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Summary

1. Species distribution models (SDM) are increasingly applied as predictive tools for purposes of
conservation planning and management. Such models rely on the concept of the ecological niche
and assume that distribution patterns of the modelled species are at some sort of equilibrium with
the environment. This assumption contrasts with empirical evidence indicating that distribution
patterns of many species are constrained by dispersal limitation.

2. We demonstrate that the performance of SDM based on presence-only data can be significantly
enhanced by incorporating distance constraints (functions relating the likelihood of species’
occurrences at a site to the distance of the site from known presence locations) to the modelling
procedure. This result is highly consistent for a variety of niche-based models (ENFA, DOMAIN
and Mahalanobis distance), distance functions (nearest neighbour distance, cumulative distance
and Gaussian filter) and taxonomic groups (plants, snails and birds, a total of 226 species).

3. Distance constraints are expected to enhance the accuracy of niche-based models even in the
absence of strong dispersal limitation by accounting for mass effects and spatial autocorrelation in
environmental factors for which data are not available.

4. While distance-based methods outperformed niche-based models when all data were used, their
accuracy deteriorated sharply with smaller sample sizes. Niche-based methods are shown to cope
better with small sample sizes than distance-based methods, demonstrating the potential advantage
of niche-based models when calibration data are limited.

5. Synthesis and applications. Incorporating distance constraints in SDM provides a simple yet
powerful method to account for spatial autocorrelation in patterns of species distribution, and is
shown empirically to improve significantly the performance of such models. We therefore recommend
incorporating distance constraints in future applications of SDM.
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Introduction

Species distribution models (SDM; sensu Guisan & Thuiller
2005) are increasingly applied for purposes of conservation
planning and ecosystem management. In spite of substantial
differences among modelling methods (for contemporary
reviews see Guisan & Zimmermann 2000; Scott et al. 2002),
all SDM rely, explicitly or implicitly, on the concept of the
ecological niche (Hutchinson 1957). Practically, this hypothesis
implies that species are at some sort of equilibrium with their
environment, and that distribution ranges can be predicted
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based on the environmental characteristics of locations where
the species were observed to occur (Guisan & Thuiller 2005).
This assumption contrasts with empirical evidence indicating
that patterns of species distribution are often constrained by
dispersal limitation (for a review see Nathan 2001). Surprisingly,
while the idea that dispersal may limit distribution ranges of
species has been recognized for decades, most SDM ignore
the potential consequences of dispersal limitation (Guisan
et al. 2006).

We propose a simple methodology that allows for dispersal
limitation in SDM without explicitly incorporating dispersal
mechanisms into the model. The essence of our approach is
the incorporation of distance constraints in the modelling
algorithm. We use the term distance constraints to denote
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mathematical expressions that relate the likelihood of a species’
occurrence at a site to the distance of the site from locations
where the species has been documented to occur. Thus distance
constraints can be considered as a means of incorporating
spatial autocorrelation into SDM. Autocorrelated patterns
of species’ distributions have previously been modelled using
autoregressive models (Smith 1994; Augustin, Mugglestone
& Buckland 1996; Gelfand et al. 2005; Betts et al. 2006,
Dormann 2007) but these models require both presence and
absence data for model construction. In contrast, distance
constraints can be applied easily with presence-only data, like
those provided by museum collections and observational
databases (Ponder et al. 2001; Hirzel et al. 2002; Zaniewski,
Lehmann & Overton 2002; Reutter et al. 2003). This capability
is a significant advantage because presence-only data are much
more available and easier to collect than presence-absence
data. Moreover, taking into account that factors affecting
species’ distributions always show some level of autocorrelation,
distance constraints can be expected to enhance the accuracy
of SDM even if dispersal is not a strong limiting factor.

We demonstrate the applicability of distance constraints to
species distribution modelling using three simple distance
functions: nearest neighbour distance, cumulative distance
and Gaussian filter (Davis 1986; Davies 1990; Snell, Gopal &
Kaufmann 2000). Each distance function was applied alone
(hereafter distance-based models) as well as in combination
with niche-based models (hereafter hybrid models) to predict
patterns of species distribution. Three different niche-based
models were examined: ecological niche factor analysis
(ENFA; Hirzel et al. 2002), DOMAIN (Carpenter, Gillison &
Winter 1993) and the Mahalanobis distance (MD; Farber &
Kadmon 2003). We also evaluated the performance of each
niche-based SDM without incorporating distance constraints.

