
with not only one but several arguments.

patch capacity 5 10 20

In this example patch capacity is a sequential parameter with three argu-
ments. If patch capacity is the only sequential parameter three consecutive
simulations will be launched with identical parameter arguments, except for
the parameter patch capacity which will be set to 5 for the first simulation,
to 10 for the second simulation, and to 20 for the third simulation.

If several parameters are sequential parameters all combinations of the se-
quential parameters will be simulated. Example:

patch number 10 50
patch capacity 5 10 20

There are two sequential parameters in this example. This will result in 6
consecutive simulations with the following parameters:

patch number patch capacity

1. simulation 10 5
2. simulation 10 10
3. simulation 10 20
4. simulation 50)
5. simulation 50 10
6. simulation 50 20

To prevent the output from overwriting the preceding simulation a unique
base file name is given to each simulation. This unique base file name consists
of the base file name (parameter filename) plus a suffix which includes the
rank of the simulation. If in the example above the parameter filename was
set to "mysim" the base name for each simulation would be as follows:

filename
1. simulation mysim—1
2. simulation mysim—2

3. simulation mysim—3

CHAPTER 3. INPUT FILE STRUCTURE 27

4. simulation mysim—4
5. simulation mysim—5
6. simulation mysim—6

Notice that if you specify a folder using the parameter folder, all simulation
will be saved in the same folder and each result will override the previous
one.

3.11 Command line help

Quantinemo comes with a build-in manual which can be accessed through
the command line. It is useful mainly when looking for a specific parameter
or to know which value of a parameter correspond to which behavior.

In quantiNemo, the parameters are regrouped in various sets, depending
on what concept they are related to. For example, all parameters starting
with quanti_ are related to quantitative traits. If you ask quantinemo for
help without any other parameters, it will display the various existing set of
parameters:

./quantinemo —help

[...]

Available parameter sets:

simulation simulation)

metapop metapopulation)
quanti quantitative traits)
ntrl neutral traits)
breed reproduction)

aging aging)

genome genetic map)

save files output of files)

regulation offspring population size regulation)
dispersal dispersal)

regulation adults population size regulation)
extinction population extinction)

store pop size population size storage)
coalesce coalescence)

(
(
(
(
(
(
(
save stats (statistics)
(
(
(
(
(
(
(

CHAPTER 3. INPUT FILE STRUCTURE 28

To have more information about a specific parameter within one of these
sets, we have to use the same command than before but adding the name of
the parameter set. QuantiNemo will display all the parameters within this
set, ordered by their (subjective) importance. The possible values, default
value and their meaning are also explained.

./simulation —help simulation

[...]

simulation

—folder[string| (default: simulation yyyy-mm-dd hh) {0}
Output folder of the output. If not specified the foldler
will have a date and time stamp. "" may be used to store the

output directly in the working directory.

—replicates [integer] [0;—[(default: 1) {0}
Number of replicates to perform per simulation.

—filename [string] (default: simulation) {1}
Base filename for all outputs, if they are not specified
individually .

Chapter 4

(General simulation settings

This section describes general parameters of a simulation:

replicates [integer| (default: 1)
Number of replicates to perform per simulation. Replicates are identical
simulations (in terms of parametrization), but their outcome differ due
to stochastic events.

working directory [string/integer| (default: 0)
This parameter allows defining the working directory, the directory
where the simulations will be stored in. By default, the working direc-
tory is the current working directory specified by the OS. The following
options are available:

0 : current working directory. The output is stored in the current
working directory specified by the OS (default). Normally this is
the directory from where the simulation is run.

1 : settings file directory. The output is stored next to the settings
file (e.g. quantinemo.ini).

2 : executable directory. The output is stored next to the executable.

string : explicitly defined directory. The working directory can also
be explicitly defined. If the specified path is relative it is relative

to the current working directory given by the OS, but the path
can also be absolutely specified.

29

CHAPTER 4. GENERAL SIMULATION SETTINGS 30

folder [string]| (default: "simulation yyyy-mm-dd hh-mm-ss")

This parameter specifies the folder for the output. The default ar-
gument of this parameter differs from the rules, as the default folder
name is dynamic, ¢.e. comprises the start time and date of the simula-
tion. The default folder name is "inputfilename " with the date and
time as a suffix in the format "yyyy-mm-dd hh-mm-ss" (Year-Month-
Day Hour-Minute-Second). This dynamic default folder name allows
storing each simulation separately, avoiding that previous outputs are
overwritten. If the parameter is set, the passed argument will be used
as folder name (i.e. without any addition of the time). In this case,
it may happen that the new output wants to overwrite previous out-
puts. The parameter overwrite (see below) allows specifying the rules
for overwriting other outputs. If the output should be stored directly
in the working directory this parameter has to be listed in the settings
file followed by an empty argument "" (for this special parameter an
empty argument is not identical to a missing one).

filename [string] (default: "simulation")
This name will be used as the base filename for all outputs if they
are not specified individually. The output file extensions are added
to this base filename. If a file is written on a replicate-periodic basis,
the replicate number will be added between the base name and the
extension, so that the same file is not overwritten periodically.

logfile [string] (default: "quantinemo.log")
This is the file name (including the extension) for the log file in which
the simulation logs are recorded. This log file is stored next to the
executable and records the main information of each simulation, such
as the elapsed time for the simulation and the replicates and the time
of the start and end of a simulation. By default, quantiNemo will save
all this information in a file named "quantinemo.log".

logfile type [0-2] (default: 0)
For each simulation, a log file is created containing the settings of the
simulation. The file is created for each simulation and is stored in
the simulation folder (parameter folder). The name of the log file is
composed of the base name (parameter filename) and the suffix ".log".

0 : as input. The file contains the same parameters as the settings

CHAPTER 4. GENERAL SIMULATION SETTINGS 31

file, plus the parameter seed.

1 : minimal. The file contains a minimal set of parameters still able
to perform the same simulation. All parameters of the settings
file which were set to the default value are not reported.

2 : maximal. The file contains all parameters, including the ones not
set in the settings file. For each parameter the type, the default
value, if it is a temporal parameter, and a possible range limit is
added as comment.

seed [integer/matrix| (default: "")

This parameter specifies the seed which will be used to initialize the
random number generator. It is possible to pass a single number as seed
in the range of 0 to 4,294,967,295 depending on the computer system
(corresponding to an unsigned long in C+-+). To increase the number
of possible seeds it is possible to pass an array of seeds (up to 624)
to quantiNemo if specified as a one-dimensional matrix. If the seed is
not set the random generator is initialized by the time, 7.e. a matrix
with two seeds is used. Thereby the first number is the time in seconds
since 1.1.1970 (function time(NULL) in C++), and the second number
is the number of clock ticks elapsed since quantiNemo started (function
clock() in C++). Note, no macros are allowed in the seed argument.

random per replicate [0-1] (default: 0)
This parameter allows specifying how to treat macros with random
numbers in the case of multiple replicates:

0 : same. All replicates share the same result for the macros

1 : individual. All replicates have different result for the macros

all combinations [0-1] (default: 1)
This parameter allows specifying how multiple sequential parameters
are treated:

0 : order. Simulations with the different orders will be simulated (Sim
1: all first arguments; sim 2: all second arguments, ...). If the
number of sequential arguments differs, then the y are extended
as a vector in R.

CHAPTER 4. GENERAL SIMULATION SETTINGS 32

1 : full. All possible combinations will be simulated.

preexec script [string] (default: "")
This parameter allows specifying a script which will be executed before
the simulation. The settings file name is passed as unique parameter
to the script.

postexec script [string] (default: "")
This parameter allows specifying a script which will be executed after
the simulation. The settings file name is passed as unique parameter
to the script.

Chapter 5

Life Cycle

5.1 Introduction

QuantiNemo is a discrete generation-based simulator. This means that in-
dividuals undergo only once the life cycle and that the generations are not
overlapping. Depending on the parameterization in the settings file some
events may be skipped. The life cycle has a fixed order of events. A simula-
tion starts with "Breeding", 7.e. only adults are present at the initialization
of the simulation. The life cycle is repeated for each generation. The life
cycle in quantiNemo is the following.

1 : Reproduction: Adults mate and may produce offspring. By default,
selection acts at this stage.

2 : Death: Adults are removed from the population. Only the juveniles
remain in the model.

3 : Regulation offspring: Reduce if necessary the population size to
carrying capacity on each patch before dispersal.

4 : Dispersal: Individual can migrate to other patches and become adults.

5 : Regulation adult: Reduce if necessary the population size to carrying
capacity on each patch after dispersal.

6 : Extinction: Due to stochastic events populations may go extinct.

33

CHAPTER 5. LIFE CYCLE 34

Initial
population

Y

Statistics
& Output

Extinction Reproduction

Regulation Regulation
adult offspring

N
Qfl)pV

Dispersal

Figure 5.1: Schematic representation of the life cycle.

Moreover, during each cycle, two events are called between breeding and
death, allowing to save informations about the simulation. Notice that at
this moment, both adults and Juveniles are present, the main difference
between both being that the adult might come from another patch while
Juvenile not.

Statistics: It is the stage were summary statistics can be computed for
adults and juveniles.

Output: Genotypes and/or phenotypes can be dumped to files for adults
and /or juveniles.

Most of the life cycle events are described in the following pages. However,
the dispersal is included in the chapter about demography, section 6.4. All

CHAPTER 5. LIFE CYCLE 35

the information about statistics and output is also given in a separate chapter

10.

5.2

Mating system

This stage performs mating and reproduction following the selected mat-
ing system. The implemented reproduction model in quantiNemo consists
of two steps: First, for each patch, the number of offspring to be pro-
duced is defined. This number of offspring depends on the parameter mat-
ing_nb_offspring_model and if selection acts at this stage also on the level of
selection (see parameter selection level). In a second step, parents are ran-
domly assigned for each offspring (parents are coming form the same patch).
This assignment of the parents to the offspring depends on the mating system
(parameter mating_system) and on the fitness of the parents if selection acts.
Thereby, adults with a higher fitness have on average a higher reproductive
success. By default, selection acts at the reproductive success. Adults are not
removed at this stage (adults are removed in the event death). The following
parameters allow to parametrize this life cycle event:

mating system [0-6] (default: 0)
Five general mating systems are implemented in quantiNemo. The
assignment of the parents to the offspring is random depending on the
fitness of the local parents (if no selection acts all individuals have a
fitness of 1). Adults with a higher fitness have on average a higher
reproductive success):

0

1:

: random mating (hermaphrodite). For each offspring, two hermaphrodite

parents are randomly assigned. With probability 1/N these two
hermaphrodites are identical which leads to selfing. Females are
used to simulate hermaphrodites.

selfing (hermaphrodite). For each offspring, a hermaphrodite is
randomly assigned to self-fertilize. The parameter mating _proportion
allows setting the proportion of outcrosses. quantiNemo controls
that the proportion of outcrosses is met, i.e. that outcrossing does
not result by chance (1/N) in selfing. Females are used to simulate
hermaphrodites.

CHAPTER 5. LIFE CYCLE 36

2 : cloning (hermaphrodite). This mating system is identical to
the model selfing but without any recombination. The genotype
of the offspring is identical to the genotype of the mother (only
females are simulated) except for changes due to mutations. The
parameter mating proportion allows setting the proportion of sex-
ual reproduction (random mating). Females are used to simulate
hermaphrodites.

3 : random mating (promiscuity). Thisis random mating with two
sexes. For each offspring a father and a mother are randomly as-
signed.

4 : polygyny. Depending on the parameter mating males only one
(default) or several males per patch may reproduce. This fixed
number of reproductive males are selected randomly depending
on their fitnesses, i.e. the reproductive males have on average
a higher fitness. Then for each offspring, a mother and one of
these reproductive males are randomly assigned depending on
their fitnesses. Thus reproductive males with higher fitnesses
have a higher reproductive success among the reproductive males.
If no selection acts the reproductive males are randomly cho-
sen (all males have the same probability) and each male has the
same probability to father an offspring. The parameter mat-
ing__proportion allows to set the proportion of random matings be-
tween any male and female, .e. also males of the non-reproductive
group may get the chance to reproduce.

5 : monogamy. For each female a male is randomly assigned to be
its partner for all offspring. If there are fewer females than males
present in the patch, not all males will mate. In contrast, if there
are more females than males present in the patch, males may be-
long to several mating pairs. For each offspring, a parent pair is
randomly assigned depending on the fitness of the female (if no
selection acts the parent pairs have the same probability to be
selected). Thus parent pairs, where the females have a higher fit-
ness have on average a higher reproductive success. The param-
eter mating proportion allows setting the proportion of random
matings.

6 : no mating/reproduction. In this case no mating or reproduc-
tion occurs, i.e. this life cycle event is skipped. This option allows

CHAPTER 5. LIFE CYCLE 37

using quantiNemo as a statistical package. The input data may
be passed as initial genotype files (ntrl or quanti) in the FSTAT
format (see sections 7.3). The number of generations has to be
set to one since a simulation without any mating and reproduction
does not make sense.

Models and their specific parameters

model additional parameters

0 : random mating (herma.)

1 : selfing(herma.) mating proportion

2 : cloning (herma.) mating proportion

3 : random mating (prom.) sex_ratio

4 : polygyny sex ratio / mating proportion / mating males
5 : monogamy sex ratio / mating proportion

6 : no mating/reproduction

mating proportion [decimal] (temporal/default: 1)

This parameter allows specifying the ratio of a special mating system
(selfing, cloning, polygyny, or monogamy) in relation to random mat-
ing. A value of 1 (default) means that only the special mating occurs
and a value of 0 means that only random mating occurs. For example,
if we want to simulate a plant with a selfing rate of 90% we have to
set the parameter mating system to 1 (selfing) and this parameter
mating proportion to 0.9. These settings will lead to 90% selfing
and 10% random mating. Note, that quantiNemo controls that the ra-
tio is met, i.e. that selfing does not occur by chance (probability would
be 1/N) when random mating should occur.

mating males [integer| (default: 1)
This parameter sets the number of males that will be available for
mating within each patch. The parameter will only be used if the
mating system is polygyny (parameter mating system set to 4). The
range of values is between 1 (a single male mates) and the carrying
capacity of the males (all males may mate).

sex ratio [decimal] (default: 1)
This parameter allows to specify the ratio of males to females of the

CHAPTER 5. LIFE CYCLE 38

offspring in a patch. If hermaphrodites are simulated (parameter mat-
ing_system is set to 0, 1 or 2) the sex ratio is not considered, respec-
tively set to 0 (females are used to simulate hermaphrodites).

sex ratio threshold [decimal] (default: "")

By default, the sex of an individual is randomly assigned depending
on the specified sex ratio (see parameter sex_ratio). If the parameter
sex_ratio threshold is set the sex of an offspring is determined by the
phenotype of the first quantitative trait of the offspring. The argument
specifies the threshold above which an individual becomes a male. If
this parameter is set the parameter sex ratio is not considered. Note,
that when using this parameter the phenotype has to be defined at the
offspring stage, thus the parameter quanti environmental proportion
has to be set to 0. Using this parameter it is possible to simulate sex
chromosomes.

5.3 Death

This life cycle event simply removes the adults present.

5.4 Regulation offspring

This event performs population regulation before dispersal, i.e. at the off-
spring stage. This life cycle event allows to regulate the population sizes
down to carrying capacity. In fact the regulation should only be used if
there is no regulation at the reproduction stage, i.e. if the parameter mat-
ing_nb_ offspring__model is set to 1 (keep number), 2 (fecundity), 3 (fecundity
stochastic) or 4 (fecundity binomial). If the parameter selection position is
set to 2 then selection acts at this stage. In this case the following parameter
is ignored and offspring regulation happens following the parameter selec-
tion level.

regulation model offspring [0,1] (default: 0)

0 : no regulation. No population size regulation takes place at the
offspring stage, i.e. overcrowding can occur.

CHAPTER 5. LIFE CYCLE 39

1 : random regulation. For each patch quantiNemo regulates the
population size down to its carrying capacity if the population
size exceeds carrying capacity. Individuals are thereby randomly
removed. No regulation takes place if the population size is lower
than carrying capacity.

5.5 Regulation adults

This event performs population regulation after dispersal, i.e. at the adult
stage. Due to asymmetric dispersal, some patches may be overcrowded.
This life cycle event allows regulating the population sizes down to carrying
capacity. If the parameter selection position is set to 3 then selection acts
at this stage. In this case, the following parameter is ignored and offspring
regulation happens following the parameter selection level.

regulation model adults [0,1] (default: 0)

0 : no regulation. No population size regulation takes place at the
adults stage, i.e. overcrowding can occur.

1 : random regulation. For each patch quantiNemo regulates the
population size down to its carrying capacity if the population
size exceeds carrying capacity. Individuals are thereby randomly
removed. No regulation takes place if the population size is lower
than carrying capacity.

5.6 Extinction

This event allows to randomly wipe out populations entirely or partially. It
is useful to simulate different types of event like diseases or natural disasters.
The probability that a population goes extinct is specified by the parame-
ter extinction rate and the parameter extinction rate survival specifies how
much a population is affected. If the extinction rate is zero this event is
skipped.

CHAPTER 5. LIFE CYCLE 40

extinction rate [decimal/matrix| (temporal/default: 0)
Extinction probability of a patch at each generation. Can be specified
for each patch separately.

extinction rate survival

extinction rate survival fem

extinction rate survival mal [decimal/matrix| (temporal/default:
0)
These parameters specify how a population is affected when it is hit by
an extinction event. By default (value 0) the entire population is wiped
out. If the parameter is not 0 then at an extinction event individuals
will survive. The effect on the population may be defined absolutely
if the value is 1 or larger (e.g. 5 individuals survive), relatively if the
value is between 0 and 1 (e.g. 10% of the individuals survive), or a com-
bination of relatively and absolutely when specified patch specific using
a matrix. The survival rate may be specified for each sex separately or
in common. Note that in this later case the values will be used for each
sex separately, e.g. if the parameter extinction rate survival is set to
0.4, then 40% of the females and 40% of the males will survive if an
extinction event happens and if set to 100 and two sexes are simulated
50 females and 50 males will survive.

Chapter 6
Demography

This section describes how to simulate a specific demographical scenario,
changing the initial number of individual in each patch, the patch capacity,
the migration model and how the population growth with time.

6.1 Dimensions

generations [integer]
Number of generations to perform per replicate. This parameter is
mandatory, and has no default.

patch capacity [integer/matrix| (temporal)
Carrying capacities of the patches. This parameter is mandatory, and
has no default.

If all patches have the same carrying capacities a single number as
argument is sufficient to specify the carrying capacities. To set the
carrying capacities individually for each patch a matrix is needed. Note,
using a two-dimensional matrix with two columns allows addressing
directly a patch and thus specifying carrying capacity explicitly for
this patch (e.g. {{patchID wvalue}{patchID value}...}), while all not
specified patches will have a carrying capacity of 0.

patch capacity fem

41

CHAPTER 6. DEMOGRAPHY 42

patch capacity mal [integer/matrix| (temporal)

The carrying capacities may vary among sexes, patches, and time.
The carrying capacities have to be specified either for each sex sep-
arately (parameters patch capacity fem and patch capacity mal), or
for both sexes together (parameter patch capacity). In the first case
both sex specific parameters have to be set if two sexes are simulated.
In the latter case the carrying capacities for females and males are as-
sumed to be identical, i.e. the carrying capacity of females and males
is patch _capacity/2. 1f hermaphrodites are simulated the parameters
patch capacity and patch capacity fem are identical. In case all three
parameters are set, only the sex specific parameters will be used as they
are more informative.

patch number [integer| (default: 1)
This parameter specifies the number of patches in the metapopulation.

6.2 Initialization

This section allows specifying how the metapopulation is initialized. The
population size of the patches may be set in three different ways. Also, the
genotypes of the individuals of the initial populations may be set differently.
By default, i.e. if no special parameters of this section are defined, the
initial population size of each patch corresponds to its carrying capacity (see
parameter patch capacity above). If the initial population sizes deviate
from the carrying capacities the parameter patch ini size allows setting
the initial population size for each patch separately. Finally, it is possible
to define the genotypes of each individual explicitly using an FSTAT file
(Goudet, 1995). By doing this also the initial population sizes are defined.
For details please have a look at the parameters quanti ini genotypes
and ntrl ini genotypes in the chapter about genotype configuration. If
a genotype file is present the initial population sizes are defined using this
file.

patch ini size
patch ini size fem
patch ini size mal [integer/matrix]|
These parameters allow to set the initial population sizes of the patches,

CHAPTER 6. DEMOGRAPHY 43

i.e. the populations sizes present at the beginning of the simulation.
These parameters are optional. If none of these parameters is set, i.e.
the initial population sizes are not set, the simulation will start with
all the population sizes set at carrying capacity. The initial popula-
tion sizes may vary among sexes, and patches. The initial population
sizes have to be specified either for each sex separately (parameters
patch _ini_size fem and patch _ini_size mal), or for both sexes to-
gether (parameter patch ini_size). In the first case both sex specific
parameters have to be set if two sexes are simulated. In the latter
case the initial population sizes for females and males are assumed to
be identical, i.e. the initial population size of females and males is
patch_ini_size/2. If hermaphrodites are simulated the parameters
patch_ini_size and patch ini_size fem are identical. In case all three
parameters are set the sex specific parameters will be used as they are
more informative. To set the initial population sizes individually for
each patch a matrix is needed. The matrix is adjusted to the num-
ber of patches if necessary (see section 3.4). If all patches have the
same initial population sizes a single number as argument is sufficient
to specify the initial population sizes.

Note, using a two dimensional matrix with two columns allows address-
ing directly a patch and thus specifying the initial population size for
this patch (e.g. {{patchID wvalue}{patchID wvalue}...}), while all not
specified patches will have an initial population size of 0.

6.3 Population growth

mating nb offspring model [0-9] (default: 0)
This parameter specifies how the total number of offspring (No¢y) pro-
duce at each generation is determined.

The actual number of offspring also depend on the selection level (see
parameter selection level). In case of soft selection, only the parame-
ter mating_nb_ offspring__mode is taken into account. However, if the
selection is hard, then the total number of offsping is computed taking
also into account the mean fitness of the population. Finally, in the
case of metapopulation selection, the total number of offspring for the
entire population is computed using only mating _nb_ offspring__model,

CHAPTER 6. DEMOGRAPHY 44

but they are then reassigned to specific patches depending on the mean
fitness of each patch.

0 : carrying capacity.

The total number of offspring (Noyy) is set to the carrying capacity
(K, parameter patch capacity) of the patch or the metapopulation,
respectively.

1 : keep number.
Nosp =N

The total number of offspring (Noys) corresponds to the number of
adults (N), i.e. the number of individuals is kept constant. Note
that a regulation of the patch densities after dispersal can lead to an
unwanted continuing reduction of the entire metapopulation size.