Each of the models was applied using presence-only data
from existing databases on the distribution of 226 species of
woody plants, land snails and nesting land birds in Israel. The
predictions of the models were validated using presence—
absence data obtained independently from an extensive
sampling project that was designed for this purpose. This
extensive design enabled us to evaluate our approach under a
wide spectrum of modelling techniques and to assess the
robustness of our results to differences in the modelling
algorithms and the modelled taxa.

We tested three predictions. First, we verified our assump-
tion that species tend to occur in sites that are both environ-
mentally similar and geographically close to other occupied
sites. Secondly, we tested the prediction that incorporating
distance constraints into niche-based models enhances the
accuracy of model predictions. Thirdly, we tested whether
niche-based methods differ from distance-based methods in
their sensitivity to variation in the amount of data available
for model construction. Specifically we predicted that both
methods would perform well when large data sets are avail-
able for model construction (i.e. when the entire distribution
range is well represented by the available records) but that
niche-based methods would perform better when only a small
amount of data are available for model calibration. This

hypothesis lies at the heart of niche-based modelling but has
rarely been put into an explicit test.

Methods

CONSTRUCTION OF SDM

SDM were constructed using data obtained from collections
and observational databases of all relevant institutions in
Israel. We performed field sampling in 27 sites for validation
purposes. Only species documented in our sampling sites
were selected for the analysis. The plant data were compiled
from five sources: the herbarium of the Hebrew University,
the Database Unit of the Israel Nature and Parks Authority,
the database of the Society for the Protection of Nature in
Israel, the Israeli Gene Bank and a database of plant obser-
vations developed by A. Danin. The snail data were obtained
from the mollusc collection of the Hebrew University. Records
of bird distribution were obtained from the Zoological
Collections of Tel Aviv University and the Database Unit of
the Israel Nature and Parks Authority. A total of 59 457 geo-
referenced records of plants (49 466 records, 174 species),
land snails (2507 records, 23 species) and nesting land birds
(7484 records, 29 species) were compiled from the different
sources. Records positioned within any of the field sampling
sites were removed from the data set in order to increase inde-
pendence between the calibration and validation data sets.

Three climatic variables were used as predictors in the
SDM: mean annual rainfall, mean daily temperature of the
hottest month (August) and mean minimum temperature of
the coldest month (January). These variables were chosen
because they showed high correlations with other climatic
variables in the study area but relatively low correlations
among themselves (Steinitz et al. 2005). Together, these
variables captured the main climatic gradients of Israel and
previous studies have shown that they are important deter-
minants of distribution ranges of plants (Kadmon & Danin
1999), land snails (Heller 1988; Kadmon & Heller 1998;
Steinitz et al. 2005) and birds (Shirihai 1996; Steinitz et al.
2005) in the study area. Adding additional variables (to a total
of 23 variables) to the SDM did not improve the accuracy
of model predictions. Digital maps of rainfall (Kadmon &
Danin 1997) and temperature (Kurtzman & Kadmon 1999)
were obtained from the GIS Center of the Hebrew University
and rescaled into a spatial resolution of 1 km? to fit the spatial
resolution of the field sampling.

Niche-based SDM were constructed using three different
presence-only methods, ENFA (Hirzel et al. 2002), DOMAIN
(Carpenter, Gillison & Winter 1993) and MD (Farber &
Kadmon 2003). Each method applies a different algorithm to
define the ecological niche of the species. ENFA calculates
a measure of habitat suitability based on an analysis of
marginality (how the species’ mean differs from the mean of
all sites in the study area) and environmental tolerance (how
the species’ variance compares with the global variance of
all sites). DOMAIN uses a point-to-point similarity metric
(based on the Gower distance) to assign a value of habitat
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suitability to each potential site based on its proximity in the
environmental space to the closest (most similar) occurrence
location. MD ranks potential sites by their Mahalanobis
distance to a vector expressing the mean environmental
conditions (i.e. the centroid) of all the species’ records in the
environmental space. All models were implemented within
the MATLAB environment (The MathWorks Inc.). ENFA was
simulated using the Medians algorithm to produce results
equal to those calculated by BiomaPPER (Hirzel, Hausser &
Perrin 2004). Box—Cox transformation of the environmental
variables produced slightly poorer results and was therefore
not used.

To enable a standardized evaluation of all models, all pre-
dictions were expressed as binary (presence—absence) predic-
tive maps. Threshold values were applied to transform the
predictions generated by the various models to binary predic-
tions. For each model, the threshold that maximized the
overall value of Kappa for all species was selected (Collingham
et al. 2000; Pearson et al. 2002).

DISTANCE CONSTRAINTS

Various methods can be applied to calculate the likelihood of
species’ occurrences at a site based on the geographical loca-
tions of known occurrences. In this study we chose to consider
three basic functions that can easily be incorporated into
presence-only SDM, nearest-neighbour distance, cumulative
distance and Gaussian filter. These basic methods were cho-
sen to demonstrate the applicability of incorporating distance
constraints into SDM. Future research might consider more
complex methods, for example indices that take into account
the dispersal properties of the modelled species. The nearest-
neighbour distance scores a potential site by its Euclidean
distance to the closest presence site in the calibration data set
(Snell, Gopal & Kaufmann 2000). The cumulative distance
sums the inverse of the squared Euclidean distances of a
potential site to all presence sites in the calibration data set
(Davis 1986). The Gaussian filter creates a Gaussian with a
selected standard deviation around each presence site in the
calibration data set and assigns to each site the sum of all
Gaussians in that site (Davies 1990). The formulae for the
three methods are given in Table 1. Distance thresholds were
applied to transform predictions produced by each distance-
based model into binary presence—absence maps. As with the
niche-based approaches, the threshold that maximized the
value of the Kappa statistic over all species was selected for
each method.
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Table 1. Distance functions used in this study. P denotes the group of
records used for model calibration, D(i,j) is the Euclidean (geo-
graphical) distance between sites i and j. 6° denotes the variance of
the Gaussian filter

Nearest neighbour S, = mipn D(i,j)
Jje

Cumulative distance S, = z D (,1 )
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Gaussian filter
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Hybrid models were produced using all combinations of
niche-based and distance-based methods. In these models, a
species was predicted to occur if both the niche-based method
and the distance-based method predicted so. Thus the pre-
dicted distribution range was the intersection of the niche-
based and distance-based predictions. The combination of
environmental and geographical thresholds applied to each
model was selected to maximize the value of Kappa over all
species. The selected thresholds for all models are summarized
in Table 2.

FIELD SAMPLING OF VALIDATION DATA

Data for model validation were collected in 27 sampling sites
of 1 x 1 km covering the main climatic gradients of Israel. Of
these, woody plants were sampled at 25 sites, land snails were
sampled at all sites and nesting land birds were sampled at 21
sites. The spatial distribution of the sampling sites was deter-
mined using a novel approach that was designed to minimize
the correlation of environmental similarity and geographical
distance between the selected sites (Steinitz et al. 2005). This
approach enabled us to separate better the effects of environ-
mental similarity and geographical distance on patterns of
species distribution.

Within-site sampling protocols were determined based on
sample-based rarefaction analyses (Gotelli & Colwell 2001)
of preliminary data obtained from several representative
ecosystems (O. Steinitz, D. Rotem & A. Rozenfeld, unpublished
data). Woody plants were documented in nine regularly
spaced plots of 0-1 ha at each site. All species of woody plants
were documented within each plot independently of their
abundance, age and stage of development. Snails were
recorded based on empty shells in nine plots of 0-01 ha,
nested within the plots used for plant sampling. A searching

Table 2. Thresholds used to convert model outputs to predictions of presence—-absence, for the different distance-based, niche-based and hybrid
models. Values in bold type are niche-based thresholds; values in Roman type are distance-based thresholds

Gaussian filter

Cumulative distance

Nearest neighbour

No geographical distance

0-014 0-38 4-5
0-0131 0-15 0-25 0-15 45
0-0138 17-5 0-37 17 4:5
0-0138 0-86 0-37 0-905 45

No environmental distance

0-15 0-4 ENFA
10 35 MD
0-905 0-975 DOMAIN
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effort of 12 min was allocated for snail sampling in each plot.
Only snail species with shells larger than 5 mm were documented
because accurate sampling of microsnails required sampling
effort that was not feasible at such scales. Nesting land birds
were sampled in five regularly spaced plots within each site
using point counts (Bibby ez al. 2000). At each point, birds
seen or heard within a 60-m radius were recorded for 10 min.
Each site was sampled twice during the main breeding season.
The first sampling period was during the spring (March—
April) and the second during the summer (July—August). The
sampling plots of each site were located in the field using GPS
with a spatial accuracy of 12 m (Garmin 12XL; Garmin
International Inc., Olathe, Kansas, USA). The data obtained
from all plots of each site were pooled, and a site-by-species
matrix of presence-absence data was constructed for each
taxonomic group.