2 : fecundity.
Nogp = Poisson(Npf)

The number of offspring (Nosr) depends on the mean fecundity of the
females (f) defined by the parameter mean _fecundity.

3 : fecundity simple.
Noff = Tound(pr)

A simplified version of point 2 assuming that the fecundity is always
the same (no fluctuations). This simplification speeds up computation
and is acceptable for a wide range of simulation problems.

4 : fecundity binomial.
Noyss = floor(Ngf)+ Binomial(Npf — floor(Ngf),1)

Similar to point 3, but the rounding is replaced by random rounding
with probability equal to the decimal part of the number, ¢.e. drawing
a random number in a binomial distribution with probability equal to
the decimal part of the number.

CHAPTER 6. DEMOGRAPHY 45

5 : fecundity limited.
Nog¢ = Poisson(Npf)

if (Nogs > K)Nosp = K

Same as point 2, but if the new population size exceeds carrying ca-
pacity the population size is down-regulated to carrying capacity.

6 : fecundity simple & limited.
Noyr =round(Npf)

if(NOff > K)Noff =K

Same as point 3, but if the new population size exceeds carrying ca-
pacity the population size is down-regulated to carrying capacity.

7 : fecundity binomial & limited.
Nog¢ = floor(Ngf) + Binomial(Npf — floor(Ngf),1)

if (Nogs > K)Nosp = K

Same as point 4, but if the new population size exceeds carrying ca-
pacity the population size is down-regulated to carrying capacity.

8 : logistic regulation.

NK(1+47)
NA+7r)—-N+K

Noyf =

The total number of offspring (Noyf) is logistically regulated follow-
ing the discrete-time function of Beverton and Holt (1957) and de-
pends therefore on the carrying capacity (K) and on the parameter
growth rate (r).

9 : stochastic logistic regulation.

NK(1
Noys = Poisson ((L+7))

NA+r) —-N+K

Same as point 8, but the computation of the total number of offspring
has a stochastic component.

CHAPTER 6. DEMOGRAPHY 46

Models and their specific parameters

model additional parameters
carrying capacity (0)

keep number (1)

fecundity (2-7) mean_ fecundity
logistic regulation (8-9) growth rate

mean_fecundity [decimal] (temporal)
This parameter specifies the mean female fecundity. The parameter is
mandatory (and only used) if the fecundity of the female specifies the
number of offspring (i.e. parameter mating_nb_offspring_model set to
2 or 3).

Note that for population of hermaphrodites (mating system 0,1 or 2), a
mean fecundity of 1 leads to constant population size, while in dioecious
systems (mating__system 3,4 or 5), it’s a mean fecundity of 2 which leads
to a constant population size.

growth rate [decimal] (temporal)
This parameter is mandatory (and only used) if logistic regulation is
used to specify the number of offspring (i.e. parameter mating _nb_ offspring_model
set to 4 or 5). It specifies the growth rate r of the population using the
discrete-time function of Beverton and Holt (1957).

When the population is much smaller than the carrying capacity, r 4+ 1
can be thought as the mean number of offspring created per individual.
So if r = 0, the mean number of offspring per individual is 1, and the
population size is constant.

6.4 Dispersal

During its life cycle, each individual might migrate from one patch to another.
Several dispersal models are available (see parameter dispersal _model). It
is also possible to specify a dispersal matrix, which will have precedence
over other dispersal parameters. After dispersal, individuals become adults.
By default (if none of the following parameters are set) individuals do not
disperse among patches.

CHAPTER 6. DEMOGRAPHY 47

dispersal rate

dispersal rate fem

dispersal rate mal [decimal/matrix| (temporal/default: 0)
These parameters allow setting the emigration rate (if the argument
is between 0 and 1 (1 included), or the number of emigrants (if the
argument is an integer).

If the argument is a single value the dispersal model used depends on
the other parameters of this section. But it is also possible to specify
the dispersal rate explicitly between each pair of patches (for both di-
rections) if the argument is a matrix. A dispersal matrix has precedence
over all other dispersal settings. The matrix must be patch_number
X patch_number in dimensions. Each d;; element of this matrix is the
dispersal probability from patch ¢ to patch j, where 7 specifies the row
and j the column of the matrix. Consequently, the values in a row
must sum up to 1 (if the row do not sum up to 1 the proportion of
residents (diagonal) will be adjusted and a warning returned). The
dispersal rates can either be specified for both sexes in general or for
each sex separately. If the dispersal rates are sex specific the dispersal
rates for both sexes have to be specified and they have to be in the same
format (matrix or a single dispersal rate). Sex specific dispersal rates
have precedence over a general dispersal rate. Note, that the dispersal
matrix has to be fully specified, i.e. the matrix is not adjusted to the
number of patches as for other parameters.

dispersal model [0-4] (default: 0)
The following dispersal models are available:

0 : Migrant-pool Island model. If the dispersal rate is m and the
number of patches is n,, the probability to disperse to any n, — 1
non-natal patch is % while the probability to stay at home is

1—m.

1 : Propagule-pool Island model. In that modified version of the
Island model, emigrants tends to move between patches in group.
More precisely, for each patch, a fraction of individual of size me
will migrate altogether to another randomly picked patch. An-
other fraction of emigrant, m(1 — ¢), will migrate to all others
patches. Finally, a fraction of 1 —m individuals will stay at home.

CHAPTER 6. DEMOGRAPHY 48

2 : 1D Stepping-Stone model. In the one dimensional Stepping Stone
model patches are placed on a line and migrants can only move
to one of the two adjacent patches. If the dispersal rate is m,
the probability to disperse to one of the adjacent patches is m/2
while the probability to stay at home is 1 — m. The parame-
ter dispersal_border_model allows to specify how to treat the
border patches.

3 : 2D Stepping-Stone model. In the two dimensional Stepping-
Stone model patches are placed on a grid (or lattice) and mi-
grants can move to 4 or 8 adjacent patches (set by the disper-
sal lattice range parameter below). If the dispersal rate is m,
the probability to disperse to one of the adjacent patches is m/4
or m/8 depending on the parameter dispersal lattice range, while
the probability to stay at home is 1 — m. The parameter dis-
persal border model allows to specify how to treat the border
patches and the parameter dispersal lattice dims allows specify-
ing the dimensions of the grid.

Models and their specific parameters

model additional parameters

0 : Migrant-pool Island

1 : Propagule-pool Island dispersal propagule prob

2 : 1D Stepping-Stone dispersal border model

3 : 2D Stepping-Stone dispersal border model / dispersal lattice range /
dispersal lattice dims

dispersal lattice range [0,1] (default: 0)
This parameter sets the number of neighboring patches used for dis-
persal. The dispersal probabilities to these adjacent patches are m/4
in the first case and m/8 in the second. This parameter is only used in
the 2D Stepping-Stone model (parameter dispersal model set to 3).

0 : 4 neighbors. 4 adjacent patches (up, down, left and right)
1 : 8 neighbors. 8 adjacent patches (as before plus the diagonals)
dispersal border model [0-2] (default: 0)

This parameter specifies how the patches at a border of the Stepping
Stone model should be treated:

CHAPTER 6. DEMOGRAPHY 49

0 : Circle/Torus. In the 1D Stepping-Stone model the first and last
patches are connected to each other by migration leading to a
circle. In the 2D Stepping-Stone model individuals of an edge
patch may migrate to the other side leading to a torus (donut
world). This means that there are no edges, eliminating any such
effects.

1 : Reflective boundaries. The borders are reflective. Dispersers
from the border patches cannot move beyond the border. Bor-
der cells have thus less cells connected to them and their dispersal
probabilities to the adjacent patches are higher (e.g. m for the 1D
Stepping-Stone model, m/3 (corners m/2) for the 2D Stepping-
Stone model with four adjacent cells, and m/5 (corners m/3) for
the 2D Stepping-Stone model with eight adjacent cells). No dis-
persers are lost.

2 : Absorbing boundaries. Dispersers of the border patches are lost
if they choose to move beyond the border. The dispersal proba-
bilities of a border patch are not modified.

dispersal lattice dims [matrix]|
This parameter allows to specify the length and width of the 2D Stepping-
Stone lattice (only used when dispersal model is set to 3). The argu-
ment is an integer matrix with two values. The first value stands for
the number of rows, and the second value for the number of columns.
The product of the two values results in the number of patches and thus
must match the parameter patch number. If the parameter is not set
quantiNemo assumes that the 2D Stepping-Stone lattice is quadratic.
If this is not possible due to the number of patches an error is returned.

dispersal propagule prob |[decimal] (temporal/default: 1)

This parameter is only used for the Propagule-pool Island model (pa-
rameter dispersal _model set to 1). It specifies the probability that a
migrant will move to the propagule-assigned patch, 7.e. this is also the
proportion of emigrants of a patch which migrate to the same non-natal
patch. A probability of 1 means that all emigrants migrate to the same
non-natal patch, while a value of 0 means that all emigrants migrate
to any patch, but the natal and the propagule patch.

CHAPTER 6. DEMOGRAPHY 90

6.4.1 Density dependent dispersal rate

By default, the dispersal rate is not influenced by the population size/density
of the natal patch. The following parameters allow describing a situation
where the migration depends on the density of the natal patch:

dispersal rate model [decimal] (temporal/default: 0)
this parameter define how the dispersal rate is set.

0 : Flat rate. The rate is constant and does not depend of the density

1 : Dependant rate 1 Rate depend on density following the relation
Meg = 5 * (N — K(1 — exp(—=N/K))), where m is the migra-
tion rate, K the patch capacity, N the number of individual on
the patch before migration and e the Euler constant. Notice that
in this case, the migration rate is exactly m (parameters disper-
sal rate) when the density is one.

2 : Dependant rate 2 Rate depend on density following the relation
Mefp = (N_K(l_e;p(_N/K))). Notice that in this case, the migration
rate specified using the parameter dispersal rate is not used, and
instead the migration rate is smoothly adjusted so that the density

after dispersal is always smaller than one.

Chapter 7

(Genotype configuration

7.1 Introduction

QuantiNemo allows the simulation of quantitative traits as well as neutral
markers, both related by a common genetic map so that processes like link-
age disequilibrium and genetic hitchhiking can be simulated easily. More pre-
cisely, quantiNemo allows to simulate neutral markers, such as microsatellites
or SNPs with different mutation models (K allele and Stepwise). Quantita-
tive trait under selection pressure composed of various loci can also be added
to the same simulation. In this chapter, we explain how to define loci and
traits, locate them in a map, set an initial genotype and choose a mutation
model for them.

Most of the parameter and behaviour are the same for neutral and quan-
titative traits (except of course that quantitative traits are under selection,
but this will be cover in the next chapter). The main difference is that neu-
tral trait’s parameters are defined with a ntrl in front while quantitative
traits are specified with quanti . In the case where the parameters have the
same meaning for neutral and quantitative traits, the (ntrl/quanti) parameter
notation will be used, which should be read as the existence of two param-
eters, one ntrl parameter and another one quanti parameter. If differences
are present ,as for example in the mutations models, both parameters are
explained separately.

51

CHAPTER 7. GENOTYPE CONFIGURATION 92

7.2 Defining loci

(ntrl/quanti) loci [integer]
This parameter specifies the number of neutral /quantitative loci per
individual per traits (by default, there is only one trait). This parame-
ter is mandatory for the simulation of a neutral/quantitative locus i.e.
it is necessary as soon as we want to study genetic effect. If this pa-
rameter is not present, the other parameters related to genetics make
no sense and will not be loaded.

(ntrl/quanti) all [1-256 /matrix| (default: 255)
This parameter specifies the maximal possible number of alleles per
locus. Using a matrix it is possible to specify this number for each
locus of a trait separately. For quantitative trait, it is recommended to
take a odd number of allele in order to have a "central allele", but it’s
not mandatory.

(ntrl/quanti) allelic_file [string] (default: "")
This parameter allows to pass the name of a file containing allele in-
formations, such as the initial allele frequencies, and/or the mutation
probability to an allele. The number of alleles and loci has to be in
line with the parameters (ntrl/quanti) loci and (ntrl/quanti) all. The
information can be set globally for all loci, if they have the same specifi-
cations, or for each locus separately. The allelic files for neutral markers
and for quantitative trait have similar format except for two columns:

#Allelic file

[FILE_INFO|{
col locus 1
col allele 2
col allelic value 3
col _mut freq 4
col ini_ freq 5

}

#locus allele value mut_freq ini_freq

1 1 —-1. 0.2 {0 0.33}

1 2 0 0.4 {0 0.33}

1 3 2. 0.4 {1 0.33}

2 1 —1. 0.33 {0 0.33}

CHAPTER 7. GENOTYPE CONFIGURATION 53

2 2 0. 0.33 {0 0.33}
2 3 1. 0.33 {1 0.33}

The file has to start with a file information box [FILE INFOJ{...}. This
box contains the information of the structure of the following table al-
lowing a flexible structure of the table. For example the order of the
columns in the table may vary, or columns may be ignored. The file
information box starts with the keyword [FILE INFO] and the infor-
mation is enclosed by brackets "{...}". Line by line the index of the
columns to be read have to be declared. Thereby a keyword for the
specific setting is followed by the column index (the ordering starts
with 1). The following column keywords are available:

col locus This keyword specifies the column containing the locus in-
dex. If this column is not declared in the file information box,
quantiNemo will use the same settings for all loci. In this case,
the length of the table must meet the number of alleles (ntrl _all).
If this keyword is declared the length of the table must meet the
number of alleles times the number of loci (ntrl _loci * ntrl _all).

col allelic value This keyword specifies the column containing the
allelic effects, 7.e. how an allele contribute to the value of a
trait (c.f. 8.2.1). If this column is not set the allelic effects
will be equally spaced on a range which depend of the param-
eter quanti_all effect var. Since only quantitative trait have an
allelic value, this column is only available for quantitative traits.

col allele This keyword specifies the column containing the allele in-
dex. This column is mandatory. The index of the allele goes from
1 to quanti/ntrl _loci.

col mut freq This keyword specifies the column containing the mu-
tation probabilities, i.e. the probability to mutate to this allele
when a mutation occurs. The behaviour of this mutation probabil-
ity depends on the mutation model (see parameter (ntrl _mutation _model). This
keyword is only available for quantitative traits.

col ini freq This keyword specifies the column containing the initial
frequencies of the alleles. This column allows to explicitly set the
allele frequencies at the start of a simulation. The frequencies can
be set for each patch separately using a matrix. In the example

CHAPTER 7. GENOTYPE CONFIGURATION o4

above, individuals of the first population are initially fixed for the
allele 3 at the first locus as well as at the second locus. In the
second population, all alleles have the same initial frequency of
0.2. Note, that the matrix is adjusted in length if the number
of populations does not correspond to the length of the matrix.
If this column is not given the initial allele frequencies are set
globally depending on the parameter ntrl _ini_allele _model.

Note, that as in all input files for quantiNemo it is possible to define
comments (also in the file information box) using the hash character:

or '#/ ..any text... /#.

7.3 Initial genotypes

There are several methods to set the allele frequencies or even the genotypes
of the individuals at the start of a simulation (initialization). The genotypes
of the individuals may be set using an FSTAT file (Goudet, 1995) (parameter
(ntrl/quanti) ini genotypes). If such a FSTAT file is not present the
genotypes are randomly drawn following the explicitly set allele frequencies
in the allelic file (see parameter (ntrl/quanti) allelic_file and especially
column keyword col ini freq). If the allele frequencies are not set explic-
itly in the allelic file the initialization is performed following the parameter
(ntrl/quanti) ini allele model.

(ntrl/quanti) ini genotypes [string]| (default: "")

This parameter allows to specify a name of an FSTAT file (Goudet,

1995) containing the initial genotypes of the individuals for each popu-

lation. If such a file is present the initialization of the metapopulation is

done solely by this file ignoring the parameters (ntrl/quanti) ini allele model
and patch ini_size. A single FSTAT file is needed for all quantita-

tive traits together containing the total number of loci of all quantita-

tive traits together. Note, that quantiNemo allows to output an appro-

priate file for any generation (see parameter (ntrl/quanti) save genotype).
This allows resuming a simulation, to generate tailored initial condi-

tions, or to continue a simulation with modified settings. If the param-

eter (ntrl/quanti) save genotype is set to 2 an extended FSTAT

CHAPTER 7. GENOTYPE CONFIGURATION 95

file is generated. Also, this file may be used to initialize the metapopu-
lation. In this case, quantiNemo overtakes the supplement information
provided by the file, especially the sex and age of the individual, the
index of the individual, its mother and father. Thus the supplement
information allows resuming a simulation without the loss of the pedi-
gree. Note, that for an entire resume of a simulation the genotypes
of both neutral and quantitative traits have to be set. In this case
the number of individuals per patch and the individuals supplement
information (sex, age, individuals id, mothers id, fathers id must be in
agreement with each other.

ntrl ini allele model [0,1] (default: 0)

If the genotypes or allele frequencies are not already defined in an-
other way, the initialization of the genotypes may be either polymor-
phic, where the probability of each allele is identically or monomorphic,
where all populations are fixed for a single allele.

0 : polymorph. The populations are maximally polymorph with re-
spect to allele frequencies at the start of a simulation.

1 : monomorph. The populations are monomorphic with respect to
allele frequencies at the start of a simulation. All individuals are
fixed for a single allele, which is the "middle" allele, i.e. the allele
with the index |ntrl all/2].

quanti_ini allele model [0,1] (default: 0)

If the genotypes or allele frequencies are not already defined in another
way, the initialization of the genotypes may be either polymorphic,
where the probability of each allele follow a normal distribution or
monomorphic, where all populations are fixed for a single allele.

0 : polymorph. The initial allele frequency is given by a (discretized)
normal distribution with a variance given by the parameter quanti allelic _ var.

1 : monomorph. The populations are monomorphic with respect to
allele frequencies at the start of a simulation. All individuals are
fixed for a single allele, which is the "middle" allele, i.e. the allele
with the index |ntrl_all/2].

CHAPTER 7. GENOTYPE CONFIGURATION 56

7.4 Mutation

Mutation rates may be defined for each locus individually by explicitly defin-

ing the individual mutation rates (parameter (ntrl/quanti) mutation rate) or

by defining the gamma distribution from which the individual mutation rates

are drawn (parameters (ntrl/quanti) _mutation _rate and (ntrl/quanti) _mutation _var).
For quantitative trait, depending on the mutation model (parameter quanti _mutation _model)
the mutant effect is the effect of the drawn allele (model 0), or the effect of

the drawn allele is added to the current allelic effect to get the mutant effect

(model 1). Using the allelic file (see section 7.2) it is possible to specify for

each allele its effect and the probability to mutate to this allele given that

there is a mutation. A minimal definition for mutations requires the setting

of a common mutation rate (parameter (ntrl/quanti) mutation rate has a

single value). In this case, all loci have the same mutation rate.

Note, that for all mutation models the number of alleles has to be odd if the
allelic effects and the probabilities to mutate to the alleles given that there is
a mutation are set automatically. In this case, also a warning will be drawn if
the number of alleles is below 200, informing that this number of alleles may
not well represent the normal distribution of the allelic effects. the probability
of each allele is identically or monomorphic, where all populations are fixed
for a single allele.

(ntrl/quanti) mutation rate [decimal/matrix]| (temporal/default:
0)
This parameter specifies the mutation rate per locus and generation. If
the argument is a single value the mutation rate for all loci is the same.
By passing a matrix of mutation rates it is possible to set the mutation
rate for every single locus individually. By default, no mutations occur.

7.4.1 quantitative mutation model

quanti mutation model [0-3] (default: 0)
This parameter allows specifying the mutation model, which define to-
ward which allele we mutate when a mutation occurs. For quantitative
traits, quantiNemo offers the possibility to simulate four very common
models. Notice that the two first one are more common in quantitative

CHAPTER 7. GENOTYPE CONFIGURATION o7

traits while the two last ones are more meaningful for neutral markers,
and are proposed here only as a "nice to have".

0 : RMM (Random Mutation Model)

The new allele is randomly selected based on its index, following
a Gaussian centred on the allele with an allelic value of 0 (the
so-called central allele). The standard deviation of the Gaussian
is the same as the one from which the allelic effects are drawn ran-
domly (see parameter quanti_allelic_var). This simulates a sys-
tem where every mutation has an allelic value normaly distributed
around 0 with a variance of quanti_allelic_var.

If the probability to mutate to a given allele are given explicitly
in the allelic file (see section 7.2), then, the new allele is randomly
selected following the given distribution.

1 : IMM (Increment Mutation Model)

The new allele is randomly selected following a Gaussian which
is centered around the allelic value of the previous allele, 7.e. the
allele it is mutating from. The standard deviation of the Gaussian
is the same as the one from which the allelic effects are drawn ran-
domly (see parameter quanti_allelic_var). This simulates a system
where every mutation has an effect which is normally distributed
around the value of the previous allele.

Note that with this model, the allelic values are equally space
between —200 and 200 instead of —60 and 60 (where o is the
square root of the parameter quanti_allelic_var) as it is the case for
the other mutation model. This lets more freedom to the system
to explore value far away from the starting point. It is therefore
recommended to select a large number of allele to have a good
representation of the possible values.

If the probability to mutate to a given allele are given explicitly
in the allelic file (see section 7.2), then, the new allele is randomly
selecting following this given distribution. However, the distribu-
tion is re-centred around the current allele. If the new allele does
not exist, no mutation is performed.

2 : KAM (K-Allele Model)
At each mutation, the existing allele is randomly exchanged by
another allele within the range of alleles (i.e. [1;quanti all]) not

CHAPTER 7. GENOTYPE CONFIGURATION 58

taking into account any allelic effect. The probability to mutate
to any allele is the same. In this case, the frequencies that are
given in the allelic file (see section 7.2) are not taken into account.

3 : SSM (Single Step Mutation)

In the single step mutation, the new allele depends on the current
allele index. When a mutation occurs the current allele is replaced
by one of its neighbouring alleles. For example, if the allele with
the index 12 mutates, it changes either to the allele with the index
13, or to the allele with the index 11. The boundaries are reflex-
ive, i.e. the allele index cannot exceed the range of alleles (i.e.
[1;ntrl _all]). Notice also that in quantiNemo the allelic value
depend linearly on the allelic index (unless specified otherwise in
the allelic file) so that this is equivalent to change incrementally
the allelic value.

The different models are schematically described in Fig. 7.1, where the
probability to mutate to a given allele is given taking into account the
previous allele and the reference allele (which has an allelic value of 0).

7.4.2 neutral mutation model

ntrl mutation model [0,1] (default: 0)
In the neutral case, there is only access to two of the model, since the
allelic value are not define and some of the model don’t make sense.

0 : KAM (K-Allele Model)
At each mutation the existing allele is randomly exchanged by
another allele within the range of alleles (i.e. [1;quanti all]) not
taking into account any allelic effect. The probability to mutate
to any allele is the same.

1 : SSM (Single Step Mutation)
In the single step mutation, the new allele depends on the current
allele index. When a mutation occurs the current allele is replaced
by one of its neighboring alleles. For example, if the allele with
the index 12 mutates, it changes either to the allele with the in-
dex 13, or to the allele with the index 11. The boundaries are

CHAPTER 7. GENOTYPE CONFIGURATION

PMutate

I

SSM

Current
allele

ol

el

A5 O o o [

99

Middle
allele

Allele index

Figure 7.1: Schematic representation of the various mutation model for a
system with 27 alleles, where the middle allele is 14 and the allele from
which we mutate (present allele) is 7. Pyyate represent the probability to
mutate to a given allele. Notice also that the allelic value is almost equivalent

as the allele index in quantiNemo

CHAPTER 7. GENOTYPE CONFIGURATION 60

reflexive, 7.e. the allele index cannot exceed the range of alleles
(i.e. [I;ntrl_all]).

7.5 Multiple traits

QuantiNemo allows simulating multiple traits (quantitative and/or neutral)
simultaneously. Each trait has its own architecture and quantitative traits
may be under different selection pressures.

(quanti/ntrl) nb_trait [integer| (default: 1)
This parameter defines the number of traits. Notice that it is possible
to have ntrl traits. This has to be thought has a set of neutral loci which
share common parameters, like mutation model or mutation rate.

Each trait may have its own specifications, but it is also possible to specify
parameters for some traits together, named grouping. If several traits are
used it is possible to address a certain trait by its number. For instance
to specify a parameter for the fifth trait one has to append a " 5" to the
parameter name. In contrast if for the fifth trait no parameter with the
suffix " 5" is passed quantiNemo checks if the parameter is passed for the
fourth trait (suffix " 4"). If this is also not the case quantiNemo checks if
the parameter is passed for the third trait (suffix " 3"), and so forth until
a parameter is found. Note, that a parameter without a suffix is the same
as the parameter with the suffix " 1". This behavior of quantiNemo allows
specifying parameters for a group of traits. Sometimes this grouping is not
desired. It can be suppressed by setting 'NOT SET’ as an argument. In
this case, this parameter and all parameters inheriting this parameter will
use the default argument. An example for quantitative traits may make it
clearer:

quanti_nb trait 12
quanti_loci 5

quanti loci 7 10
quanti_ all 1 10
quanti_all 4 20
quanti_all 7 10

CHAPTER 7. GENOTYPE CONFIGURATION 61

quanti all 10 20

quanti_allelic_ file 1 file 1.txt
quanti_allelic file 4 file 2.txt
quanti allelic_ file 7 NOT SET

quanti_ mutation rate 0.0001

In this example, we simulate 12 quantitative traits. Traits 1 to 3 consist
of 5 loci with up to 10 alleles, traits 4 to 6 consist of 5 loci with up to 20
alleles, traits 7 to 9 consist of 10 loci with up to 10 alleles, and traits 10 to
12 consist of 10 loci with up to 20 alleles. All traits have the same muta-
tion rate of 0.0001. Allele characteristics for traits 1 to 3 are specified in file
"file 1.txt", allele characteristics for the traits 4 to 6 in the file "file 2.txt".
Since 'NOT _SET" is set for the parameter quanti_allelic_file 7 all allele
characteristics for traits 7 to 12 are set automatically without any file.

7.6 Genetic map

QuantiNemo has an underlying genetic map, which may consist of several
chromosomes. This allows explicitly positioning all types of loci on the map
(quantitative trait loci (QTL) and neutral markers). The unit of the genetic
map is centi Morgans (Haldane, 1919, ¢cM). This means that between two loci
separated by 100 cM on average a single recombination event per meiosis is
expected. The relation between centiMorgan (m) and recombination rate (r)
is given as

1 — €—2m/100

2

T =

To simulate linked loci two types of parameters have to be set: One to specify
the locus positions on the genome (in ¢cM) and one for each trait (QTL or neu-
tral) to attribute the loci of the trait to these locus positions. If a locus of a
trait is not attributed to a position then quantiNemo2 assumes that this locus
is unlinked to any other locus. A genome is identical for everybody, however,
sexes may differ in the rate of recombinations, e.g. hotspots of recombination,
or degenerated Y-chromosome (see also parameter sex ratio threshold).

CHAPTER 7. GENOTYPE CONFIGURATION 62

recombination rate (r)
0.4

0.1

0.0

T T T T T
0 100 200 300 400

centiMorgan (cM)

quantiNemo?2 accounts for this by allowing specifying different genetic maps
(in ¢cM) for each sex using the suffixes fem and mal. Note, that in this

case, the order of loci must be identical, only distances between loci may
differ.

genome
genome fem
genome mal [matrix]| (default: "")

These parameters allow specifying the positions of loci in centi Morgans
for all traits in common. Brackets separate different chromosomes and
within a chromosome, the positions of loci are defined cumulatively,
i.e. the position of the locus is defined as the length to the start of the
chromosome. Note, that chromosomes may contain different numbers
of loci. Tt is possible to skip chromosomes if they don’t contain loci (see
section 3.4). If the genetic map is sex specific both parameters have to
be set. If hermaphrodites are simulated the parameters genome and
genome fem are identical. If all three parameters are set, only the
sex specific parameters will be used. The genome may only be specified

CHAPTER 7. GENOTYPE CONFIGURATION 63

in general (i.e. parameter genome) or for each type of trait separately
(i.e. parameters quanti genome and ntrl genome).

(quanti/ntrl) genome

(quanti/ntrl) genome fem

(quanti/ntrl) genome mal [matrix| (default: "")
Similar to the parameters above these parameters allow specfiying the
positions of loci in centi Morgans. In contrast to the parameters above
these parameters allow specifiying the positions for each type of trait
separately.

Example:

genome { {1: 10}
{3: 10 40 60 80 100}
{ 10 40 60 80 100} }

In the example above, the genetic map consists of 11 loci located on
three of at least four chromosomes. The first chromosome contains a
single locus at position 10 cM. No loci are located on the second chro-
mosome. The third and fourth chromosomes have 5 loci at positions
10, 40, 60, 80, and 100 cM.

(quanti/ntrl) locus index [matrix| (default: "")

This parameter allows assigning each locus of a trait (quanti or ntrl) to
a locus position on the genome (see above). The parameter has to be
set for each trait separately and the assignment of the locus to a locus
position on the genome is made based on the index of the locus on the
entier genome (starting with 1). Note, that the indexing is ignoring
any chromosomal structure. Note also, that the indexing depends on
the corresponding genome, i.e. if it is specified in general (parame-
ter genome) or trait type specific (e.g. parameter quanti genome).
Note further, that this parameter is not sex specific, since the order of
the loci is identical for both sexes.

Example 1 (trait type sepcific):

quanti_nb_trait 2
quanti_loci 3

CHAPTER 7. GENOTYPE CONFIGURATION 64

quanti genome {0.1 0.2 0.3 0.4 0.5 0.6}
quanti locus index 1 {1 2 5}

quanti_locus index 2 {3 4 6}

ntrl nb trait 2

ntrl genome {0.1 0.6 0.7 0.8 0.9 1.0}
ntrl locus index 1 {1 2 5}

ntrl locus index 2 {3 4 6}

Example 2 (general):

genome {0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.7/ 0.8 0.9 1.0}
quanti nb trait 2
quanti_loci 3
quanti locus index 1 {1 3 6}
quanti_locus index 2 {4 5 7}
ntrl nb trait 2

ntrl locus index 1 {2 8 11}
ntrl locus index 2 {9 10 12}

Both examples are identical, the genome is defined once for each type
of trait separately (Example 1), and once in general (Example 2). In
the example, we have 5 QTLs and 6 neutral markers. At 0.1 cM we
have a QTL and a neutral marker without any recombination between
them.

recombination factor

recombination factor fem

recombination factor mal [decimal/matrix] (temporal/default: 1)
These parameters allow setting a factor for the recombination rate.
This factor is then multiplied with the positions of the loci on the chro-
mosomes allowing easily stretching or shrinking a chromosome, keeping
the relation between the loci intact. These parameters allow simulating
the evolution of the recombination rate. To achieve this it is possible
to use the phenotype (Z) or the genotypic value (G) of a quantitative
trait as recombination factor. Thereby the key character G and Z are
followed directly by the quantitative trait index.

Example:

quanti_genome {1 4}{1 10}
recombination factor mal {2 0.5}
recombination factor fem {Z1 Z2}

CHAPTER 7. GENOTYPE CONFIGURATION 65

In this example, the genome consists of two chromosomes containing
each 2 loci. A recombination factor is set separately for females and
males. The recombination rate for males is fixed and modifies the
positions of the first chromosome by a factor of two (increasing the
recombination rate among the loci) and by a factor of 0.5 for the sec-
ond chromosome (reducing the recombination rate among the loci). In
contrast, the recombination factor for females is variable and is given
by the phenotype of the first and second quantitative trait for the first
and second chromosome, respectively.

Chapter 8

Quantitative traits and selection

8.1 Introduction

In quantiNemo, selection is based on the fitness of individuals. It generally
acts at reproduction level (for efficiency reason) but can also act at the reg-
ulation stage. More precisely, in a first step, the fitness of all individuals of
the population are computed based on their genetic information (see below).
Depending on the type of selection (soft/hard), the fitness can be further
rescaled by the mean fitness of the patch/metapopulation. Then, during
breeding, the parents of each individual are randomly selected proportional-
ity to their fitness.

Two different procedure can be used to specify the fitness of an individual.
One follows the philosophy of quantitative genetic, calculating the pheno-
typic value of each trait and applying selection pressure to it. The other
one is closer to a population genetic approach, where the fitness is specified
explicitly for each genotype and locus. The two approaches can be combined,
in different traits (some defined using one approach and the other using the
other approach) but also in a single trait. In this case, the final fitness of the
trait is the product of the fitness obtained by both procedures.

66

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 67

Allelic value

Dominance effect Environmental Selection
Epistatic effect /LﬁR pressure
Genotype Genotypic Phenotypic Fitness per
value value trait
Fitness factor Fitness factor Fitness factor p h’ Overall
at loci level at global level at trait level o '“C', Fitness
Genotype Pre-fitness Fitness per Fltness. per
per locus locus trait

8.1.1 Quantitative genetic approach

To compute the fitness of an individual, quantiNemo define a genotypic value,
which is the value of a trait would have if no environmental effect plays a
role (therefore, if environmental effect are set to zero, the genotypic value is
equal to the phenotypic value). So first, the genotypic value for each traits
is computed, from the allelic values, the dominance model and if present the
epistatic value. Then, the phenotypic value is computed by adding to the
genotypic value the environmental value. Overall, the phenotypic value is
given by:

P = G+E (8.1)
nbLoci

G = ¢ + Z a; + ay + k‘ii/]ai/ — ai] (82)
i=1

Where P is the phenotypic value, G the genotypic value, E the environmental
effect, € the epistatic effect, a; and a; the allelic value and k;; the dominance
factor.

In a second step, the fitness of every trait is computed from its genotypic
value using one of the models of selection pressure e.g. stabilizing selection
where the value of the fitness decrease when the phenotypic value is far from
its optimal value. Finally, the overall fitness of each individual, which is the
product of the fitness of each trait is computed.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 68

wo= J[w (8.3)

where W is the overall fitness and W; is the fitness of each trait.

8.1.2 Population genetic approach

In this approach, the fitness of an individual is considered to be a product
of the fitness of each of its loci. The fitness of its loci is obtained through
what is called fitness factor, which directly relates the genotype of a locus
to its fitness. This factor can either be specified for each genotype and each
locus explicitly using the dominance file (see sub-section: 8.2.2) or globally
depending on the heterozygosity (see section 8.6)

In the following sections, we explain in details the parameters to define quan-
titative traits, the selection pressure acting and other parameters affecting
the fitness and the selection.

8.2 From genotype to genotypic value

In this section, we explain how quantiNemo compute the genotypic value
from a given genotype taking into account the value of every allele, dominance
effect and if it’s present, epistasis.

8.2.1 Allelic effects

Each allele has an allelic effect, its contribution to the genotype, which is
represented by a number, the allelic value. There are two possibilities to
define these effects. Either they are defined explicitly for each allele using a
separate file (see parameter quanti_allelic_file in section 7.2), or they can be
defined by specifying the variance of the normal distribution of the genotypic
value (see parameter quanti_allelic_var). If the allelic effects are defined in
both ways the explicitly defined effects are used. Note, that all effects have
to be defined in the same way, i.e. explicitly or by their distribution.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 69

quanti_allelic var [decimal/matrix| (default: 1)

If the allelic values are not defined explicitly using the allelic file (params.
(ntrl/quanti) allelic_file), quantiNemo will proceed as follow. The
allelic values will be equally spaced between —60 and 60, where o
is the square root of the variance given by quanti allelic var. If
the initial frequencies and/or the mutations frequencies toward each
allele are not set by the allelic file, these frequencies will be set by
a (discretized) normal distribution with a variance given by the pa-
rameter quanti allelic var. If dominance is purely additive, this
ensures that through the population, the variance of the genotype is
2 % quanti__allelic_var (the factor 2 comes from the diploid character
of individuals).

Note that if the number of alleles is small (smaller than 6), the allelic
values will be spaced between —(I — 1)o and (I — 1)o instead of —60
and 60 where [is the number of alleles. So for example, for a bi-allelic
system, we would have two allelic values at —o and o.

8.2.2 Dominance effects

By default alleles are considered to be purely additive. Dominance effects can

be defined in different ways. Either the dominance effect of specific pairs of al-

leles are defined explicitly using a separate file (parameter quanti _dominance _file),

or by defining the normal distribution from where the dominance effects are
randomly drawn (see parameters quanti_dominance mean and quanti _dominance var).
An explicitly defined dominance effect has precedence over the general set-

tings. By default, the parameters quanti _dominance mean and quanti dominance var
are set to zero resulting in a purely additive genotypic value of a locus. There

are also two methods to define dominance:

quanti dominance model [0,1] (default: 0)
This parameter allows to choose among two models to define dominance
effects.
0 : method k. G; = a; + a; + kiy|a; — ay|
1 : method h. Gz = 2[(1 - hiir)ai + h,;,;rair]

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 70

Where G; is the genotypic value of locus i, a; and a; are the effects
of the two alleles at locus 7, whereas the effect of a; is smaller than
the effect of a;. k;7 and h;y are the dominance values between allele 7
and 4’ for method 1 and method 2, respectively. k£ and h can have the
following effects:

Effect method k method h
overdominance k< —1 h <0
smaller allele a; is dominant k= —1 h=0
purely additive k=0 h=10.5
larger allele a; is dominant k=1 h=1
underdominance k>1 h>1
quanti dominance file [string]| (default: "")

This parameter allows to pass the name of a file containing the domi-
nance effects and/or the fitness factor (see section 8.6). The informa-
tion can be set globally for all loci, if they have the same specifications,
or for each locus separately. For all not specified allele pairs other set-
tings or the default values are applied. The dominance file has a similar
format as the allelic file:

#Dominance file

[FILE _INFO|{
col locus 1
col allelel 2
col allele2 3
col dominance 4
col fitness factor 5

}

#locus allelel allele2 dominanc fitness
1 1 1 99999 1
1 1 2 0.298 1
1 1 3 0.435 1
1 1 4 0.224 1
1 2 2 99999 1
1 2 3 0.104 1
1 2 4 0.974 1
1 3 3 99999 1
1 3 4 0.808 1
1 4 4 99999 0

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 71

The file has to start with a file information box [FILE INFO]{...}. This
box contains information about the structure of the following table and
thus allowing flexibility in the format of the table. For example, the
order of the columns in the table may vary, or some columns may be ig-
nored. The file information box starts with the keyword [FILE INFO].
This keyword is followed by brackets "{...}" within which the user
has to specify the contents of the columns to be considered by quan-
tiNemo. Each column is specified by a pair consisting of a keyword (e.g.
col _locus followed by the column number (the ordering starts with 1).
Each column definition has to be on a new line. The following column
keywords are available:

col locus This keyword specifies the column containing the locus in-
dex. If this column is not declared in the file information box,
quantiNemo will use the same settings (dominance effect and/or
fitness factor) for all loci.

col allelel This keyword specifies the column containing the index of
the allele with the smaller allelic effect. This column is mandatory.
The index of the allele goes from 1 to quanti_all.

col allele2 This keyword specifies the column containing the index of
the allele with the larger allelic effect. This column is mandatory.
The index of the allele goes from 1 to quanti_all.

col dominance This keyword specifies the column containing the
dominance effects. For any pair of alleles for which the dominance
effect is not specified a dominance effect will be drawn from the
normal distribution defined by the parameters quanti _dominance mean
and quanti _dominance var.

col fitness factor This keyword specifies the column containing the
fitness factors (see section 8.6 for more informations). For any
pair of alleles for which the fitness factor is not specified explic-
itly the fitness factor will be zero or given by the parameters
quanti_sel fitness factor or quanti_fitness factor homozygote if
they are defined.

Note, that as in all input files for quantiNemo it is possible to add
comments (also in the file information box) using the hash character:
"H#or '#/ ..any text... /#’. If you define explicitly the dominance

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 72

effect and the fitness factor, but for a given pair of alleles you want
only to define one of the parameters you may use the number 99999
as placeholders. quantiNemo will treat this number as not set. In the
above example, this has been used to show that a dominance effect
for a monomorphic locus is not valid (However a fitness factor may
be set for a monomorphic locus). Please note that in this special case
(monomorphic locus) one could have set any number as placeholders
for the dominance effect since the value would never be used.

quanti dominance mean [decimal| (default: 0)
This parameter allows specifying the mean of the normal distribution
from where the dominance effects are randomly drawn. Note that a
has the smaller allelic effect than ay. This parameter is only taken
into account if the dominance effects are not defined explicitly by the
dominance file.

quanti dominance var [decimal] (default: 0)
This parameter allows specifying the variance of the normal distribution
from where the dominance effects are randomly drawn. This parameter
is taken into account only if the dominance effects are not defined
explicitly by the dominance file.

8.2.3 Epistatic effects

It is possible to simulate epistatic effects between alleles at different loci. The
following equation is used to compute the genotype:

nbLoci

Gruoy . ki = €1192 kkr... + E Gi

=1

Where Giy99. k.. is the genotypic value of genotype 11'22"...kk"... (1 and
1" are the alleles of locus 1, 2 and 2’ the alleles of locus 2, ...), G; is the
genotypic effect of locus i (additive and dominance effects), and €11/90/ ...
is the epistatic effect of genotype 11'22'...kk’... (unique for each multilocus
genotype). There are two possibilities to define epistatic effects. Either they
are defined explicitly for each genotype using a separate file (see parameter

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 73

quanti_epistatic_file), or by defining the variance of the normal distribu-
tion from where the epistatic effects are randomly drawn (see parameter
quanti_epistatic_var). Using the parameter quanti_epistatic_file it is also
possible to define the genotypic effects directly. If the epistatic effects are
defined in both ways the explicitly defined effects are used. Note, that all
effects have to be defined in the same way, i.e. explicitly or by their distribu-
tion. By default, the parameter quanti epistatic_var is set to zero resulting
in simulations without any epistatic effects.

quanti epistatic_file [string]| (default: "")

This parameter allows to pass the name of a file containing the epistatic
effects and/or the fitness factor (see section 8.6). The number of de-
fined genotypes has to be in line with the parameters quanti_loci and
quanti_ all if epistatic or genotypic values are passed. If only fitness
factors are defined it is enough to list the desired genotypes with their
fitness factors. In this case all not specified genotypes have a fitness
factor of 1. The epistatic file has a similar format as the allelic file:

#Epistatic file

[FILE_INFO|{
col genotype 1
col epistatic_value 2
col genotypic_ value 3
col fitness factor 4

}

#genotype epistaticVal genotypicVal fitness
{0101 0101} 0.242984 1.87009 1

{0101 0102} 0.580787 0.834811 99999
{5050 5048} 0.264001 1.24981 0

{5050 5049} 0.118982 —0.55701 1

{5050 5050} 0.071359 —2.26644 1

The file has to start with a file information box [FILE INFO]{...}. This
box contains informations about the structure of the following table
and thus allowing flexibility in the format of the table. For example the
order of the columns in the table may vary, or some columns may be ig-
nored. The file information box starts with the key word [FILE INFO].
This key word is followed by brackets "{...}" within which the user

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 74

has to specify the contents of the columns to be considered by quan-
tiNemo. Each column is specified by a pair consisting of a key word
(e.g. col locus followed by the column number (the ordering starts
with 1). Each column definition has to be on a new line. The following
column keywords are available:

col genotype This keyword specifies the column containing the geno-
type. This column is mandatory. The genotype is enclosed by
brackets "{...}" and the genotype itself has to be in the FSTAT
format (Goudet, 1995). The two alleles of a locus are written
consecutively without any space. For all alleles the same number
of digits are needed. Two different loci are separated by a space.
The above example consists of two loci, each with 50 alleles. Each
allele is written using two digits.

col epistatic value This keyword specifies the column containing
the epistatic effects. If this column is set the epistatic effect is
added to the genotypic effect computed as described above.

col genotypic value This keyword specifies the column containing
directly the genotypic effects. If this column is set, the geno-
typic effect of each genotype is set directly without taking into
account allelic, dominance, and/or epistatic effects. If both key-
words col epistatic value and col genotypic value are specified
in the information box, only the column col genotypic value is
considered.

col fitness factor This keyword specifies the column containing the
fitness factors. For more informations on the fitness factor see
please section 8.6. For each genotype the fitness factor is not
specified explicitly the fitness factor will be taken either from dom-
inance file (parameter quanti_dominance file) or from the global
parameters quanti_sel fitness factor and quanti_fitness factor homozygote.
If a genotype is listed to define the genotypic or epistatic value, but
you don’t want to define explicitly the fitness factor for this geno-
type you may use the number 99999 as placeholder. quantiNemo
will treat this number as not set. In the above example this has
been used to show that a fitness factor for a given genotype is not
set.

Note, that as in all input files for quantiNemo it is possible to add

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 75

comments (also in the file information box) using the hash character:

or '#/ ..any text... /#.

quanti_epistatic _var [decimal] (default: 0)
This parameter allows specifying the variance of the normal distribu-
tion from where the epistatic effects are drawn randomly. The normal
distribution is centered around 0. This parameter is only taken into
account if the epistatic effects are not defined explicitly by the epistatic
file.