ACCURACY ASSESSMENT

Predictive maps produced by the various models were com-
pared with the data set obtained from the field sampling for
estimating their accuracy. The field data set consisted of 25,27
and 21 validation sites for plants, snails and birds, respectively.
Taking into account the number of species sampled in each
taxonomic group (174, 23 and 29, respectively), the resulting
validation data set contained a total of 5580 validation values.
Predictions of each model were compared with the validation
data set to form one confusion matrix with a total of 5580
cases from which Cohen’s Kappa (Cohen 1960) was calculated.
The Kappa statistic defines the accuracy of prediction, relative
to the accuracy that might have resulted by chance alone. It
ranges from -1 to +1, where +1 indicates perfect agreement
between predictions and observations and values of 0 or less
indicate agreement no better than random classification. By
using a single confusion matrix for all species we reduced the
bias caused by low prevalence of some species (McPherson,
Jets & Rogers 2004; Allouche, Tsoar & Kadmon 2006). The
area under the ROC (Receiver Operating Characteristic) curve
(AUC; Fielding & Bell 1997; Manel, Williams & Ormerod
2001), a popular threshold-independent statistic, could not
be computed for our hybrid models because these models
integrated two different types of thresholds (environment
and geographical distance). However, we also evaluated the
accuracy of the predictive maps with the true skill statistics
(TSS), ameasure that is highly correlated with AUC and is not
biased by prevalence (Allouche, Tsoar & Kadmon 2006). The
results were similar to those obtained for our calculation of
Kappa, so only the Kappa values are reported here. Averaging
model performance for all species without lumping them into
one confusion matrix did not change the results of our analysis
and is therefore not reported.

DATA ANALYSIS

The assumption that species tend to occur in sites that are
both environmentally similar and geographically close to
other occupied sites was verified by comparing the environ-

mental and geographical characteristics of species records in
the validation and calibration data sets. First, a random set of
12 validation sites was selected for each species, and each site
in the selected set was classified as presence or absence. This
procedure was repeated for each species. Then, for each site—
species combination, we calculated a measure of geographical
distance (the Euclidean distance to the nearest record of the
species in the calibration data set) and a measure of environ-
mental distance (the MD between the selected site and the
centroid of all records of the relevant species). The latter
measure can be considered the distance of the site from the
environmental ‘optimum’ of the relevant species. By plotting
the sites selected for each species in a two-dimensional space
defined by the geographical and environmental distances, we
were able to evaluate our assumption that species tend to be
present in sites that are both environmentally similar and
geographically close to other occupied sites.

The prediction that incorporating geographical constraints
into SDM enhances the accuracy of model predictions was
tested by comparing the performance of hybrid models with
that of the corresponding niche-based models. The significance
of levels of differences between Kappa values of hybrid and niche-
based models was determined based on the asymptotic standard
errors of Kappa, as a single value of Kappa was generated for
each model (Kraemer 1982; Blackman & Koval 2000).

The prediction that niche-based methods are less sensitive
to small sample sizes than distance-based methods was tested
using Monte Carlo simulations by resampling data from 103
species with more than 200 records in the calibration data set.
For each species we produced distribution maps by all niche-
based and distance-based methods using randomly selected
sets of 5, 10, 20, 30, 50, 75, 100 and 200 records from the cali-
bration data set. Two-hundred predictions (repetitions) were
generated for each sample size. The accuracy of each map was
determined using the Kappa statistic based on the data
obtained from the field validation sites. As each random selection
yielded a different prediction with different accuracy, we used
the mean value of Kappa (averaged across all species) to
characterize the performance of each model at each sample size.

Results

ENVIRONMENTAL AND GEOGRAPHICAL DISTANCES

The environmental and geographical characteristics of the
validation sites (12 random sites for each of the 226 species)
are shown in Fig. 1. As expected, sites containing presences
tended to have small environmental distances, as well as small
geographical distances, while sites containing absences showed
much higher values of both distances (Fig. 1a). Calculation of
the relative frequency of presence records within different
ranges of environmental and geographical distances indicated
that both types of distances had a negative effect on the
frequency of presence records (Fig. 1b). It could also be seen
that there was a trade-off between the effects of environmen-
tal and geographical distances: small geographical distances
compensated for higher environmental distances in determining
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Fig. 1. Environmental and geographical characteristics of the
validation sites. Twelve random sites were sampled for each species.
Each site was classified as ‘presence’ or ‘absence’ with respect to the
relevant species, and was assigned a measure of environmental
distance (the MD between the site and the centroid of all the species
records in the environmental space) and geographical distance (the
Euclidean distance between the site and the closet species record in
the calibration database). (a) Distribution of sites classified as
presences (black) and absences (grey) in a two-dimensional space
defined by the two distances. (b) Relative frequency of sites classified
as presences within different categories of the two distances.

the frequency of presences and vice versa (Fig. 1b). Another
pattern emerging from this analysis was that even sites that
were environmentally close (in terms of their MD) to the
‘optimum’ of the relevant species were often characterized as
absences. For example, of the 633 sites showing an MD lower
than 2-5, almost half of the sites (46-9%) were classified as
absences. This result indicated that species were often absent
from sites that were environmentally suitable to them in terms
of the variables included in our analysis.