8.3 Environmental effect

The phenotype is given by the sum of the genotypic value and the environ-
mental contribution. There are several possibilities to set the contribution
of the environment to the phenotype globally or for each patch separately.
By default (without any specification of the following parameters) the envi-
ronment has no effect on the phenotype of the quantitative trait. Either the
contribution of the environment to the phenotype is defined directly by the
variance of the environmental effect (model 0), by the narrow-sense heritabil-
ity h? (model 1 and 2), or by the broad-sense heritability H* (model 3 and
4). The heritability is later translated into a corresponding environmental
variance Vg:

1—h?
hQZ VE: 12 >"‘/A

1— H?
H*: Vg= 7 * Ve

Where V}, is the additive genetic variance computed following (Lynch and
Walsh, 1998, p85-87), and Vi the genetic variance.

quanti environmental model [0-4] (default: 0)
This parameter specifies how the environmental variance is defined.
The following models are available:

0 : set Vg directly. The variance of the environment is set directly
by the parameter quanti heritability, which is in this case not the
heritability, but the environmental variance.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 76

1 : Vi defined by the narrow-sense heritability (Vz constant).
The variance of the environment (V) is set at the beginning of
a simulation (generation 1) and is based on the narrow-sense her-
itability (h?, parameter quanti_heritability) and the additive ge-
netic variance (V4 at generation 1). Note, that in this case, the
environmental variance remains constant over time, but not the
heritability.

2 : Vg defined by the narrow-sense heritability (h* constant).
This is the same as model 1, but the environmental variance is
readjusted at each generation. Thus the narrow-sense heritability
remains constant over time, but not the environmental variance.

3 : Vg defined by the broad-sense heritability (V constant). The
variance of the environment (V) is set at the beginning of a sim-
ulation (generation 1) and is based on the broad-sense heritability
(H?, parameter quanti_heritability) and the genetic variance (Vg
at generation 1). Note, that in this case, the environmental vari-
ance remains constant over time, but not the heritability.

4 : Vg defined by the broad-sense heritability (H? constant). This
is the same as model 3, but the environmental variance is read-
justed at each generation. Thus the broad-sense heritability re-
mains constant over time, but not the environmental variance.

quanti_heritability [decimal/matrix| (default: 0)
This parameter has different meaning depending on the environmental
model chosen (parameter
quanti_environmental model): If Vg is directly set (model 0) this pa-
rameter is the environmental variance.

For the environmental model 1 and 2 this parameter is the narrow-sense
heritability (h?):
h? =V, /Vp

For the environmental model 3 and 4 this parameter is the broad-sense
heritability (H?):

H? =Vg/Vp
Note, that a heritability (narrow and broad sense) of 0 (no genetic com-

ponent) makes no sense for models 1 to 4 in this simulation framework.
Therefore a value of 0 is not accepted by quantiNemo for models 1 to 4,

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 77

resulting in an error message. If the parameter quanti _environmental model
is set to 0 the parameter quanti_heritability is no longer the heritability,

but the environmental variance directly, and can be set to 0 (default).
Using a matrix as argument it is possible to set the environmental
variance, respectively heritability for each patch separately.

quanti environmental proportion [decimal]| (default: 1)

This parameter specifies which environment affects the phenotype of
the quantitative trait: the natal or the current (at the adult stage)
environment? The argument specifies the relative weight of the current
patch effect on the phenotype: if the value is 1 (default value) only
the environmental variance of the current patch affects the phenotype
while if the value is 0 only the environmental variance of the natal
patch affects the phenotype.

quanti_va_ model [0-2] (default: 0)

This parameter specifies how the additive genetic variance (V) of a
quantitative trait is computed. The additive genetic variance of a trait
is used in several statistics. For instance it is used to set the envi-
ronmental variance of the patches if this variance is specified by the
narrow-sense heritability (h2, parameter quanti__environmental model
set to 2 or 3, see also parameter quanti_heritability), the additive ge-
netic variance may also be directly output as summary statistic (stat
option g.varA), or indirectly in the population differentiation measure-
ment Qgr (stat option q.gst, q.gst.f, q.qstyair, and q.gst. fyair). The
additive genetic variance (V) is computed following Lynch and Walsh
(1998, p85-87). For a quantitative trait determined by a single locus
this is:

nbAllele

Vi=2 Z j2le e
i=1

Where p; is the allele frequency of allele 7, «; is the additive effect
of allele 7, and o« is the average excess of allele 7. Note, that we
show here the computation for a single locus for simplicity reasons. In
quantiNemo, a full version for traits determined by multiple loci is im-
plemented. However, the implementation does not take into account

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 78

linkage between loci, thus the additive genetic variance is underesti-
mated when loci are linked.

0 : for any case. If this model is chosen the additive effect («;) and
the average excess () are computed. While the average excess is
simple to compute, the computation of the additive effect requires
a time consuming least-square regression. This formula is valid
for any mating system, but its computation is rather slow.

Note, that the least-square regression has not always a solution
thus the additive effects «, are not always computable. In this
case, the locus in question is skipped from the analysis and a
warning is returned:

*%*WARNING=+#* Va could not be correctly estimated (1. time
at generation 20, see manual parameter ’quanti va_ model’)

This warning is returned the first 10 times the problem occurs
and then every hundredth time. It is up to the user to decide
whether the problem occurs too often or if these "missing points"
are acceptable. If the environmental variance is set by the narrow-
sense heritability (parameter quanti _environmental model set to
1 or 2) and the additive genetic variance cannot be computed
quantiNemo uses the additive genetic variance computed using
the algorithm for random matings (this parameter set to 1). Note,
that

1 : limited to random mating. In case of random mating, the ad-
ditive effect («;) and the average excess (o) are identical. There-
fore the time consuming computation of the additive effect can
be omitted. Note, that even when the mating system is set to
random mating (parameter mating system set to 0 or 2) mating
is not randomly if selection acts, as the choice of the parents de-
pends on their fitnesses. It’s up to the user to decide whether this
quick way to compute the additive genetic variance is appropriate
or not.

1:Vy = V. This model assumes that the additive genetic variance
V4 is identical or may be approximated by the genetic variance

Va.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 79
8.4 Selection pressure

Each quantitative trait is under a specific selection pressure. The type of se-
lection may vary among quantitative traits, but not among patches and sexes.
However, the strength, direction, etc, of selection can change among patches,
sex and time. This flexibility allows for example to simulate a dynamic en-
vironment such as for global warming or variation in the altitude between
patches. To specify the selection pressure individually for quantitative traits
and patches, matrices may be used.

8.4.1 Selection models

Selection pressures have to be specified either for each sex separately (pa-
rameters with the suffix " fem" for females and " mal" for males), or for
both sexes together (parameters without a suffix). In the first case both sex
specific parameters have to be set if two sexes are simulated. In the latter
case, the selection pressure of females and males are assumed to be identical.

quanti_selection model [0-4] (default: 0)
This parameter allows defining the selection model for each quantitative
trait. By default no selection acts on a quantitative trait.

0 : neutral quantitative trait.
The phenotype of this trait does not feel any selective pressure.
Selection might act only ifs fitness factor is set, otherwise, it be-
haves as a neutral trait :

Wtzl

1 : stabilizing selection
Stabilizing selection acts on the quantitative trait. The fitness W
of quantitative trait ¢ is computed using the following standard
Gaussian function for stabilizing selection:

(_ (P—Zozpt)2>
Wt =€

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 80

Zopt is the selection optimum of the current trait and patch, P is
the phenotypic value of the individual, and w is the intensity of
the selection. See subsection 8.4.2 for more details.

2 : directional selection.
Directional selection acts on the quantitative trait. A generalized
logistic curve (Richards, 1959) is implemented in quantiNemo to
characterize the directional selection pressure:

W = (1 + s % eT(PWVIaz_P))_l/S

Where 7 is the growth rate, P, is the phenotype with the maxi-
mal slope, and s defines the symmetry of the slope. See subsection
8.4.3 for more details.

3 : fitness landscape.

The selection pressure is defined by a fitness landscape. The fit-
ness value of any phenotype may be specified. The fitness value of
a phenotype within the specified range of phenotypes is linearly
interpolated, Phenotype outside the range of specified phenotypes
will result in the fitness value of the smallest phenotype, respec-
tively in the fitness value of the largest phenotype. See subsection
8.4.4 for more details.

4 : selection coefficient.
The selection pressure of a bi-allelic locus is defined by a selec-
tion coefficient s and a dominance factor A. In this simplified, but
widespread model, the genotype is directly mapped to a fitness.
Note that for this type of selection a trait may only contain a sin-
gle bi-allelic locus, without explicitly specified allelic effects. See
subsection 8.4.5 for more details.

Genotype Fitness Fitness extended
AA 1 F
Aa 1- hs F - hs

aa 1-s F-s

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 81

8.4.2 Stabilizing selection

Stabilizing selection act on the phenotype (P) of quantitative traits. The se-
lection pressure is defined by the parameters quanti_stab_sel optima (Zo)
and quanti_stab _sel intensity (w). The fitness (W) of a quantitative trait
is computed using the following standard Gaussian function for stabilizing
selection:

2
B (P—2zopt)
2w2
LL =€
e
©
i
w
©
QS
4
[}
£
<
o
ls\)
P
o | Zopt
IS
T T T T T
-4 -2 0 2 4
phenotype

quanti stab sel optima
quanti stab sel optima fem
quanti stab sel optima mal [decimal/matrix| (temporal/default:

0)
These parameters allow to set the selection optimum zo, for each patch
for a given quantitative trait.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 82

quanti stab sel intensity

quanti stab sel intensity fem

quanti stab sel intensity mal [decimal/matrix] (temporal/default:
1)
These parameters allow to set the selection intensity w for each patch
for a given quantitative trait. Contraintuitively a small value results
in a strong selection pressure, whereas a large value results in a weak
selection pressure.

patch stab sel optima var [decimal/matrix| (temporal/default:
0)
This parameter specifies the variance of the normal distribution by
which the selection optimum varies between generations (e.g. annual
fluctuations of the mean temperature). By default the local selection
optimum does not vary.

patch stab sel intensity var [decimal/matrix| (temporal/default:
0)
This parameter specifies the variance of the normal distribution by
which the selection intensity varies at each generation (e.g. annual
fluctuations of the mean temperature). By default the local selection
intensity does not vary.

Example
patch number 2
quanti nb trait 3
quanti_stab sel optima_ 1 {-0.1 0.1}
quanti_stab sel optima 2 { 0.2 0.2}
quanti_stab_ sel optima 3 {-0.3 0.3}
quanti_stab sel intensity 1

In this example the environment consist of two patches with varying selection
pressures. Three quantitative traits are simulated. The first trait has a
selection optimum at -0.1 in patch 1 and at 0.1 in patch 2. The selection
optimum of the second trait is the same in both patches (0.2). The third
trait has an optimum at -0.3 in patch 1 and at 0.3 in patch 2. The intensity
of the selection is identical for all three traits and in both patches.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 83

8.4.3 Directional selection

Directional selection may act on quantitative traits. The fitness (W) of a
quantitative trait is computed using the following generalized logistic func-
tion (Richards, 1959):

maxr — min

W = min + (1+s% er(PTMM—P))l/s

1.0

3 - 7

fitness
0.6
!

0.4
|

0.2
|

0.0
|

-4 -2 0 2 4

phenotype

Where min is the lower asymptote (parameter quanti _dir_sel min), mazx is
the upper asymptote (parameter quanti _dir_sel max), r is the growth rate
(parameter quanti dir _sel growth rate), P, . is the phenotype with the
maximal slope (parameter quanti dir _sel max_growth), and s defines the
symmetry of the curve (parameter quanti_dir sel symmetry; the curve is

symmetric by default (value 1)).

quanti dir sel min
quanti dir sel min fem

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 84

quanti dir sel min mal [decimal/matrix| (temporal/default: 0)
These parameters allow to set the lower asymptote of the selection curve
for each patch for a given quantitative trait.

quanti dir sel max

quanti dir sel max fem

quanti dir sel max mal [decimal/matrix| (temporal/default: 1)
These parameters allow to set the upper asymptote of the selection
curve for each patch for a given quantitative trait.

quanti dir sel growth rate

quanti dir sel growth rate fem

quanti dir _sel growth rate mal [decimal/matrix| (temporal/de-
fault: 1)
These parameters allow to set the slope of the selection curve for each
patch for a given quantitative trait. If the argument is positive larger
phenotypes have a higher fitness, while if negative smaller phenotypes
have a higher fitness.

quanti dir sel max growth

quanti dir sel max growth fem

quanti dir sel max growth mal [decimal/matrix| (temporal/de-
fault: 0)
These parameters allow to set the phenotype with the maximal growth.

quanti dir sel symmetry

quanti dir sel symmetry fem

quanti_dir sel symmetry mal [decimal/matrix]| (temporal/default:
1)
These parameters allow to set the symmetry of the curve. The default
value of 1 results in a symmetric slope.

patch dir sel min var [decimal/matrix| (temporal/default: 0)
This parameter specifies the variance of the normal distribution by
which the lower asymptote of the selection curve varies at each gener-
ation (e.g. annual fluctuations of the mean temperature). By default
the lower asymptote of the selection curve does not vary.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 85

patch dir sel max var [decimal/matrix| (temporal/default: 0)
This parameter specifies the variance of the normal distribution by
which the upper asymptote of the selection curve varies at each gener-
ation (e.g. annual fluctuations of the mean temperature). By default
the upper asymptote of the selection curve does not vary.

patch dir sel growth rate var [decimal/matrix| (temporal/de-
fault: 0)
This parameter specifies the variance of the normal distribution by
which the selection slope varies at each generation (e.g. annual fluctu-
ations of the mean temperature). By default the local selection slope
does not vary.

patch dir sel max growth var [decimal/matrix| (temporal/de-
fault: 0)
This parameter specifies the variance of the normal distribution by
which the phenotype with maximal growth varies at each generation
(e.g. annual fluctuations of the mean temperature). By default the
local phenotype with maximal growth does not vary.

patch dir sel symmetry var [decimal/matrix| (temporal/default:
0)
This parameter specifies the variance of the normal distribution by
which the symmetry of the curve varies at each generation (e.g. annual
fluctuations of the mean temperature). By default the symmetry of the
slope does not vary.

Example

quanti_dir sel growth rate 1
quanti dir sel max growth 0
quanti_dir sel symmetry 1

In this example the selection pressure for all patches and quantitative traits
are identical and set to the default values. The specified directional selection
pressure favours larger phenotypes (parameter quanti_dir _sel growth rate
is positive). This means that individuals with larger phenotypes have on
average higher fitnesses and thus higher reproductive successes.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 86

8.4.4 Fitness landscape

Specifying a fitness landscape allows defining any selection pressure for a
given quantitative trait. More precisely, it allows to associate to any value
of the trait (i.e. phenotypic value) a given fitness. The phenotypic val-
ues (parameter quanti_phenotype landscape) and fitness values (parameter
quanti_fitness _landscape) are separately passed to quantiNemo as two vec-
tors. The fitness value of any phenotype within the specified range of pheno-
types is linearly interpolated and if the phenotype lies outside of the specified
range of phenotypes the resulting fitness value will result in the fitness value
of the smallest and largest phenotype, respectively. By default, all pheno-
types will result in a fitness of 1.

1.0

fitness
0.6
l

0.4
|

0.2
|

0.0
|

T T T T I
-4 -2 0 2 4

phenotype

The fitness landscape is defined by two tightly linked parameters:

quanti phenotype landscape
quanti phenotype landscape fem

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 87

quanti phenotype landscape mal [decimal/matrix| (temporal/de-
fault: 0)
These parameters allow to specify an array of phenotypes for which the
corresponding fitness is defined using the parameter quanti _fitness landscape.
The phenotype values are either specified by a single value (similar to
the default value) specifying a unique phenotype for all patches and
quantitative traits together (all phenotypes will result in the same fit-
ness), or by a one dimensional array (1D matrix) specifying the same
fitness landscape for all patches and a given quantitative traits to-
gether, or by a 2D matrix specifying the fitness landscape separately
for each patch for a given quantitative trait. Since the two parameters
quanti_fitness phenotype and quanti_fitness _fitness are tightly linked,
i.e. specify the phenotypes and their corresponding fitness values, the
architecture of the two parameters have to be identical, 7.e. show up
the same number of values for a patch.

quanti fitness landscape

quanti fitness landscape fem

quanti_fitness landscape mal [decimal/matrix| (temporal/default:
1)
These parameters allow to specify the fitnesses corresponding to the
phenotypes defined with the parameter quanti phenotype landscape,
in the same order as the phenotypes are defined in the parameter
quanti_fitness phenotype.

Example

quanti_phenotype landscape {—4.0 —-3.2 —-2.4 —1.6 —0.8 0.0
0.8 1.6 2.4 3.2 4.0}

quanti fitness landscape {0.00 0.05 0.72 0.72 0.05 0.00
0.05 0.72 0.72 0.05 0.00}

In this example the selection pressure for all patches and quantitative traits
are identical. The specified fitness landscape corresponds to the above shown
figure, however, the resolution of the specification is reduced in the shown
example. The binomial landscape is the sum of two stabilizing selections
with optima set to -2 and 2 and an intensity of 0.5.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 88

8.4.5 Selection coefficient

QuantiNemo supports the simulation of bi-allelic loci where the selection
pressure is defined by a selection coefficient. In this simplified, but widespread
model, the genotype is directly mapped to a fitness:

Genotype Fitness Fitness extended

AA 1 F
Aa 1-hs F - hs
aa 1-s F-s

Where s is the selection coefficient (parameter quanti coef sel), h the dom-
inance factor (parameter quanti_dominance mean) with the model (param-
eter quanti_dominance _model) set to 1 (h-model, has to be set explicitly!),
and F' is the fitness factor for the wild type genotype AA set by parameter
quanti__coef sel AA. This latter parameter is normally not used therefore it
is listed in the column “Fitness extended".

quanti coef sel

quanti coef sel fem

quanti coef sel mal [decimal/matrix| (temporal/default: 0)
These parameters allow to set the selection coefficient s for each patch
and quantitative trait/locus. The default value of 0 will result in equiv-
alent fitness for both alleles, and thus no selection acts.

quanti coef sel AA

quanti coef sel AA fem

quanti_coef sel AA mal [decimal/matrix| (temporal/default: 1)
These parameters allow to set the fitness for the wild type genotype
AA for each patch and quantitative trait/locus. By default it is 1.

8.5 Selection level and position

8.5.1 Selection level

With the following parameters it is possible to define the level of selection.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 89

selection level [0-3] (default: 0)
This parameter specifies how selection acts at the reproduction stage.

0 : soft selection. nbOff, = N,
The fitness of an individual is relative to the mean fitness of the
population of its patch (soft selection at the patch level). This
means that the population size does not depend on the mean fit-
ness of the population and that selection does act locally at the
patch level, i.e. patches do not interact (Wallace, 1975). No pop-
ulations may therefore go extinct due to their maladaptation.

1 : metapopulation selection. nbOf f, = (W,/W,,) Ny,

The fitness of an individual is relative to the mean fitness of
the entire metapopulation (soft selection at the metapopulation
level). This means that the size of the entire metapopulation does
not depend on the mean fitness. However, the population size of
each patch depends on the mean fitness of its population (Ravigne
et al., 2004). This implies that a well adapted population grows
while the population size of a less adapted population declines. In-
dividual populations may go extinct due to their maladaptation,
however not the entire metapopulation.

2 : hard selection . nbOff, =W, * N,

The fitness of an individual is absolute. If selection acts at re-
production the number of offspring to produce is scaled by the
mean fitness of the population (the maximum number of offspring
to produce (with a mean fitness of 1) is defined by the parameter
mating _nb_offspring). If selection acts during regulation then the
fitness of an individual is identical to its survival probability. Only
with hard selection, the entire metapopulation may go extinct if
the populations are maladapted.

The shown equation are correct for selection during reproduction and
deviate slightly if selection acts at another stage. nbO f f, is the number
of offspring to be produced in patch p, N, and N,,, are the total number
of offspring defined by the parameter mating nb_offspring _model of
patch p and metapopulation m, respectively, W, and W), are the sum
of fitnesses of patch p and metapopulation m, respectively, and W, is
the mean fitness of patch p.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 90

Here is an example of the different selection levels in case of selection
at the reproductive success. Both populations have a carrying capacity
(K) of 1000 individuals, the parameter mating_nb_model is set to 0,

and the mean fitnesses of the populations (W) are 0.6 and 0.2, respec-

tively:
population 1 population 2
K = 1000 K = 1000
selection level W =0.6 W =02 total
soft 1000 1000 2000
metapopulation 1500 500 2000
hard 600 200 800

patch mean fitness [0-2] (default: 0)
This parameter specifies how the mean fitness of a patch is defined. By
default, all individuals are considered.

0 : all. The fitness of all individuals (females and males) is considered

(default).
1 : only females Just the fitness of the females is considered.

2 : only males Just the fitness of the males is considered.

8.5.2 Selection position

By default, the selection appends during breeding. This is a reasonable
choice for performance issue (all individual created go until the next
reproduction stage, i.e. no "useless" individuals are created). However,
quantiNemo also offer the possibility for selection to act at other stages
of the life cycle. Note, however, that selection may only act at a single
stage at once.

selection position [0-4] (default: 0)
The parameter specifies when and how selection acts. By default, selec-
tion acts at reproduction where the fecundity of an individual depends
on its fitness.

0 : reproductive success. Selection acts at the reproduction stage
(see section 5.2), where the number of offspring of an individual
depends on its fitness.

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 91

1 : reproductive success special. Currently not working (do not use).

2 : offspring survival. Selection acts at the survival probability of
the offspring, i.e. before dispersal (see section 5.4).

3 : adult survival. Selection acts at the survival probability of the
adults, i.e. after dispersal (see section 5.5).

4 : no selection. This option allows performing simulations without
any selection.

8.6 Fitness factor

The fitness factor allows translating a genotype directly into a fitness value. A
fitness factor may be set either at the quantitative trait genotype level, at the
locus level or globally for homozygote and /or heterozygote loci. The resulting
fitness factor is determined in the above mentioned order, first quantitative
trait genotype specific settings are considered, followed by locus specific set-
tings and finally global parameters. The default fitness factor is 1 for all
cases. This feature of quantiNemo allows among others to simulate recessive
deleterious alleles, heterozygote or homozygote deficits, or incompatibilities
of alleles for example to simulate hybridization or speciation.

8.6.1 Fitness factor at locus level

The fitness factors at the locus level are defined in the dominance file (see
section 8.2.2)

8.6.2 Fitness factor at trait level

The fitness factors at the trait level are defined in the epistatic file (see section
8.2.3)

8.6.3 Fitness factor at global level

If the fitness factors are defined globally, the contribution to the fitness will
be computed for each locus, and the final fitness will be obtained by mul-

CHAPTER 8. QUANTITATIVE TRAITS AND SELECTION 92

tiplying the local fitnesses To define the fitness factor globally the following
parameters may be used:

quanti fitness factor heterozygote [decimal/matrix| (default: 1)
This parameter allows to specify the fitness factor for heterozygote loci,
i.e. if the two alleles at a given locus are different. Using a matrix it
is possible to define different fitness factors for each locus. By default
the fitness factor for heterozygote loci is 1, resulting in no effect on the
fitness.

quanti_fitness factor homozygote [decimal/matrix| (default: 1)
This parameter allows to specify the fitness factor for homozygote loci,
i.e. if the two alleles at a given locus are identical. Using a matrix it
is possible to define different fitness factors for each locus. By default
the fitness factor for homozygote loci is 1, resulting in no effect on the
fitness.

Chapter 9

Coalescence

9.1 Introduction

QuantiNemo has been developed to perform forward in time simulations
at the individual level. This allows simulating realistically highly complex
quantitative traits under selection. The drawback of this type of simulation
is the huge demand of memory and long computation times. In contrast,
population-based backward in time simulations based on the coalescence the-
ory are much more efficient in terms of computation time and memory usage
but do not allow to simulate realistic quantitative traits under selection. In
order to take advantage of both types of simulations, we have added a layer of
coalescence to quantiNemo2. Having both individual and population-based
simulations allow for the user to switch easily the simulation mode depending
on the type of simulation, keeping all the rest of the simulation/demography
identical.

This allows, for example, to explore a demographic history using efficient
population-based simulations and then to make the simulations more realis-
tic by switching to individual based simulations. Technically the population-
based simulations simulate forward in time the evolution of the entire popu-
lations. During this simulation, the population sizes and immigration rates
for all patches are stored in an internal database. In a second step, the
database is used to simulate backward in time corresponding coalescence
trees on which in a third step the mutations are sprinkled to generate the

93

CHAPTER 9. COALESCENCE 94

genetic polymorphism. Most of the parameters of quantiNemo may be used
in both simulation modes, but not all. Thus it is not possible to simulate any
quantitative traits and thus no selection acts in population-based simulations.
It is also important to note that population sizes in coalescence simulations
are effective population sizes, whereas in individual-based simulation census
population sizes. In addition at the current stage, the coalescence simula-
tions are limited to hermaphrodite individuals and unlinked neutral markers.
The genetic maps is not taken into account in the population-based mode.
Finally, statistics are only available for adults, since only the last generation
of individuals is created.

In this chapter, the coalescence specific parameters are described.

coalescence [0-1] (default: 0)
This parameter allows to switch between forward-in-time simulation of
individuals and backward-in-time simulations of populations (coales-
cence):

0 : individual based. Forward-in-time simulation of individuals. That
is the default mode where quantitative traits and selection may
be simulated.

1 : population based. Backward-in-time simulations of populations
using a coalescence approach. Only able to generate unlinked
neutral markers.

coalescence model threshold [decimal] (default: 0.1)
The probability p that a single coalescence event per generation and
patch occurs depends on the number of traced lineages n and the pop-
ulation size N (in diploid numbers):

n(n—l).

P="UN

This approximation is valid for small numbers of traced lineages com-
pared to the population size (n << N). If n in relation to N gets bigger
the probability that more than one coalescence event occurs increases
and thus the method above is not any more accurate. Therefore quan-
tiNemo allows setting a threshold (this parameter) for the probability
of a single coalescence even p above which the method used to simulate

CHAPTER 9. COALESCENCE 95

the coalescence events is changed. In this latter case the coalescence
process is simulated realistically, i.e. for each traced lineage a parental
gene is drawn randomly. All lineages with an identical parental gene
are then coalesced. In this case, at each generation, several coalescence
events may happen but also events involving the fusion of three or more
lineages are possible.

This method is always valid, however much slower in terms of compu-
tation time than the previously mentioned one (Note however that this
is still much faster than forward in time simulation). By default the
value of this parameter, i.e. the threshold, is set to 0.1 which is an ac-
ceptable threshold. Note that the probability that a single coalescence
event occurs may exceed extensively 1. A value of 0 implies that the
coalescent process is always realistically simulated. And ratios above 0
are used to specify the threshold below which a singe coalescence event
is assumed and above which the coalescence process is simulated realis-
tically. A parameter value of 1e6 is arbitrarily used to tell quantiNemo
that only single coalescence events should be assumed.

divergence time [integer| (default: 0)
A coalescence simulation lasts until the most recent common ances-
tor (MRCA) is reached. Depending on the simulated demography the
MRCA may be found within the simulated time, but it can well be that
the MRCA of all sampled lineages lays before the start of the demo-
graphic simulation. In this case, going backward in time the coalescence
simulation is continued behind the demographic simulation assuming
no migration between the remaining patches. At the divergence time
(parameter divergence time all remaining lineages are then merged
to a single patch of specified size (parameter divergence pop _size
below). By default the value of the parameter divergence time is
0. If the divergence time is set to less than the number of simulated
generations (as the default) the divergence time will be readjusted to
the number of generations, thus all remaining lineages are merged to a
single patch when the onset of the demographic simulation is reached.

divergence pop size [integer| (default: 0)
This parameter allows to define the final population size after the diver-
gence time. Check the parameter divergence time for a description
of it. If the argument is 0 (default value) the population size is adjusted

CHAPTER 9. COALESCENCE 96

to the current total number of individuals. If the specified population
size is smaller than the number of traced lineages, then the population
size is increased to the smallest possible population size still capable to

carry the traced lineages.

9.2 OQOutput

The coalescence simulations allow to output the coalescence trees and also

the times to the MRCA.

9.2.1

Trees

The coalescence trees may be dumped to file in the NEXUS format. The
branches of the tree may be either scaled by the coalescence times, or by the
number of mutations. Several programs allowing to visualize NEXUS files
such as for example FigTree developed by Andrew Rambaut www.tree.bio.
ed.ac.uk/software/figtree. The NEXUS file has the extension .tree.

coalescence save tree [0-2] (default: 0)
This parameter specifies the output of the coalescence trees.

0:

1

None. No output is generated.

: scaled by coalescence time. The trees are outputted in the NEXUS

format and branches are scaled by the coalescence times.

: scaled by number of mutations. The topology of the trees is

the same as before, but the branches are now scaled by the number
of mutations.

An example of a tree file for 3 loci and 3 sampled diploid individuals:

JNEXUS

[Treefile generated by quantiNemo
quantiNemo v1.5.0[May 20 2010; 09:14:19]
File created the 20—05—2010 09:14:27
Branches are scaled by the coalescence time

www.tree.bio.ed.ac.uk/software/figtree
www.tree.bio.ed.ac.uk/software/figtree

CHAPTER 9. COALESCENCE 97

Begin trees;

Translate
la,
1b,
2a,
2b,
3a,
3b;

SO W N

tree LOCUS 1
tree LOCUS 2

((5: 114, 4: 114): 2, ((1: 59, 6: 59): 2,

End;

(
(1: 72, ((6: 33, 5: 33): 22, ((2: 3, 4: 3)|
tree LOCUS 3 = (((1: 9, 2: 9): 13, 6: 22): 209, ((4: 0, 5

coalescence tree dir [string]| (default: "")
This parameter allows to specify the subdirectory where the tree files
are stored. This directory has to be specified relative to the simu-
lation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

coalescence tree filename [string] (default: "")
This parameter is used to specify an individual base filename for the
coalescence trees. If not specified the generic base filename will be used
(see parameter filename).

coalescence tree script [string| (default: "")
It is possible to launch a script just after the tree file is generated. The
argument of the parameter is the file name of the script. The name of
the tree file is passed as unique parameter to the script.

9.2.2 MRCA

The times to the MRCA may be dumped to file as a simple list. The file has
the extension .mrca.

coalescence save mrca [0-1] (default: 0)

13, 2:
2, 3: 5):
0): 180,

1

3:

3): 48)
50): 17
180):

CHAPTER 9. COALESCENCE 98

This parameter specifies whether the times to the MRCA are out-
putted.

0 : None. No output is generated.

1 : Output. The times to the MRCA are outputted. mutations.

An example of such a file for 3 loci is:

112
339
813

coalescence _mrca_dir [string] (default: "")
This parameter allows to specify the subdirectory where the MRCA
files are stored. This directory has to be specified relative to the sim-
ulation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

coalescence mrca_filename [string] (default: "")
This parameter is used to specify an individual base filename for the
coalescence MRCA. If not specified the generic base filename will be
used (see parameter filename).

coalescence mrca_script [string] (default: "")
It is possible to launch a script just after the MRCA file is generated.
The argument of the parameter is the file name of the script. The name
of the MRCA file is passed as unique parameter to the script.

9.2.3 Lineages

For the coalescence simulation, it is possible to dump the current populated
patches, including their population sizes and number of traces lineages to a
file for any given generation. The file is generated for each locus separately
and has the ending 1X.lin, where X is the locus index. The format is as
follows: Each line contains a single generation, i.e. time slice. The line starts
with the generation index relative to the start of the simulation. Thus since
the coalescence simulations are proceeded backward in time the generations
decrease from top to down of the file. Positive numbers are time slices where

CHAPTER 9. COALESCENCE 99

a demographic simulation is available and negative numbers for time slices
before (forward in time) the demographic simulation. The generation number
is followed by the total number of currently traced lineages. Then each
populated patch is listed using three numbers, the patch index, the current
population size, and the current number of traced lineages. Since over time
some patches may be colonized or freed the number of columns per line may
change between generations.

coalescence save lineages [0-1] (default: 0)
This parameter specifies whether the patch stages are outputted.

0 : None. No output is generated.

1 : Output. The patch stages are outputted.

coalescence lineages logtime [integer| (temporal/default: 1)
This parameter allows to specify at which generations DURING the
period of the demographic simulation the patch stages are dumped to

file.

coalescence lineages logtime2 [integer| (temporal/default: 1)
This parameter allows to specify at which generations BEFORE (for-
ward in time) the demographic simulation the patch stages are dumped
to file.

coalescence save lineages dir [string] (default: "")
This parameter allows to specify the subdirectory where the lineages
files are stored. This directory has to be specified relative to the sim-
ulation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

coalescence save lineages filename [string] (default: "")
This parameter is used to specify an individual base filename for the
lineages files. If not specified the generic base filename will be used (see
parameter filename).

coalescence lineages script [string] (default: "")
It is possible to launch a script just after the patch stage file is gen-
erated. The argument of the parameter is the file name of the script.

CHAPTER 9. COALESCENCE 100

The name of the patch stage file is passed as unique parameter to the
script.

9.2.4 Population sizes

For the coalescence simulation, it is possible to dump the current populated
sizes to file. The format of the file is the generation time followed by the
population sizes for the patches of choice.

coalescence save pop_sizes [0-1] (default: 0)
This parameter specifies whether the population sizes are outputted.

0 : None. No output is generated.

1 : Output. The population sizes are outputted.

coalescence pop sizes logtime [integer| (temporal/default: 1)
This parameter allows to specify at which generations the population
sizes are dumped to file.

coalescence save pop sizes dir [string] (default: "")
This parameter allows to specify the subdirectory where the population
sizes files are stored. This directory has to be specified relative to the
simulation folder (parameter folder), and may also contain subdirecto-
ries. If not specified (default) the output is stored in the simulation
folder (parameter folder).

coalescence save pop sizes filename [string] (default: "")
This parameter is used to specify an individual base filename for the
population sizes files. If not specified the generic base filename will be
used (see parameter filename).

coalescence pop sizes of patch [integer/matrix| (default: "")
This parameter allows defining the patches for which the population
sizes should be outputted using a matrix with the patch IDs. By default
the population sizes of all patches is outputted.

coalescence pop sizes script [string] (default: "")
It is possible to launch a script just after the population sizes file is

CHAPTER 9. COALESCENCE 101

generated. The argument of the parameter is the file name of the script.
The name of the population size file is passed as unique parameter to
the script.

9.3 Summary statistics

The summary statistics listed in the table below are available for coalescence
simulations. The column Stat name contains the name of the summary statis-
tic used to specify which summary statistics are computed (parameter stat,
for details see section 10.3). These names appear also in the output file. The
column Description contains a short description of the summary statistic.

The summary statistic name (column Stat name) may be used to specify
the summary statistic to be computed (e.g. mrca.mean). Similar summary
statistics (within a thematic group) may be obtained at once using the name
within square brackets after the group title (e.g. mrca). Using this group
statistic name all summary statistics of the thematic group marked with a
star (*) will be computed.

sample all or nothing [0,1] (default: 0)
This parameter allows to specify when statistics should be computed
(only available for the coalescence simulations):

0 : when possible. In this case statistics and outputs are generated
whenever it is possible, i.e. whenever a patch is enough populated
that a given statistic may be computed.

1 : all or nothing. In this case statistics and output are generated
only if the entire sampling schema may be applied, i.e. if the
patches are enough populated that the specified sampling may be
applied. If this is not the case a NaN or a zero depending on the
statistic is outputted for all statistics. Note that in such a case
the genetic part of the coalescence simulations are omitted, thus
the simulation may be much quicker although useless. A speci-
fied sampling may not be applied if (and only if) not all specified
patches (parameter sampled patches defined as a matrix) may be

CHAPTER 9. COALESCENCE 102

sampled or the population size is inferior to the sampling size (pa-
rameter patch sample size defined in entire numbers (absolute)).

Table 9.1: Summary statistics available for coalescence simulations

Stat name Description

MRCA |mrca|
mrca.mean mean time to the MRCA*
mrca.var variance of the time to the MRCA*

Table 9.1: Summary statistics available for coalescence simulations continued

Chapter 10

Ouputs and Statistics

QuantiNemo allows to output summary statistics as well as raw data about
the population, including the complete genome, in order to offer the highest
flexibility. QuantiNemo can also output log files to resume a simulation
or restart it from the beginning with the same random parameter. More
precisely, quantiNemo can output:

summary statistics
QuantiNemo provides summary statistics for the different simulation
components, including for example genetic variance estimates, quanti-
tative trait analysis (e.g. Qgsr), and F-statistics. The summary statis-
tics can be computed for any generation during the simulation. If
several replicates are performed, the averaged across replicates as well
as the value for each replicate can be outputted.

raw data

QuantiNemo can also produce files with the raw genetic and phenotypic
data. The genotypes at all loci can be dumped to file in the FSTAT
(Goudet, 1995) or Arlequin format (Excoffier, 2010). Phenotypes, as
well as the additive, dominance, and epistatic effect values can be writ-
ten to a file and then analyzed with any population or quantitative
genetic software, e.g. to get patterns of differentiation, study linkage
disequilibrium, or scan for QTL. Genotypes and phenotypes can be
saved for any generation during the simulation.

log files

103

CHAPTER 10. OUPUTS AND STATISTICS 104

QuantiNemo also generates log files allowing to reconstruct performed
simulations. There are two types of log files. The first log file records
the simulations performed with quantiNemo and stores some general
information. This log file is stored in the folder of the executable and
allows to reconstruct the chronology of performed simulations and their
main features. The other log file contains the used parameters, is gen-
erated for each simulation separately and is stored in the simulation
folder. This file is in principle a copy of the used settings file and
contains the starting time and the duration time of the simulation. It
contains also the seed (see parameter seed) used to initialize the sim-
ulation. This file can be used as settings file to exactly repeat the
performed simulation. Note, that due to the seed in the file the ran-
dom generator will be initialized in the same way leading to the exact
same values in the output.

10.1 Files name

All files of a simulation are stored in a unique folder (see parameter folder).
This simulation folder may contain a substructure. The names of the output
files are based on the base name given by the parameter filename. Depending
on the type of output different extensions are added to the base name. To
avoid that recurring outputs overwrite previous outputs a counter is added to
the file name between base name and extension. There are two types of coun-
ters: the generation counter and the replication counter. A counter is only
added if there is a risk of overwriting. For example, the replication counter
is only added if several replications are performed. The generation counter
starts with " g" and the replication counter with " r". These characters
are followed by the number of the generation and replication, respectively.
Note, that generations and replications start at 1. The number has as many
digits as are needed to represent the highest number in the simulation:

simulation g0001 r01.dat
simulation g0002_ r01.dat

simulation gb5000 r10.dat

CHAPTER 10. OUPUTS AND STATISTICS 105
10.2 Sampling

By default, the outputs generated by quantiNemo (summary statistics, geno-
types, phenotypes, and genotypic values) are computed/outputted consider-
ing all individuals and populations. This section describes parameters al-
lowing to constrain the considered populations and/or individuals. The pa-
rameter sampled patches allows to make a pre-selection on the patches,
whereas the parameter patch sample size allows defining for each patch
and/or sex the sampled number of individuals. It is therefore possible to
specify the samples just using the parameter patch sample _size.

sampled patches [integer/matrix| (default: 0)
The parameter sampled patches allows defining a sampling schema
for patches, where ALL individuals are sampled. There are different
methods to define the sampled patches:

single number. If the argument is a single number the patches to
sample are drawn randomly. In this case, the passed number spec-
ifies the total number of patches to sample. Patches are drawn
randomly for each replicate but remain the same during a simula-
tion. A special case is 0 as argument (default value). In this case,
all patches are sampled.

matrix. Using a one dimensional matrix as argument allows to define
explicitly the patches to sample. Please note that for this parame-
ter a matrix has to be defined fully, i.e. all patches to sample have
to be listed in the matrix and a single number is not expanded to a
matrix. Note, that in contrast to the normal matrix behaviour the
two arguments 20 and {20} are not identical. While the former
one is considered as a single number defining the total number of
sampled patches, the second one is a matrix and defines the patch
to be sampled, i.e. patch 20.

patch sample size

patch:sample:size_fem

patch sample size mal [decimal/matrix| (temporal/default: NalN)
These parameters allows to define for each patch and/or sex the sample
size or sample proportion. Since the sampling schema may change over

CHAPTER 10. OUPUTS AND STATISTICS 106

time the summary statistics are computed and outputted for all pop-
ulations sampled at any time during the simulation even if at a given
time the sample size is zero. These parameters here overwrite any set-
tings specified by the parameter sampled patches.If the sampling is
sex specific both sex specific parameters have to be set. The sampling
for a single patch may be defined in the following ways:

proportion. A decimal number (number between 0 and 1, exclusive 1)
may be used to define the sample size relatively to the population
size.

absolute. The sample size may be defined in an absolute number (1
or larger). If the absolute sample size exceeds the population size
the entire population is sampled.

NaN. This is the default argument and allows to sample all individuals
of a population.

The sampling schema for all patches may be defined as follows:

single number. All patches have the same sampling schema, 7.e. sam-
pling proportion or sampling number.

1D matrix. The sample sizes/proportions of each patch may be set
using a 1D matrix. The setting of this matrix behaves as the
matrix for the parameter patch capacity or patch ini _size,
i.e. the matrix size is adjusted if needed. Within a matrix, the
individual patch sample sizes may vary between relative, absolute,
or NaN definitions.

2D matrix. A 2D matrix allows specifying directly the sample sizes/pro-
portions for a given number of patches. The number of columns
has to be 2, where the first column contains the patch ID and the
second column the corresponding sampling number /proportion.
Within a matrix, the individual patch sample sizes may vary be-
tween relative, absolute, or NaN definitions. All not specified
patches will not be sampled, 7.e. have a sample size of 0.

CHAPTER 10. OUPUTS AND STATISTICS 107
10.3 Summary statistics

It is possible to record summary statistics specified by the parameter stat.
At the end of a simulation, the summary statistics are written to a text
file. By default, the summary statistics are printed individually per replicate
and/or summed up across replicates (mean and variance across replicates).
In this latter case an additional statistic named alive.rpl will be added which
contains the number of alive replicates, i.e. the number of simulations where
the populations did not get extinct. It is also possible to set the frequency
(parameter stat log time) of the recording, which reduces the simulation
time and the size of the output file.

Some of the summary statistics are available for adults and offspring (indi-
cated by (adlt/off)). To obtain a certain summary statistic for adults the
prefix adlt. has to be added to the summary statistic name (e.g. adlt.allnb),
respectively the prefix off. to obtain the summary statistic for offspring (e.g.

off.allnb).

Relevant statistics can be computed either for the entire Metapopulation, or
of every patch separately. In the latter case, the statistics are characterized
by asuffix " p" to the Stat name and by the words (computed for each patch)
in the description of the statistic. Other summary statistics are computed
for pairwise combinations of patches. These statistics are characterized by a
suffix " pair" to the Stat name and by the words (all pairwise combinations
computed) in the description of the statistic. The names of such summary
statistics in the output have the suffix " pX" and " pX-Y" respectively.
Where X and Y are the index of the patches (starting with 1).

The summary statistics are computed by default for every trait. If several
traits are simulated the postfix " t7T" is added to the summary statistic
name in the output file, where 7T is the index of the traits. It is possible
to compute statistics just for specified traits. This can be specified by the
index of the type inserted just after the (n). For example the stat option
(n.adlt.fst) computes the Fst for all types of neutral markers while the stat
option (n2.adlt.fst) computes the Fst just for the second neutral marker type.

stat [string/matrix]
This parameter allows specifying the summary statistics to be com-
puted. A exhaustive list of existing statistics is given in the next sub-

CHAPTER 10. OUPUTS AND STATISTICS 108

section: 10.3.1, 10.3.2, 10.3.3 (except for statistic specific to coalescence
which are treated in the chapter about coalescence, section 9.3). The
arguments are keywords standing for one or multiple summary statis-
tics. Keywords have to be written as a matrix within brackets separated
by space.

The summary statistic name (column Stat name) may be used to specify
the summary statistic to be computed (e.g. adlt.fst). Similar summary
statistics (within a thematic group) may be obtained at once using
the name within square brackets after the group title (e.g. adlt.fstat).
Using this group statistic name all summary statistics of the thematic
group marked with a star (*) will be computed.

stat {n.fstat
quanti
adlt .demo}

stat save [0-6] (default: 0)
This parameter specifies if the summary statistics should be computed
and how they should be dumped to file. The summary statistics may
be dumped to file for each specified generation and replicate sepa-
rately (file "generic_name_stats.txt"), or summary statistics may be
summed up across replicates by their mean (file "generic_name stats.txt")
and their variance (file "generic_name var.txt").

The column Stat name contains the name of the summary statistic
used to specify which summary statistics are computed. These names
appear also in the output file. The column Description contains a short
description of the summary statistic.

0 : All. Output includes all types of summary statistic (files "generic_name _stats.txt",
"generic_name mean.txt", and "generic _name var.txt").

1 : Detailed. Output includes only the file containing the summary
statistics for each replicate separately (file "generic _name stats.txt").
Since in this case (in contrast to all other options) it is not nec-
essary to save the statistics over all replicates, the statistics are
written to file when they are computed. This means that the in-
ternal database to store the statistics is not used, consequently,
the memory used by quantiNemo does not increase with each gen-
eration and replicate.

CHAPTER 10. OUPUTS AND STATISTICS 109

2 : Summed up. Output includes the files containing the summary
statistics summed up by their mean and variance across replicates
(files "generic_name mean.txt", and "generic name var.txt").

3 : Mean. Output includes only the file containing the summary statis-
tics summed up by their mean across replicates (file "generic _name mean.txt").

4 : Variance. Output includes only the file containing the summary
statistics summed up by their variance across replicates (file "generic_name_var.txt").

5 : Median. Output includes only the file containing the summary
statistics summed up by their median across replicates (file "generic_name median.txt"

6 : None. No summary statistics are written. The life cycle event
"Statistics" is skipped.

Whenever the summary statistics are output (parameter stat_save not
set to 6) a file named "generic_name legend.txt" containing a small
description of the summary statistics is also generated.

stat log time [integer| (temporal/default: 1)
This is the time interval at which summary statistics are recorded. The
interval must range between 1 and the number of generations. Since the
parameter may change over time (temporal parameter) the summary
statistics may be computed for any generation:

stat log time (1 1, 10 10, 100 100)

In this example for the first 9 generations the summary statistics are
computed every generation, from the tenth until generation 99 they are
computed at every tenth generation, and from the generation 100 every
hundred generation.

stat dir [string] (default: "")
This parameter is used to specify a subdirectory within the simula-
tion folder (parameter folder) where the summary statistic files will
be stored. If the parameter is not set, the files will be stored in the
simulation folder.

stat filename [string]| (default: "")
This parameter is used to specify an individual base filename for the
statistics. If not specified the generic base filename will be used (see
parameter filename).

CHAPTER 10. OUPUTS AND STATISTICS 110

param [string/matrix]|
This parameter allows specifying the parameter arguments to output
together with the statistics. Note, the output is listed only in the
detailed statistic file.

stat NalN [string| (default: "NaN")
This parameter allows specifying a placeholder used for the output of
the summary statistics for statistics which are not computable. By
default the placeholder is NaN. This default value is correctly read by
the statistical package R when such a file is imported.

10.3.1 Demography

Table 10.1: Summary statistics available for the demographic structure

Stat name Description

Demography |(adlt/off).demo]
(adlt/off).nbInd total number of individuals in the metapopulation™
(adlt/off).nbFem total number of females in the metapopulation®
(adlt/off).nbMal total number of males in the metapopulation*
(adlt /off).meanInd mean number of individuals per inhabited patch*
(adlt /off). meanFem mean number of females per inhabited patch*
(adlt/off). meanMal mean number of males per inhabited patch*
(adlt/off).sexRatio sex ratio (ﬁfﬁ—szs)*
(adlt/off).nbPops number of inhabited patches*
(adlt/off).nbInd _p number of individuals in patch i
(adlt/off).nbFem p number of females in patch ¢

(adlt/off).nbMal p number of males in patch 4

Demography of all individuals: In contrast to all other stats and outputs the following stats

consider all individuals and patches and not just the sampled ones. [(adlt/off).demoTot]
(adlt/off).nbInd Tot total number of individuals in the metapopulation™
(adlt/off). nbFemTot total number of females in the metapopulation®
(adlt/off).nbMalTot total number of males in the metapopulation™®
(adlt/off).meanIndTot mean number of individuals per inhabited patch*
(adlt/off).meanFemTot mean number of females per inhabited patch*
(adlt/off).meanMalTot mean number of males per inhabited patch*

Table 10.1 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 111

Stat name Description
(adlt/off).sexRatioTot sex ratio of individuals (é”n;‘—iszs)*
(adlt/off).nbPopsTot ~ number of inhabited patches*
(adlt/off).nbIndTot p number of individuals in patch i

)

(adlt/off).nbFemTot _p number of females in patch i
(adlt/off).nbMalTot p number of males in patch i

Patch extinction |ext.rate]

ext.rate proportion of extinct patches in the metapopulation™®
Fecundity |fecundity, available only for adults]

fem.meanFec mean realized female fecundity™

fem.varFec mean variance of realized female fecundity™

mal.meanFec mean realized male fecundity*

mal.varFec mean variance of realized male fecundity*
Kinship |(adlt/off).kinship]

(adlt/off).fsib mean proportion of full-sib*

(adlt/off).phsib mean proportion of paternal half-sib*

(adlt /off).mhsib mean proportion of maternal half-sib*

(adlt/off).nsib mean proportion of non-sib*

(adlt/off).self mean proportion of selfed offspring*
Migration [migration, available only for adults|

emigrants mean number of emigrants per patch*

immigrants mean number of immigrants per patch*

residents mean number of residents per patch*

immigrate mean effective immigration rate per patch*

immigrants
(immigrants+residents)

colonisers mean number of colonizers per extinct patch*

colon.rate mean effective colonization rate of extinct patches™
Fitness [fitness, available only for adults]

VwW variance of the fitness of adults within patches*

VwB variance of the fitness of adults between patches®

meanW _p mean fitness of adults in patch ¢ (computed for each patch)

varW _p variance of the fitness of adults in patch ¢ (computed for

each patch)

Table 10.1 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 112

Stat name Description

Random number initialization [seed]
seed outputs all used seeds (not really a statistic)*

Table 10.1: Summary statistics available for the demographic structure continued

CHAPTER 10. OUPUTS AND STATISTICS 113

10.3.2 neutral markers

Table 10.2: Summary statistics available for neutral markers

Stat name Description

Genotype coancestry [n.(adlt/off).coa
n.(adlt/off).theta mean within patch coancestry*
n.(adlt/off).alpha mean between patch coancestry™
n.(adlt/off).thetaF'F mean within patch, within females coancestry*
n.(adlt/off).thetaMM mean within patch, within males coancestry*
n.(adlt/off).thetaFM mean within patch, between sexes coancestry™
n.(adlt/off).coa.fsib mean coancestry within full-siblings™
n.(adlt/off).coa.phsib ~ mean coancestry within paternal half-siblings*
n.(adlt/off).coa.mhsib mean coancestry within maternal half-siblings*
n.(adlt/off).coa.nsib mean coancestry within non-siblings*
n.(adlt/off).theta_p mean coancestry within patch i (computed for each patch)
n.(adlt/off).alpha pair mean coancestry between patch ¢ and j (all pairwise com-

binations computed)

Genetic diversity [n.(adlt/off).gendiv]
number of alleles:
n.(adlt/off).nbAll mean across patches and loci*
n.(adlt/off).nbAll p mean across loci (computed for each patch)
n.(adlt/off).nbAll 1 mean across patches (computed for each locus)
n.(adlt/off).nbAll p 1 (computed for each patch and locus)
n.(adlt/off).nbAll.tot ~ mean total across loci*
n.(adlt/off).nbAll.tot 1 total (computed for each locus)
number of fixed loci:
n.(adlt/off).nbFixLoc mean across patches and loci*
adlt /off).nbFixLoc_p mean across loci (computed for each patch)
adlt/off).nbFixLoc_1 mean across patches (computed for each locus)
adlt/off).nbFixLoc_p (domputed for each patch and locus)
adlt/off).nbFixLoc.totmean total across loci*
n.(adlt/off).nbFixLoc.tottokal (computed for each locus)
allele frequencies (caution: any potential allele is outputted!):
n.(adlt/off).a.freq local (computed for each patch, locus and allele)
n.(adlt/off).a.freq.global global (computed for each locus and allele)

n.(
n.(
n.
n.(

Table 10.2 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 114

Stat name Description
locus gentoype frequencies (caution: any potential allele combination is outputted!):
n.(adlt/off).1.freq local (computed for each patch, locus genotype)

n.(adlt/off).1.freq.global global (computed for each locus genotype)
observed heterozygosity following Nei and Chesser (1983):

n.(adlt/off).ho *
n.(adlt/off).ho_p (computed for each patch)
n.(adlt/off).ho 1 (computed for each locus)

n.(adlt/off).ho_p 1 (computed for each patch and locus)
expected heterozygosity following Nei and Chesser (1983):

n.(adlt/off).hs *

n.(adlt/off).hs p (computed for each patch)

n.(adlt/off).hs 1 (computed for each locus)

n.(adlt/off).hs_p 1 (computed for each patch and locus)

n.(adlt/off).ht total*

n.(adlt/off).ht_1 total (computed for each locus)
expected heterozygosity (H =1— > p?):

n.(adlt/off).hs.p2

n.(adlt/off).hs.p2_p (computed for each patch)

n.(adlt/off).hs.p2 1 (computed for each locus)

n.(adlt/off).hs.p2_p 1 (computed for each patch and locus)

n.(adlt/off).ht.p2 total*

n.(adlt/off).ht.p2 1 total (computed for each locus)
allelic richness following El Mousadik and Petit (1996):
(rarefaction is based on the smallest sample size)

n.(adlt/off).rs

n.(adlt/off).rs_p (computed for each patch)

n.(adlt/off).rs_1 (computed for each locus)

n.(adlt/off).rs_p 1 (computed for each patch and locus)

n.(adlt/off).rt total

n.(adlt/off).rt_1 total (computed for each locus)
allelic range (difference between min and maz allele):

n.(adlt/off).r

n.(adlt/off).r_p (computed for each patch)

Table 10.2 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 115

Stat name Description
n.(adlt/off).r (computed for each locus)
n.(adlt/off).r p 1 (computed for each patch and locus)
n.(adlt/off).r.tot total
n.(adlt/off).r.tot 1 total (computed for each locus)

garza-williamsons statistic following Garza and Williamson (2001):

(modification: gw = (nb.allele)/ > (1 4 range))

n.(adlt/off).gw

n.(adlt/off).gw p (computed for each patch)
n.(adlt/off).gw 1 (computed for each locus)
n.(adlt/off).gw p 1 (computed for each patch and locus)
n.(adlt/off).gw.tot total

n.(adlt/off).gw.tot 1 total (computed for each locus)

F-statistics following Nei and Chesser (1983) |n.(adlt/off).fstat]

n.(adlt/off).fst global Fgp*
n.(adlt/off).fst 1 global Fsr (computed for each locus)
n.(adlt/off).fst pair pairwise Fisr between patch i and j (all pairwise combina-

tions computed)

n.(adlt/off).fst _pair 1 pairwise Fgp between patch ¢ and j (all pairwise combina-

tions computed for each locus separately)

n.(adlt/off) fis global Fjg*

n.(adlt/off).fis_1 global Frg (computed for each locus)

n.(adlt/off) fit global Fjr*

n.(adlt/off).fit 1 global Fyp (computed for each locus)
F-statistics following Weir and Cockerham (1984) |n.(adlt/off).fstat.wc|

n.(adlt/off).fst.wc global Fgp*

n.(adlt/off).fst.we 1 global Fgr (computed for each locus)

n.(adlt/off).fst.we_pair pairwise Fsr between patch ¢ and j (all pairwise combina-

tions computed)

n.(adlt/off).fst.we_pair pairwise Fgr between patch 7 and j (all pairwise combina-

tions computed for each locus separately)

n.(adlt/off).fis.we global Fjg*
n.(adlt/off).fis.we 1 global Fjg (computed for each locus)
n.(adlt/off).fit.we global Fyr*

Table 10.2 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 116

Stat name Description

n.(adlt/off) fit.we 1 global Fir (computed for each locus)

Linkage disequilibirum reviewed in Devlin and Risch (1995)
n.(adlt/off).Dprime global Dprime (computed globally for each pair of loci)
n.(adlt/off).Dprime _pairDprime, (computed for each patch each pair of loci)
n.(adlt/off).Dstar global Dstar (computed globally for each pair of loci)
n.(adlt/off). Dstar _pair Dstar, (computed for each patch each pair of loci)
n.(adlt/off).R global R2 (computed globally for each pair of loci)
n.(adlt/off).R2 _pair R2 (computed for each patch and each pair of loci)
n.(adlt /off).Chi2 global C'hi2 (computed globally for each pair of loci)
n.(adlt/off).Chi2 pair Chi2 (computed for each patch and each pair of loci)

Table 10.2: Summary statistics available for neutral markers continued

10.3.3 quantitative traits

Table 10.3: Summary statistics available for quantitative traits

Stat name Description
Quantitative trait statistics |quanti, available only for adults|
q.VgW genetic variance within patches™*
q.VgB genetic variance between patches™
q.VpW phenotypic variance within patches™
q.VpB phenotypic variance between patches*
q.VaW additive genetic variance within patches
q.qst Qst
q.qst.f Qst corrected for inbreeding following Bonnin et al.

(1996). Inbreeding coefficient F' computed following Nei
and Chesser (1983)

q.qst__pair Qst between patch i and j (all pairwise combinations com-
puted)

q.gst.f _pair Qs between patch ¢ and j (all pairwise combinations com-
puted) corrected for inbreeding

q.varA_p additive genetic variance of patch i following Lynch and
Walsh (1998, p85-87) (computed for each patch)

qg.meanG_p genetic mean of patch i (computed for each patch)

q.varG_p genetic variance of patch i (computed for each patch)

Table 10.3 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 117

Stat name Description
q.meanP p phenotypic mean of patch i (computed for each patch)
q.varP_p phenotypic variance of patch ¢ (computed for each patch)
Genotype coancestry |q.(adlt/off).coal
q.(adlt/off).theta mean within patch coancestry™

q.(adlt/off).alpha mean between patch coancestry™
q.(adlt/off).thetaFF mean within patch, within females coancestry*
q.(adlt/off).thetaMM mean within patch, within males coancestry*
q.(adlt/off).thetaFM mean within patch, between sexes coancestry*
q.(adlt/off).coa.fsib mean coancestry within full-siblings*
q.(adlt/off).coa.phsib ~ mean coancestry within paternal half-siblings™
q.(adlt/off).coa.mhsib mean coancestry within maternal half-siblings*
q.(adlt/off).coa.nsib mean coancestry within non-siblings*
q.(adlt/off).theta p mean coancestry within patch i (computed for each patch)
q.(adlt/off).alpha pair mean coancestry between patch ¢ and j (all pairwise com-
binations computed)

Genetic diversity |q.(adlt/off).gendiv]|
number of alleles:
q.(adlt/off).nbAll mean across patches and loci*
q-(adlt/off).nbAll p mean across loci (computed for each patch)
q.(adlt/off).nbAll 1 mean across patches (computed for each locus)
q.(adlt/off).nbAll p 1 (computed for each patch and locus)
q.(adlt/off).nbAll.tot ~ mean total across loci*
q.(adlt/off).nbAll.tot 1 total (computed for each locus)
number of fized loci:
q-(adlt/off).nbFixLoc mean across patches and loci*
q.(adlt/off).nbFixLoc_p mean across loci (computed for each patch)
q.(adlt/off).nbFixLoc 1 mean across patches (computed for each locus)
q.(adlt/off).nbFixLoc_p (domputed for each patch and locus)
q.(adlt/off). nbFixLoc.totmean total across loci*
q.(adlt/off).nbFixLoc.tottdtal (computed for each locus)
allele frequencies (caution: any potential allele is outputted!):
q.(adlt/off).a.freq local (computed for each patch, locus and allele)
q.(adlt/off).a.freq.global global (computed for each locus and allele)

Table 10.3 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 118

Stat name Description
locus gentoype frequencies (caution: any potential allele combination is outputted!):
q.(adlt/off).1.freq local (computed for each patch, locus genotype)

q.(adlt/off).1.freq.global global (computed for each locus genotype)
observed heterozygosity following Nei and Chesser (1983):

q.(adlt/off).ho *
q.(adlt/off).ho_p (computed for each patch)
q.(adlt/off).ho 1 (computed for each locus)

q.(adlt/off).ho_p 1 (computed for each patch and locus)
expected heterozygosity following Nei and Chesser (1983):

q-(adlt/off).hs *

q.(adlt/off).hs (computed for each patch)

q.(adlt/off). hs 1 (computed for each locus)

q.(adlt/off).hs p 1 (computed for each patch and locus)

q-(adlt/off).ht total*

q.(adlt/off).ht 1 total (computed for each locus)
expected heterozygosity (H =1— > p?):

q.(adlt/off).hs.p2

q.(adlt/off).hs.p2 p (computed for each patch)

q.(adlt/off).hs.p2 1 (computed for each locus)

q-(adlt/off).hs.p2 p 1 (computed for each patch and locus)

q-(adlt/off).ht.p2 total*

q.(adlt/off).ht.p2_1 total (computed for each locus)
allelic richness following El Mousadik and Petit (1996):
(rarefaction is based on the smallest sample size)

q.(adlt/off).rs

q-(adlt/off).rs (computed for each patch)

q.(adlt/off).rs_ 1 (computed for each locus)

q.(adlt/off).rs_p 1 (computed for each patch and locus)

q.(adlt/off).rt total

q.(adlt/off).rt 1 total (computed for each locus)
allelic range (difference between min and maz allele):

q.(adlt/off).r

q.(adlt/off).r_p (computed for each patch)

Table 10.3 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 119

Stat name Description
q.(adlt/off).r (computed for each locus)
q.(adlt/off).r p 1 (computed for each patch and locus)
q.(adlt/off).r.tot total
q-(adlt/off).r.tot 1 total (computed for each locus)

garza-williamsons statistic following Garza and Williamson (2001):

(modification: gw = (nb.allele)/ > (1 4 range))
q.(adlt/off).gw

q.(adlt/off).gw_p (computed for each patch)
q.(adlt/off).gw 1 (computed for each locus)
q.(adlt/off).gw p 1 (computed for each patch and locus)
q.(adlt/off).gw.tot total

q.(adlt/off).gw.tot 1 total (computed for each locus)

F-statistics following Nei and Chesser (1983) |q.(adlt/off).fstat]

q.(adlt/off).fst global Fgp*
q.(adlt/off).fst 1 global Fgr (computed for each locus)
q.(adlt/off).fst pair pairwise Fisr between patch i and j (all pairwise combina-

tions computed)

q.(adlt/off).fst _pair 1 pairwise Fgp between patch ¢ and j (all pairwise combina-

tions computed for each locus separately)

q.(adlt/off) fis global Fg*

q.(adlt/off).fis_1 global Fjg (computed for each locus)

q-(adlt/off).fit global Fjr*

q.(adlt/off).fit_1 global Fyp (computed for each locus)
F-statistics following Weir and Cockerham (1984) |q.(adlt/off).fstat.wc]

q.(adlt/off).fst.we global Fgp*

q.(adlt/off).fst.we_1 global Fgr (computed for each locus)

q.(adlt/off).fst.we_pair pairwise Fgr between patch i and j (all pairwise combina-

tions computed)

q.(adlt/off).fst.we pair_pairwise Fgr between patch 7 and j (all pairwise combina-

tions computed for each locus separately)

q.(adlt/off) fis.we global Frg*
q.(adlt/off).fis.we 1 global Fjg (computed for each locus)
q.(adlt/off).fit.we global Fir*

Table 10.3 continued on next page

CHAPTER 10. OUPUTS AND STATISTICS 120

Stat name Description

q.(adlt/off).fit.we 1 global Fjr (computed for each locus)

Linkage disequilibirum reviewed in Devlin and Risch (1995)
q.(adlt/off).Dprime global Dprime (computed globally for each pair of loci)

q.(adlt/off).Dprime_ pairDprime, (computed for each patch each pair of loci)
q.(adlt/off).Dstar global Dstar (computed globally for each pair of loci)
q-(adlt/off). Dstar _pair Dstar, (computed for each patch each pair of loci)
q.(adlt/off).R global R2 (computed globally for each pair of loci)
q.(adlt/off). R2 _ pair R2 (computed for each patch and each pair of loci)
q.(adlt/off).Chi2 global C'hi2 (computed globally for each pair of loci)

q.(adlt/off).Chi2_pair Chi2 (computed for each patch and each pair of loci)

Table 10.3: Summary statistics available for quantitative traits continued

10.4 Raw data

10.4.1 Genotype

The genotype of the sampled individuals and populations may periodically be
dumped to files. The output files will be stored in the folder given by the pa-
rameter (ntrl/quanti) genot dir and will have the name of the base file name
(see parameter filename in section 4). The extension is ".dat". A counter for
the generation (e.g. g05) and the replicate (e.g. r4) is inserted before
the extension. An example of such a file name is "simulation g05 r4.dat".
Note, that such a genotype file may be used to start a new simulation (see
parameter (ntrl/quanti ini genotypes). By default all individuals of all
populations are sampled. Section 10.2 describes how to specify a sampling
schema.

(ntrl/quanti) save genotype [0-2] (default: 0)
This parameter specifies the output of the quantitative genotype at the
QTLs.

0 : None. No output is generated.
1 : FSTAT. Genotypes are outputted in the FSTAT format (Goudet,
1995).

2 : FSTAT extended. Same as point 1, but the file contain the fol-
lowing six additional columns: the age class (1 = offspring, 2 =

CHAPTER 10. OUPUTS AND STATISTICS 121

adult), the sex (0 = male; 1 = female), the ID of the individual,
the ID of the mother, the ID of the father, and the fitness of the
individual. The ID is a unique identifier for each individual of
a simulation in the format "345 23" meaning that this is the
345th individual born in patch 23. The IDs of the individual, the
mother and the father allow to extract pedigree informations, if
the output is stored for each generation, and also to investigate
the migration behavior of the individual and its parents.

3 : Arlequin. Genotypes are outputted in Arlequin format (Excoffier,
2010).

4 : Arlequin extended. Same as point 3, but with additional com-
mented individual information as in point 2.

5 : PLINK. Outputs the quantitative genotypes with the pheno-
types of the quantitative traits (Purcell et al., 2007). The stan-
dard two files .ped and .map are created. The 6th column (phe-
notype) of the .ped file contains the fitness of the individual. If
quantitative traits are simulated, their phenotypes are listed in an
alternate phenotype file (.pheno). The alleles of all bi-allelic loci
(quanti_nb_allele set to 2) are listed. The .map file is generated
for each replicate. The .ped and .pheno files are generated for
each specified time point and outputs of successive time points
are concatenated to a single file, allowing to obtain entire or parts
of pedigrees. The filename of such a concatenated file contains the
time stamp of the first entry. Note that only successive individu-
als list their parentIDs. To generate an entire pedigree the entire
populations have to be sampled.

6 : PLINK extended. Same as point 5, but all quantitative geno-
types are listed, including the multi-allele loci.

An example of such a file (with quanti _save genotype set to 2):

54 20 2

t1 11

t1 12

t1_13

t1_ 14

1 1415 1019 2002 0820 1 1 10 11 1 0_1
1 0814 0219 2002 2020 1 1 11 18 12 4
1 0808 0217 1902 0820 1 1 12 15 3 5 1

o OO
— W W
[\CINGURNTAN
W = Ot

CHAPTER 10. OUPUTS AND STATISTICS 122

5 1004 0917 1404 1007 1 1 16_

59 53 2 0.999
5 2017 1010 2013 1812 1 0 17 53 2 9 2 1.000
5 2017 1008 2013 1811 1 1 11 4 8 2 9 2 0.678

The first line contains the number of patches (5 patches here), the num-
ber of loci (4), the highest possible allele index (20), and the number
of digits used to write each allele (2). The next four lines contain the
locus names. The following lines contain the individual’s info, one indi-
vidual per line. The first number is the patch number of the individual,
followed by the genotype. Each column represents a locus, and the first
half of the locus (first 2 digits) represents the first allele index, while
the second half of the locus (last 2 digits) the second allele at the given
locus. As, in this example, we are using two digits per allele, the first
two digits of a locus genotype number are the first allele (e.g. allele 14
for the first allele of the first locus of the first individual) while the two
next digits are the second allele (e.g. allele 15 for the second allele of
the first locus of the first individual). Each line ends with six columns
consisting supplementary information on the individual (see above) if
the parameter quanti save genotype is set to 2.

(ntrl/quanti) genot dir [string] (default: "")
This parameter allows to specify the subdirectory where the genotypes
are stored. This directory has to be specified relative to the simu-
lation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

(ntrl/quanti) genot filename [string] (default: "")
This parameter is used to specify an individual base filename for the
genotypes. If not specified the generic base filename will be used (see
parameter filename).

(ntrl/quanti) genot logtime [integer| (temporal/default: 1)
This parameter specifies the time interval of the genotype output. Since
the parameter may change over time the output may be generated at
any generation.

(ntrl/quanti) genot script [string] (default: "")
It is possible to launch a script just after the genotype file is generated.

CHAPTER 10. OUPUTS AND STATISTICS 123

The argument of the parameter is the file name of the script. The name
of the genotype file is passed as unique parameter to the script.

(ntrl/quanti) genot sex [0-2]| (default: 0)

This parameter allows to choose which sex is output.

0 : Both. Output includes both sexes.

1 : Females. Output includes only female genotypes.

2 : Males. Output includes only male genotypes.
(ntrl/quanti) genot age [0-2] (default: 0)

This parameter allows to choose which age is output.

0 : Adults. Output includes only adult genotypes.

1 : Juveniles. Output includes only juvenile genotypes.

2 : Both. Output includes juveniles and adults genotypes.

10.4.2 Genotypic value

Similar to the genotypes the genotypic values may be periodically dumped
to files. The output files will be stored in the folder given by the parameter
quanti_geno_value dir and will have the name of the base file name (see
parameter filename in chapter 4). The extension is ".gen". A counter for
the generation (e.g. _g05) and the replicate (e.g. r4) is inserted before
the extension. An example of such a file name is "simulation g05r4.gen".
By default, all individuals of all populations are sampled. The section 10.2
describes how to specify a sampling schema.

quanti save geno value [0-2] (default: 0)
This parameter specifies the output of the phenotype.
0 : None. No output is generated.

1 : Standard. The output contains the phenotypes in the standard
FSTAT-like format (Goudet, 1995).

2 : Extended. Same as point 1, but the file contain the following six
additional columns: the age class (1 = offspring, 2 = adult), the

CHAPTER 10. OUPUTS AND STATISTICS 124

sex (0 = male; 1 = female), the ID of the individual, the ID of the
mother, the ID of the father, and the fitness of the individual. The
ID is a unique identifier for each individual of a simulation in the
format "345 23", meaning that this is the 345th individual born
in patch 23. The IDs of the individual, the mother, and the father
allow extracting pedigree information, if the output is stored for

each generation, and also to investigate the migration behavior of

the individual and its parents.

An example of such a file (quanti _save geno_value is set to 2):

25

genotypic value trait—1
genotypic value trait—2
genotypic value trait—3
genotypic_value trait—4
genotypic value trait—5b

1 0.0493 —-3.203 —2.441 0.0683 —-3.199 2 1 10 11 1 0_1 0.3
1 0.4924 —-3.803 —-0.869 —2.002 —2.594 2 1 11 1 8 1 2 2 0.3
1 2.2342 —-2.931 —-0.725 —-0.750 —-0.698 2 1 12 1 5 2 5 1 0.1
2 0.8623 0.6525 —0.857 1.7483 —4.194 2 1 16 2 9 2 3 2 0.9
2 1.7752 —-2.223 —-3.117 0.3409 —-2.003 2 1 17 23 29 2 1.0
2 0.2081 —2.803 —-0.146 —0.456 —5.137 2 1 11 1 8 19 1 0.6

15
34
23

D9
00
78

The first line contains the number of patches (2 patches here), and the
number of traits (5). The next five lines contain the five trait names.
The following lines contain the individual’s info, one individual per
line. The first number is the patch number of the individual, followed
by the genotypic value for each trait. Each line ends with six columns

consisting supplementary information on the individual (see above) if

the parameter quanti _save geno value is set to 2.

quanti geno value dir [string]| (default: "")
This parameter allows to specify the subdirectory where genotypic val-
ues are stored. This directory has to be specified relative to the sim-
ulation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

quanti geno value filename [string] (default: "")
This parameter is used to specify an individual base filename for the

CHAPTER 10. OUPUTS AND STATISTICS 125

genotypic values. If not specified the generic base filename will be used
(see parameter filename).

quanti geno value logtime [integer| (temporal/default: 1)
This parameter specifies the time interval of the genotypic value output.
Since the parameter may change over time the output may be generated
at any generation.

quanti geno value script [string] (default: "")
It is possible to launch a script just after the genotypic value file is
generated. The argument of the parameter is the file name of the script.
The name of the genotypic value file is passed as unique parameter to
the script.

quanti geno value sex [0-2] (default: 0)

This parameter allows to choose which sex is output.

0 : Both. Output includes both sexes.

1 : Females. Output includes only female genotypic values.

2 : Males. Output includes only male genotypic values.
quanti geno value age [0-2] (default: 0)

This parameter allows to choose which age is output.

0 : Adults. Output includes only adult genotypic values.

1 : Juveniles. Output includes only juvenile genotypic values.

2 : Both. Output includes juveniles and adults genotypic values.

10.4.3 Phenotypic value

Similar to the genotypes the phenotypic values of the adults may be peri-
odically dumped to files. The phenotype of juveniles cannot be output, as
the phenotype is only computed when selection acts, and this is at the re-
production stage, i.e. when individuals are adults. The output files will be
stored in the folder given by the parameter quanti phenot dir and will have
the name of the base file name (see parameter filename in section 4). The ex-
tension is ".phe". A counter for the generation (e.g. g05) and the replicate
(e.g. _r4) is inserted before the extension. An example of such a file name

CHAPTER 10. OUPUTS AND STATISTICS 126

is "simulation g05r4.phe". By default all individuals of all populations are
sampled. The section 10.2 describes how to specify a sampling schema.

quanti save phenotype [0-2] (default: 0)
This parameter specifies the output of the phenotype.

0 : None. No output is generated.

1 : Standard. The output contains the phenotypes in the standard
FSTAT-like format (Goudet, 1995).

2 : Extended. Same as point 1, but the file contain the following six
additional columns: the age class (1 = offspring, 2 = adult), the
sex (0 = male; 1 = female), the ID of the individual, the ID of the
mother, the ID of the father, and the fitness of the individual. The
ID is a unique identifier for each individual of a simulation in the
format "345 23", meaning that this is the 345th individual born
in patch 23. The IDs of the individual, the mother, and the father
allow extracting pedigree information, if the output is stored for
each generation, and also to investigate the migration behavior of
the individual and its parents.

An example of such a file (quanti _save phenotype is set to 2):

25

phenotypic _value trait—1
phenotypic value trait—2
phenotypic value trait—3
phenotypic value trait—4
phenotypic value trait—5

1 0.0493 —-3.203 —2.441 0.0683 —3.199 2 1 10 11 10 1 0.3
1 0.4924 —-3.803 —-0.869 —2.002 —2.594 2 1 11 1 8 1 2 2 0.3
1 2.2342 —-2.931 -0.725 —-0.750 —-0.698 2 1 12 1 5 2 5 1 0.1
2 0.8623 0.6525 —0.857 1.7483 —4.194 2 1 16 2 9 2 3 2 0.9
2 1.7752 —-2.223 —-3.117 0.3409 —-2.003 2 1 17 23 2 9 2 1.0
2 0.2081 —2.803 —-0.146 —0.456 —5.137 2 1 11 1 8 19 1 0.6

The first line contains the number of patches (2 patches here), and the
number of traits (5). The next five lines contain the five trait names.
The following lines contain the individual’s info, one individual per
line. The first number is the patch number of the individual, followed

15
34
23

D9
00
78

CHAPTER 10. OUPUTS AND STATISTICS 127

by the phenotype value for each trait. Each line ends with six columns
consisting supplementary information on the individual (see above) if
the parameter quanti _save phenotype is set to 2.

quanti phenot dir [string]| (default: "")
This parameter allows to specify the subdirectory where phenotypes
are stored. This directory has to be specified relative to the simu-
lation folder (parameter folder), and may also contain subdirectories.
If not specified (default) the output is stored in the simulation folder
(parameter folder).

quanti phenot filename [string] (default: "")
This parameter is used to specify an individual base filename for the
phenotypes. If not specified the generic base filename will be used (see
parameter filename).

quanti phenot logtime [integer| (temporal/default: 1)
This parameter specifies the time interval of the phenotype output.
Since the parameter may change over time the output may be generated
at any generation.

quanti phenot script [string] (default: "")
It is possible to launch a script just after the phenotype file is generated.
The argument of the parameter is the file name of the script. The name
of the phenotype file is passed as unique parameter to the script.

quanti phenot sex [0-2]| (default: 0)
This parameter allows choosing which sex is output.

0 : Both. Output includes both sexes.
1 : Females. Output includes only female phenotypes.

2 : Males. Output includes only male phenotypes.

10.5 print input file

Depending on the definition of the architecture of the quantitative trait it
is possible to obtain the allelic file, the dominance file, and /or the epistatic

CHAPTER 10. OUPUTS AND STATISTICS 128

file. All three files follow the structure of the homonymous input files, ex-
cept that for the input all possible combinations have to be present, while
in the output only the used combinations are output. Therefore the out-
put files of allelic, dominance, and epistatic cannot always be used as input
files. The files have the names "allelic values.txt", "dominance values.txt,
and "epistatic_ values.txt" and are stored in the simulation folder (parameter
folder). If several replicates are simulated the files are generated for each
replicate and a replicate counter (e.g. _r4) is inserted before the extension.

quanti output [0,1] (default: 0)

0 : None. The files are not generated.

1 : Output. The allelic, the dominance, and/or the epistatic files are
stored in the simulation folder (parameter folder), if they were
used during the simulation.

Bibliography

Beverton, R. J. H. and Holt, S. J. (1957), On the dynamics of exploited fish
populations, Technical report, U.K. Ministry of Agriculture and Fisherie.

Bonnin, I., Prosperi, J. M. and Olivieri, 1. (1996), ‘Genetic markers and
quantitative genetic variation in medicago truncatula (leguminosae): A
comparative analysis of population structure’, Genetics 143, 1795-1805.

Devlin, B. and Risch, N. (1995), ‘A comparison of linkage disequilibrium
measures for fine-scale mapping’, Genomics 29, 311-322.

El Mousadik, A. and Petit, R. J. (1996), ‘High level of genetic differentiation
for allelic richness among populations of the argan tree [argania spinosa (1.)
skeels| endemic to morocco’, Theoretical and Applied Genetics 92, 832-839.

Excoffier, L. L. H. (2010), ‘Arlequin suite ver 3.5: A new series of programs to
perform population genetics analyses under linux and windows’, Molecular
Ecology Resources 10(3), 564-567.

Garza, J. C. and Williamson, E. G. (2001), ‘Detection of reduction in popu-
lation size using data from microsatellite loci’, Molecular Ecology 10, 305—
318.

Goudet, J. (1995), ‘Fstat (version 1.2): A computer program to calculate
f-statistics’, Journal of Heredity 86(6), 485-486.

Haldane, J. B. S. (1919), ‘The combination of linkage values, and the cal-
culation of distances between loci of linked factors. journal of genetics’,
Journal of Genetics 8, 299-309.

Lynch, M. and Walsh, B. (1998), Genetics and analysis of quantitative traits,
Publisher Sinauer Associates Inc.

129

BIBLIOGRAPHY 130

Nei, M. and Chesser, R. K. (1983), ‘Estimation of fixation indexes and gene
diversities’, Annals of Human Genetics 47(Jul), 253-259.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M., Bender,
D., Maller, J., Sklar, P., de Bakker, P., Daly, M. and Sham, P. (2007),
‘Plink: a toolset for whole-genome association and population-based link-
age analysis’, American Journal of Human Genetics 81, 559-575.

Ravigne, V., Olivieri, I. and Dieckmann, U. (2004), ‘Implications of habi-
tat choice for protected polymorphisms’, Fvolutionary FEcology Research
6(1), 125-145.

Richards, F. (1959), ‘A flexible growth function for empirical use’, J. Exp.
Bot 10, 290-300.

Wallace, B. (1968), Polymorphism, population size, and genetic load, in
R. C. Lewontin, ed., ‘Population biology and evolution’, Syracuse Uni-
versity Press, Syracuse, N. Y., pp. 87-108.

Wallace, B. (1975), ‘Hard and soft selection revisited’, Fvolution 29, 465-473.

Weir, B. S. and Cockerham, C. C. (1984), ‘Estimating f-statistics for the
analysis of population structure’, Evolution 38, 1358 — 1370.

Appendices

131

Appendix A

technical details

A.1 Allelic value distribution

In this appendix, we will see why quantiNemo simulates allelic value the way
it does. The goal of simulation software in general is not to match nature as
close as possible, but more to simulate a model which retains the essential in-
gredient of reality, letting apart unimportant parameters. QuantiNemo uses
a lot of such approximations. This section is about such an approximation
used in quantiNemo which might seem strange at first sight but is actually
quite powerful.

The phenotype of a quantitative trait is determined by the genotype of the
individual (and maybe some environmental effects). When one of the un-
derlying genes mutates, leading to a new allele, the phenotype generally also
changes. In general, it is rather likely that the mutation will only lead to a
small change in the phenotype. This could be easily modeled by drawing the
value of a new allele in a normal distribution. In quantiNemo, allelic values
are drawn at the beginning of a simulation. Then a simple idea would be to
proceed as follow:

e Draw all allelic value in a normal distribution centered around zero at
the beginning of the simulation

e Mutate to any allele with the same probability

This leads however to two problems. First, the genotype is somehow stuck

132

APPENDIX A. TECHNICAL DETAILS 133

around zero, since most of the alleles have a value close to zero, and only
a few are further away. If a locus switch to an allele with a high value, my
next mutation is likely to get me back close to 0, which mean that I cannot
gradually increase my phenotype. This problem could probably be overcome
by various ways but at some cost.

The second problem is somehow more fundamental. If the number of alleles
is small, it is likely that it will be drawn with some bias at the beginning of
the simulation (i.e. that the mean phenotype will not be exactly zero). Since
the values are determined once and for all at the beginning of the simulation,
the bias will stay the same.

To illustrate this problem, let’s suppose that we have a stabilizing selection
around zero but some noise due to mutation. If we average over generations,
we expect the mean value of the phenotype to converge towards zero. How-
ever, due to the initial bias, this will not be the case. This bias would of
course also appear in other statistics adding unnecessary complexity to the
data analysis.

To overcome these problems, quantiNemo rather follow the following algo-
rithm:

e The allelic values are equally spaced (like in [-3; -2; -1; 0; 1; 2; 3])

e At the beginning of the simulation, the frequency of the central allele is
higher than the frequency of allele with a very high or very low value,
following a Gaussian distribution.

e When a mutation occurs, it is more likely to draw an allele close to the
current value than far from it (or close or far from zero, depending on
the mutation model).

We see that at the beginning of the simulation, both algorithms lead to a
phenotype with a normal shape with a variance twice as big as the one of the
allelic value. And it allows to overcome the previously mentioned problem:

For the first one, there are as many alleles around zero than around a large
value. The new allele can be drawn from a re-centered normal distribution,
allowing the mean phenotype to evolve smoothly through time, or always
around zero to simulate a "reference allele".

APPENDIX A. TECHNICAL DETAILS 134

For the second problem, since we choose the allelic values to be equally
spaced and centered around zero, we know that if we average over enough
generation, the mean phenotype will be zero and not bias will come from
here. In Fig. A.1 we sketch the main differences between the two approaches

More precisely, quantiNemo proceed as follow:

e At the beginning of the simulation, the allele are defined with values
equally spaced between —60 and 60 or between —200 and 200 depend-
ing of the mutation model (see parameter quanti _mutation _model). o
is defined by the parameter quanti allelic_var. If the number of allele is
smaller than 6, the value will be spaced between —(I —1)o and (I—1)o
where [is the number of allele.

e By default, the initial allele frequency will follow a Gaussian law:
f(a;) = +exp(—a?/20?), were N allow to normalize the frequency
(the sum of frequency should be one) and q; is the allelic value of allele

1.

e When a mutation occurs,the probability to switch to a given allele is
given by f(a;) = + exp(—a?/20?) in the RMM model and by f(a;) =
+ exp(—(a; — ac)?/20?) in the IMM model (where q, is the allelic value
of the current allele). Loosely speaking, this mean that in the RMM
model, it is likely to go to an allele with a value close to zero, while in
the IMM model, it is likely to mutate to an allele close to the current
allelic value a..

APPENDIX A. TECHNICAL DETAILS 135

By theory QuantiNemo

Distribution of
the allelic values A

>

>
TTITTNTTITONTNNTNNNNNTNT 70 value

Randomly drawn Equally spaced
allelic value allelic value

Initial distribution

of allele frequenc » beginni
4 Y A All alleles are equally At thAL bLglPng of
the simulation,

likely at the beginning of
v . g g central alleles are
the simulation
more common among
the population.

Y

>
Allelic value

+ +

Mutation
fr n
equency 4 N A
The probability to During the
mutate to any allele simulation, it is more
is the same likely to mutate to a

central allele.

> >
Allelic value
— —
— —
Phenotype
frequency
The distribution of
phenotype is the
same in both model
>

>
Genotype

Figure A.1: Schematic comparison between a "natural" algorithm and the
one adopted by quantiNemo to set allelic values

APPENDIX A. TECHNICAL DETAILS 136

A.2 Multiple traits with varying types of selec-
tion on various patch: simple case

Phenotypes for quantitative traits may be under selection. Selection pres-
sures may vary among quantitative traits, sexes, patches, and time. To spec-
ify the selection pressure individually for quantitative traits and patches, ma-
trices may be used. They are adjusted to the number of quantitative traits
and to the number of patches if needed. If a parameter does not change
among quantitative traits and patches, a single value may be used as argu-
ment. Selection pressures have to be specified either for each sex separately
(parameters with the suffix " fem" for females and " mal" for males), or
for both sexes together (parameters without a suffix). In the first case both
sex specific parameters have to be set if two sexes are simulated. In the latter
case, the selection pressure of females and males are assumed to be identical.
Each row of the matrix corresponds to a quantitative trait, each column to
a patch:

{ {patch 1 patch 2 . . . patch n} # trait 1
{patch 1 patch 2 . . . patch _n} # trait 2
{patch_1 patch_2 . . . patch_n} } # trait m

Example

patch number 2
quanti_nb trait 3
patch stab sel optima {{-0.1
{ 0.2
{-0.3

O OO
W N =
e

patch stab sel intensity 1

In this example, the environment consists of two patches with varying selec-
tion pressures. Three quantitative traits are simulated. The first trait has
a selection optimum at -0.1 in patch 1 and at 0.1 in patch 2. The selection
optimum of the second trait is the same in both patches (0.2). The third
trait has an optimum at -0.3 in patch 1 and at 0.3 in patch 2. The intensity
of the selection is identical for all three traits and in both patches.

APPENDIX A. TECHNICAL DETAILS 137

A.3 Multiple traits with varying types of selec-
tion on various patch: matrix expansion

A somehow complicated behaviour is how quantiNemo extend matrix in the
case of multiple quantitative traits with varying types of selection. The prob-
lem is how to specify the individual selection pressures. First, quantiNemo
investigates which types of selection will be simulated based on the settings
file. Then, quantiNemo sets for each simulated type of selection the cor-
responding parameters assuming one selection type after the other that all
quantitative traits have the same type of selection: assuming for example
first that all quantitative traits are under stabilizing selection, then in a sec-
ond step assuming that all quantitative traits are under directional selection.
This detail is important to understand since this makes it clear how a ma-
trix is treated, i.e. how a matrix is expanded if needed. Of, course finally
the selection pressure parameters are only set where needed, i.e. if the type
of selection for a given quantitative trait requires the parameter. In other
words, the matrix of a selection pressure has to have the number of rows of
the total number of traits and not only of the traits with the corresponding
selection pressure (this is controlled by quantiNemo returning a warning if
not met). If multiple quantitative traits are simulated with varying selection
pressures it is handy to use the row indicator for the rows of the matrix.
Example:

patch number 3

quanti nb trait 5

quanti selection model 0
quanti_selection model 3 1

patch stab sel optima {{1: 1 2 3}{2: 2 3 4}}

patch dir sel growth rate {{3: 4 6}{4: 7 8 7}{5: 2 3 2}}

In this example the first two quantitative traits are under stabilizing selec-
tion, whereas the three last quantitative traits are under directional selection.
Using the row indicator it is possible to set the selection pressure directly for
the required quantitative trait. However, the following parameterization is
equivalent to the upper one:

patch number 3
quanti_nb_trait 5

quanti selection model 0
quanti selection model 3 1

APPENDIX A. TECHNICAL DETAILS 138

patch stab sel optima {{1 2 3}{2 3 4}{9 9 9}{9 9 9}{9 9 9}}
patch dir sel growth rate {{9 9 9}{9 9 9}{4 5 6}{7 8 7}{2 3 2}}

In the example above the rows consisting of the number nine are read but
then not taken into account, since the rows do not correspond to the correct
quantitative traits. Caution if you are using matrix expansions since this
may lead to unwanted configurations as shown below:

patch _number 3

quanti nb trait 5

quanti_selection model 0

quanti selection model 3 1

patch_stab_sel optima {{1 2 3}}

patch dir_sel growth rate {{4 5 6}{2 3 7}{2 8 3}}

In this example the growth rates are as follows:

trait: stabilizing selection optima: {1 2 3}
trait: stabilizing selection optima: {1 2 3}
trait: directional selection growth rate: {2 8 3}
trait: directional selection growth rate: {4 5 6}
trait: directional selection growth rate: {2 3 7}

QU W N =

Maybe this behavior was desired, but it could also well be that one antici-
pated the following specification which is wrong;:

trait: stabilizing selection optima: {1 2 3}
trait: stabilizing selection optima: {1 2 3}
trait: directional selection growth rate: {4 5 6}
trait: directional selection growth rate: {2 3 7}
trait: directional selection growth rate: {2 8 3}

QU W N =

Why is this not the case? Assume that all quantitative traits are under
directional selection. Thus the matrix of the growth rate has to be repeated
leading to the following full matrix: {{4 5 6}{2 3 7}{28 3}{4 5 6}{23 7}}.
This matrix expansion leads to a warning indicating that the number of rows
is not an entire subset of the number of quantitative traits. Based on this
matrix it is now obvious that the growth rate of the third quantitative trait
(thus the first trait under directional selection) has the growth rates {2 8 3}
and not {4 5 6}.

APPENDIX A. TECHNICAL DETAILS 139
A.4 Selection pressure definition

If the selection varies among patches, but not among traits (or a single trait
is defined), it might be easier to specify it with the following parameter. In
this case, all the parameter related to selection change from quanti * to
patch *. This is also how QuantiNemo 1 used to work.

selection pressure definition [0;1] (default: 1)
This parameter specifies how the selection pressure is defined.

0 : patch. The selection pressure is defined at the patch level. The
advantage is that across quantitative traits the matrix expansion
may be used.

1 : quanti. The selection pressure is defined a the quantitative trait
level. The advantage is that the parameters may be extended by
the postix " 1", " 2". This allows to define the selection pressure
separately for each quantitative trait or to group the selection
pressure among groups.

A.5 Simulating sexual chromosome

Quantinemo does not come with a direct parameter to have a sexual chromo-
some but gives the possibility for a trait to code for the sex of individuals. As
we will see it, this allows to simulate classical sexual chromosome, preserving
the freedom to simulate other more complex scenarios.

For example, the XY and WZ model can be simulated easily, but we can also
simulate systems where the environment plays a role in the sex determination
or with more than two allele coding for the sex. Moreover, one can also
simulate situations where the trait is not located on a single locus but on
various locus on different chromosomes.

A.5.1 Main idea

To simulate sexual chromosomes, the main idea is the following. The sex of
all individual should be determined by one gene, in Qn language a quanti-
tative trait on a single locus. This gene should have two alleles, one making

APPENDIX A. TECHNICAL DETAILS 140

individuals to be male, and another one female. This locus can be located on
the genetic map, making the chromosome which carries it the so calledsezual
chromosome. In the case of the XY model, a chromosome carrying an allele
which makes you male would be the Y chromosome, while a chromosome
with the other allele would be called the X chromosome.

In order to set one gene to be sex-determining, we need to set the param-
eter sex_ratio threshold. If this parameter is set, the sex of individuals is
determined by the phenotypic value of the first quantitative trait instead of
randomly (as it is usually the case). More precisely, this parameter gives
the threshold above which an individual becomes a male. Typically, it will
be set to zero, and individuals with a positive genotype will be male while
individuals with a negative genotype will be female. For the XY system, we
can fine-tune the allelic value so that XX individual have a negative genotype
and XY individual a positive one.

A.5.2 Example: XY system

In this section, we explicit and detail the necessary step in order to simulate
a minimalistic sexual chromosome of the XY system type.

1. Set a dioecious mating system
2. Set the parameter sex ratio threshold to 0

3. Have the first quantitative trait to be determined by a single diallelic
locus

4. Locate this locus on a given chromosome

5. Set the value of the allele so that two X leads to a negative genotype
and XY leads to a positive genotype

In the following input file, we specify all these values. Notice that to make
our example easy to adapt, we also added a second trait coded by a single
locus placed on the sexual chromosome but with more possible alleles. This
second trait could then be under any type of selection:

input file

APPENDIX A. TECHNICAL DETAILS 141

patch capacity 100 # number of individuals
generations 100 # number of generation
sex ratio threshold 0 # male have positive phenotype

female have negative genotype

we want two traits

one loci per trait

two allele for x and y
95 # much more allele

to simulate a continuous trait
mating system 3 # dioecious random mating
genome {{0 100}}# single chromosom with 2 locus

at 100 cm from each other

quanti_locus index 1 {1} # Sexual gene at the beginning
quanti_locus index 2 {2} # other quanti trait at the end

quanti_nb _trait
quanti loci
quanti_all 1
quanti_all 2

NN~ N

quanti dominance file "quanti dominance file.ini"
quanti_allelic file 1 "quanti allelic file.ini"
quanti allelic file 2 NOT SET

recombination factor mal {0}# No recombination in Y
quanti_environmental proportion 0 # phenotype is set at birth

quanti allelic file.ini

[FILE _INFO|{
col locus 1
col allele 2

col allelic value 3

}

#locus allele wvalue

1 1 —1 # Allele carried by the chromosome X
1 2 1 # Allele carried by the chromosome Y

quanti dominance file.ini

[FILE_INFO|{

col locus 1

col allelel 2

col allele2 3

col dominance 4

}

#locus allele 1 allele2 dominance

1 1 1 1

1 1 2 1 #allele 2 is dominant, making xy male
1 2 2 1

APPENDIX A. TECHNICAL DETAILS 142

Notice that here, at the first generation, some individuals will be Y'Y, which
is not the case in real populations, and we will have 75% of male and only
25% of female . This leads to a smaller effective population size. However,
after one generation, the YY individuals will disappear and the sex ratio
will be back to one. It is also possible to specify explicitly the genotype of
all individual using an FSTAT file so that we don’t have any Y'Y individual
during the first generation.

A.5.3 More complex scenario

From the example above, setting a WZ model is straightforward. The main
difference would be that the dominance should be different so that heterozy-
gote individuals are female. To include a partially determining gene, we need
to add an environmental effect. To add it, we can, for example, set the value
quanti__environmental model to 0 and quanti_heritability to 1. In this way,
we will have a genotype which is not fully deterministic but only partially.

To include several loci, the parameter quanti loci should be set to more than
one. The corresponding loci can then either be all independent, or we can
place same on the genetic map.

Appendix B

Speeding up simulation

Individual-based simulations are time and memory consuming. While quan-
tiNemo is a well-optimized software using C++-, simulations are still time-
consuming as soon as the number of loci and individuals are both larger
than, let’s say, 1000. In this chapter, we just want to introduce the user to
some general knowledge about how simulation consumption evolves and little
details that might speed-up simulation. First part is really more for people
with interests and basics knowledge of optimization, while the second part is
easier to understand and apply for anyone.

In general, if one wants to understand how to speed up a simulation, it’s useful
to understand what are the key point that can take time in quantiNemo. A
few hints about that is given in the following section. Common sense will, in
general, be your first ally, but might be sometimes misleading. It is in general
useful play with the parameters to see which one makes a difference, and
which one doesn’t. For example, one can try to remove migration, mutation,
selection or outputting statistics to see what is time-consuming. This can
help to grasp what is time-consuming which is the first necessary step in
order to improve simulation time.

B.1 general consideration

The memory consumption is almost never a problem in Quantinemo. The
largest variable is by far the genotype which is stored as an array of char.

143

APPENDIX B. SPEEDING UP SIMULATION 144

Since a char occupies 8 octets in the memory, the total amount of memory
used by the genotype is about 8 x 2 x2 xn x [, where the first 2 comes from the
fact that every individual has 2 chromosomes, and the second one because
during breeding, both parents and offsprings are present. We see that even
with 10’000 individuals with 10’000 loci, the memory is still reasonable, of
about 4 Go, which is complete with most modern computers. For such a
large number of loci and individual, the simulation would anyway be very
slow, so memory is not really a problem. We, however, see that quantiNemo
is not designed and could not simulate full genome with, let’s say, 10° base
because each individual would need about 32 Go.

In general, the time-consuming part of quantiNemo is building individual
from their parents. In particular, to create an individual, quantiNemo has to
duplicate half of the genome of both parents. This step is in general one of
the most time-consuming step. Another step which is performed at the same
time is to compute whether a mutation occurs at a locus. If the mutation rate
is not the same among locus, then quantiNemo has to check independently
for each locus and it’s time-consuming. Finally, for each parent, quantiNemo
has to compute the phenotype from the genotype, and this is also long if the
individual has a lot of loci. All this step have in common that quantiNemo
has to access and do something with all loci of all individual. It is therefore
easy to see that the time needed to do this step grows linearly in terms of
individuals and loci, so a simulation with 10’00 individuals with 1000 loci is
about 10 x 10 = 100 times longer than one with 1000 individual with 100
loci.

If only a few loci are simulated (of the order of ten or less), then the above
part is not so long, and other aspects of quantiNemo might be more time-
consuming. In the quantitative case, randomly selecting the parents accord-
ingly with their fitness is a consuming task which scale as nlog, n where n
is the total number of individuals. While most part of quantiNemo scale
linearly with the number of individual, this one scale in a worst way, so for
very large population, this might be the bottleneck of the population. A
very crude approximation would be to compare nlog,n to n x | where n is
the size of the population and [is the number of loci to see what is more
time-consuming for your simulation, but the second one actually comes with
an important pre-factor so you would expect selection of the parent to be
longer iff nlog,n > n x L.

APPENDIX B. SPEEDING UP SIMULATION 145

Most of the time, the breeding is the most costly part of quantiNemo. How-
ever, if the number of patches is large (~ 1000) and the number of individuals
per patch is low (~ 10), then the migration can become time-consuming. In
particular, in the Island model, individuals might migrate from any patch to
any patch, so there are 1000 x 1000 possible migration path. QuantiNemo
checks for each of them if migration occurs, so this might be more time-
consuming than breeding. Because breeding still involves more step than
migration, we expect migration to be longer than breeding only if N? > n x [
where N is the number of patches.

Finally, statistics can also be time-consuming. In general, they are faster or
scale as other events. A lot of them need to access all loci of all individual, so
they scale in the same way as breeding, i.e. as n x [. It is tempting to think
that statistics computed per patch or per allele are more costly than overall
statistic since there are more of them, but this is not true since quantiNemo
need to access anyways the information of all individual. Nevertheless, some
statistics still have a different scaling. This is, in particular, the case when
we compute pairwise statistic for the patch like g.adlt.fst.wc pair. In term
of scaling, we expect something like N x n x [.

B.2 How to improve simulation time

As we have seen before, one of the most important quantity is the total
number of loci in the population, i.e. the number of loci per individual
times the number of individuals. Decreasing this quantity would, therefore,
improve computation time. In general, these parameters are fixed by external
constrains. However, sometimes tricks can be used to try to cut down one of
this quantity. For example, quantiNemo can have up to 256 alleles per locus.
When simulating quantitative trait, increasing the number of allele per locus
while decreasing the number locus will speed up simulation while keeping
a reasonable diversity (not exactly the same though). Here, a compromise
should be found between simulating exactly the biology and observing similar
effect with different configurations.

As we have seen, writing and reading the genotype from the memory is one
of the longest steps in quantiNemo. It is therefore not surprising that writing
it on a hard drive (where the access is much slower than on the memory)

APPENDIX B. SPEEDING UP SIMULATION 146

is very long. Therefore, outputting raw data is very costly in term of time
and should be avoided when possible. A good practice here is to save it only
from time to time and not at every generation. When running quantiNemo
on a cluster, these data should be written when possible on a local hard drive
and not on a shared drive since it can take much more time to send the data
through a network.

This recommendation also stands if you compute a large number of statistics.
If only a few basic stats are outputted, such as number of individuals, average
fitness, etc, it should not be very time-consuming. However, if you start
having loci or patch specific statistic (like n.adlt.nbAll 1 or adlt.nbInd p)
with a lot of loci or patches, writing them on the hard drive is time-consuming
and you should try to output them only every few generations.

Another trick to quicken the statistics event is to sample only a subpart of
the Metapopulation. Most of the time, this will make no difference and is
not recommended due to the extra complication that it brings. However, for
some specific statistics mentioned before, this might make a difference, in
particular in the case of coalescence where populations can grow really large.

Another thing that should be taken into account is that often, quantiNemo
deals more easily with constant parameters than by specific parameters. For
example, if the mutation rate is constant over loci, it’s faster than if every
locus has a different mutation rate (because in the first cast quantiNemo can
randomly draw the number of mutation for the entire genome in a binomial
and only pick a few loci to change, while in the latter case it has to go
through every locus to check if a mutation occurs). This stand also for
example for migration, where the pre-defined models are faster than when
the user specifies a dispersal matrix.

At the opposite, the amplitude of these type of parameters makes in gen-
eral not much of a difference. For example, It’s not because the mutation
rate is low, so that few mutation occurs, that the program will run more
quickly. The actual number of mutation is not important. Same stand for
recombination rate, migration rate, etc.

Appendix C

Glossary

In this chapter we define more precisely what is meant by some term in this
manual, beyond the common knowledge about them.

e Adults is a status given to all individuals after the life cycle migration
occurs. Even if no migration occurs, the offspring become adult at
that moment of the life cycle. They die after reproducing but live long
enough so that we can compute statistics.

e The Allelic value is the contribution to a quantitative trait from
one allele. In the simple case (no dominance, epistasis, environmental
effect, etc), the phenotype is simply the sum of the allelic values.

e Coalescence simulations are simulations where we only follow the
lineages which were present at the end of the demography (last genera-
tion). It allows for very fast simulation since the individuals of the last
generation generally come from only a few lineages in the past. If all
lineages are exactly followed, we call it exact coalescence. If only a few
are followed, approximations can be made which speed-up furthermore
the simulation. This is what is in general meant by coalescence

e Females are individual which can only reproduce with males.

e The fitness of an individual indicates the likeliness that this individual
reproduces. In some special cases (hermaphrodite with a fecundity of
one under hard selection, ...), it actually corresponds to the average

147

APPENDIX C. GLOSSARY 148

number of offspring, but in most cases, the number of offspring also
depend on other factors. The number of offspring is however always
linearly proportional to the fitness so that an individual twice as fit as
another one produce twice as many offsprings (on average).

e The genotypic value is a number representing the contribution of
the genotype to the phenotypic value, i.e. to the quantitative trait.

e Hermaphrodites are individuals which can reproduce between each
other. In general, hermaphrodite can reproduce with them self, so a
single individual can colonize a new patch. It might not be the case for
some special value of the mating system. In quantiNemo, females are
used to simulate hermaphrodite, so parameters specific to female are
also applied to hermaphrodite.

e Individual based simulation is a type of simulation where all in-
dividuals are actually created and each of them is described by some
specific values (genotype, parents, natal patch, etc). It is much more
time and memory expensive than population-based since each individ-
ual exists.

e The life cycle is the set of events (creation, dispersal, reproduction,
death, etc.) that each individual might go through in its life. In
quantiNemo, each individual goes only once through its life cycle, which
means that it can only reproduce once.

e A loci is a position in the genome where we can have various allele.
Note that one locus can either be though as one base or as a sequence
of various bases. Locus should not be confused with position on the
genome. Two loci can have the same position, which means that they
don’t recombine, but still have a different set of alleles.

e Male are individual which can only reproduce with female.

e The metapopulation is formed by all the population of various patch.
Unlike population, they might be under different selection pressure

e Offsprings are individual before the migration was performed. They
are present along with the adult just after breeding to compute statis-
tics separately and becomes adult during migration.

APPENDIX C. GLOSSARY 149

e A patch is a physical location where a population might be. It is
characterized by a capacity and is related to the others patches through
the migration model. A patch is also characterized by having a specific
value for the selection pressure. So for example, the temperature or
the altitude of various patches can be different

e The patch capacity is the number of individuals that can leave ideally
on a patch. Note however that depending on the population growth
model and other parameters, the actual population size might be much
smaller or much larger than the actual patch capacity.

e The phenotypic value is a number representing a quantitative trait.
It can be either the actual value, but can also be a deviation from the
average value in the population.

e The population is formed by all the individuals of a single patch. All
the individuals feel the same selection pressure.

e Population based simulation is a type of simulation where only the
number of individual on each patch is store

e A quantitive trait is a trait with a phenotype. It might, however, be
under no selection pressure. Notice also that it can be continuous as
well as discrete.

e A trait in quantiNemo is not exactly what is meant by a trait in a
usual genetics textbook. It is more a set of loci which share common
characteristics (number of alleles, mutation rate, etc). In particular, it
is possible to define neutral traits which have no allelic value and no
related phenotype but mutate all using the same mutation model, for
example, to simulate a set of micro-satellite.

Index

(..), 16 coalescence tree dir, 97

#,13 coalescence tree filename, 97

H#/..)#, 13 coalescence tree script, 97

f: g dispersal border model, 48

(.}, 14 dispersal lattice dims, 49
dispersal lattice range, 48

all combinations, 31 dispersal model, 47

dispersal propagule prob, 49
dispersal rate, 47
dispersal rate fem, 47
dispersal rate mal, 47
dispersal rate model, 50
divergence pop _size, 95
divergence time, 95

ceil, 24
coalescence, 94
coalescence lineages logtime, 99
coalescence lineages logtime2, 99
coalescence lineages script, 99
coalescence model threshold, 94
coalescence mrca_ dir, 98
coalescence mrca_filename, 98 equation, 24
coalescence mrca_script, 98 extinction rate, 40
coalescence pop_sizes logtime, 100 extinction rate survival, 40
coalescence pop_sizes of patch, 100 extinction rate survival fem, 40
coalescence pop _sizes script, 100 extinction rate survival mal, 40
coalescence save lineages, 99
coalescence save lineages dir, 99 filename, 30
coalescence save lineages filename, floor, 24
99 - - folder, 30
coalescence save mrca, 97
coalescence save pop_size, 100
coalescence save pop_sizes dir, 100
coalescence save pop_sizes filename
100
coalescence save tree, 96

generations, 41
genome, 62
genome fem, 62
genome mal, 62
growth rate, 46

150

INDEX

logfile, 30
logfile type, 30

mating males, 37

mating nb_offspring model, 43
mating proportion, 37

mating system, 35
mean_fecundity, 46

ntrl all, 52

ntrl allelic file, 52

ntrl genome, 63

ntrl genome fem, 63
ntrl genome mal, 63
ntrl genot age, 123

ntrl genot dir, 122

ntrl genot filename, 122
ntrl _genot logtime, 122
ntrl genot script, 122
ntrl genot sex, 123

ntrl _ini_allele _model, 55
ntrl _ini_genotypes, 54
ntrl loci, 52

ntrl locus index, 63

ntrl mutation model, 58
ntrl mutation rate, 56
ntrl nb _trait, 60

ntrl _save genotype, 120

param, 110

patch capacity, 41
patch capacity fem, 41
patch capacity mal, 42

patch dir sel growth rate wvar, 85
patch dir sel max growth var, 85

patch dir sel max var, 85
patch dir sel min var, 84
patch dir sel symmetry var, 85
patch ini_size, 42

151

patch ini size fem, 42
patch ini size mal, 42

patch _mean _fitness, 90

patch number, 42

patch sample size, 105

patch sample size fem, 105
patch sample size mal, 105
patch stab sel intensity var, 82
patch stab sel optima var, 82
postexec_script, 32

preexec _script, 32

quanti_all, 52

quanti_allelic_file, 52
quanti_allelic_var, 69
quanti__coef sel, 88
quanti_coef sel AA, 88
quanti_coef sel AA fem, 88

quanti coef sel AA mal, 88
quanti_coef sel fem, 88
quanti_coef sel mal, 88

quanti dir _sel growth rate, 84
quanti_dir sel growth rate fem, 84
quanti_dir _sel growth rate mal, 84
quanti_dir sel max, 84
quanti_dir _sel max fem, 84

quanti dir sel max growth, 84
quanti_dir _sel max growth fem, 84
quanti_dir sel max growth mal, 84
quanti dir sel max mal, 84
quanti dir sel min, 83
quanti_dir _sel min fem, 83

quanti _dir sel min mal, 84
quanti_dir _sel symmetry, 84

quanti dir sel symmetry fem, 84
quanti dir sel symmetry mal, 84
quanti_dominance file, 70

quanti dominance mean, 72

INDEX

quanti _dominance model, 69
quanti dominance var, 72
quanti _environmental model, 75

152

quanti phenot logtime, 127
quanti_phenot script, 127
quanti phenot sex, 127

quanti_environmental proportion, 77 quanti phenotype landscape, 86

quanti epistatic_file, 73
quanti_epistatic_var, 75

quanti_fitness factor heterozygote,

92

quanti_phenotype landscape fem, 86
quanti_phenotype landscape mal, 87
quanti_save geno value, 123
quanti_save genotype, 120

quanti_fitness factor homozygote, 92quanti save phenotype, 126

quanti_ fitness landscape, 87
quanti_ fitness landscape fem, 87
quanti_fitness landscape mal, 87
quanti geno_ value age, 125
quanti geno_ value dir, 124
quanti geno value filename, 124
quanti geno value logtime, 125
quanti_geno value script, 125
quanti _geno_ value sex, 125
quanti genome, 63

quanti _genome fem, 63

quanti genome mal, 63
quanti_genot age, 123
quanti_genot dir, 122
quanti_genot_filename, 122
quanti genot logtime, 122
quanti genot script, 122
quanti_genot sex, 123

quanti_ heritability, 76
quanti_ini_allele model, 55
quanti_ini_genotypes, H4
quanti_loci, 52

quanti_locus index, 63

quanti _mutation model, 56
quanti _mutation rate, 56
quanti_nb _trait, 60
quanti_output, 128

quanti phenot dir, 127
quanti_phenot filename, 127

quanti_selection model, 79
quanti_stab_sel intensity, 82
quanti_stab_sel intensity fem, 82
quanti_stab sel intensity mal, 82
quanti_stab _sel optima, 81
quanti_stab _sel optima fem, 81
quanti stab_sel optima mal, 81
quanti_va_model, 77

random_per_replicate, 31
rbeta, 22

rbinom, 23

recombination factor, 64
recombination factor fem, 64
recombination factor mal, 64
regulation model adults, 39
regulation model offspring, 38
rep, 20

replicates, 29

rgamma, 22

rlnorm, 21, 22

rnorm, 21

round, 23

rpois, 23

rsample, 23

runif, 21

sample all or nothing, 101
sampled patches, 105

INDEX

seed, 31

selection level, 89
selection position, 90
seq, 19

seq2D, 20

seq2Db, 20

set, 17

sex_ratio, 37

sex ratio threshold, 38
stat, 107

stat_dir, 109

stat _filename, 109
stat _log time, 109
stat_NaN, 110

stat _save, 108

trunc, 24

working directory, 29

153

	Contents
	Introduction
	Scope
	How to read this Manual
	Main features
	Input and output
	Availability
	Technical
	License
	Citation
	Acknowledgments

	Getting started
	Installation
	Launching quantiNemo
	Minimal settings file
	Simulation example

	Input file structure
	Default value
	Comments
	Line end
	Parameter types
	Temporal parameters
	Keywords
	External files
	Command line parameters
	Macros
	Batch mode
	Command line help

	General simulation settings
	Life Cycle
	Introduction
	Mating system
	Death
	Regulation offspring
	Regulation adults
	Extinction

	Demography
	Dimensions
	Initialization
	Population growth
	Dispersal

	Genotype configuration
	Introduction
	Defining loci
	Initial genotypes
	Mutation
	Multiple traits
	Genetic map

	Quantitative traits and selection
	Introduction
	From genotype to genotypic value
	Environmental effect
	Selection pressure
	Selection level and position
	Fitness factor

	Coalescence
	Introduction
	Output
	Summary statistics

	Ouputs and Statistics
	Files name
	Sampling
	Summary statistics
	Raw data
	print input file

	Bibliography
	Appendices
	technical details
	Allelic value distribution
	Multiple traits with varying types of selection on various patch: simple case
	Multiple traits with varying types of selection on various patch: matrix expansion
	Selection pressure definition
	Simulating sexual chromosome

	Speeding up simulation
	general consideration
	How to improve simulation time

	Glossary
	Index