EFFECT OF DISTANCE CONSTRAINTS ON PREDICTIVE
ACCURACY

Kappa values obtained for the niche-based models ranged
from 0-375 (ENFA) to 0-451 (DOMAIN). Incorporating
distance constraints increased the accuracy of all models to
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Fig. 2. Differences in predictive accuracy between distance-based
models (NN, nearest neighbour; CD, cumulative distance; GF,
Gaussian filter), niche-based models (ENFA, DOMAIN, and MD)
and corresponding hybrid models. Each model was applied to 226
species of plants, snails and birds in Israel and its accuracy was
determined using Cohen’s Kappa based on field validation data.
Error bars indicate 95% confidence levels.

values of 0-514 and above (Fig. 2). In all cases, hybrid models
were significantly more accurate than their corresponding
niche-based models (Fig. 2). Adding distance constraints to
niche-based models also improved the predictive accuracy for
each taxonomic group separately (plants, snails and birds) for
all combinations of modelling algorithms. These results
supported the prediction that adding distance constraints to
niche-based models improves the accuracy of model predictions.

Some differences were observed in the contribution of
alternative distance functions to predictive accuracy. In
general, hybrid models based on the cumulative distance and
Gaussian filter performed better than corresponding models
based on nearest neighbour distance (Fig. 2).

The consequences of adding distance constraints to niche-
based models are illustrated using predictive maps produced
for two species: the plant Asparagus horridus and the snail
Levantina hierosolyma (Fig. 3). Asparagus horridus is a geophyte
species that grows in rocky desert habitats but penetrates into
the Mediterranean region along the coastal sands. Levantina
hierosolyma is endemic to the southern Levant and occupies
crevices in rocky habitats of the Judean mountains and the
northern Negev desert in Israel. It can be seen that niche-
based models overestimated the distribution of both species,
resulting in low values of Kappa (Fig. 3). Incorporating
distance constraints reduced errors caused by overestimation
and, thus, increased the values of Kappa.

EFFECT OF SAMPLE SIZE ON PREDICTIVE ACCURACY

The size of the data set used for model calibration had a
strong positive effect on the accuracy of all modelling methods
(Fig. 4). However, different methods responded differentially
to changes in the number of records included in the calibration
data set. ENFA and M D showed a steep increase in predictive
accuracy with increasing sample size and reached their
asymptotic Kappa values at sample sizes of 20-50 records
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Asparagus horridus

MD MD + GF

(Fig. 4). DOMAIN and all three distance-based methods
showed much more gradual responses and did not approach
asymptotic levels of Kappa even at sample sizes of 200
records. The performance of the distance-based models was
comparable with that of the niche-based models when large
data sets were used for model calibration, but it declined sharply
when smaller data sets were used for model calibration. Thus,
except for DOMAIN, the results support the prediction that
niche-based models cope better with small calibration data
sets than distance-based models.

Predictive maps based on the entire set of data available for
each species revealed Kappa values of 0-5 or higher for all
distance-based methods (Fig. 2). It is interesting to note that
when the entire data set was used for model construction,
distance-based methods performed better than niche-based
models in all cases, and the accuracy of their predictions was
only slightly lower than that of the corresponding hybrid
models (Fig. 2).

Discussion

Our results demonstrate that incorporating distance con-
straints in SDM strongly improves the accuracy of model
predictions (Fig. 2). This finding was consistent over all
taxonomic groups, niche-based models and distance functions.
It is interesting that the thresholds of geographical distances
that maximized the values of Kappa in the hybrid models
were relatively small. For example, the threshold of the
nearest neighbour distance that maximized the value of Kappa
across all species was 4-5 km. As a result, predictive maps
generated by the hybrid models were highly patchy, a pattern
that is very different from the continuous pattern typical of
niche-based SDM (see examples in Fig. 3). These results
suggest that patterns of species distribution are much patchier
than is usually assumed, and that incorporating distance
constraints enhances the ability of niche-based SDM to cope
with such patchiness.

Levantina hierosolyma

MD + GF

Fig. 3. Examples for predictive maps pro-
duced using niche-based vs. hybrid models.
Maps shown were produced for the plant
Asparagus horridus and the snail Levantina
hierosolyma using MD and a hybrid model
combining MD and a Gaussian filter (MD
+ GF). White dots are the records used for
calibrating the model. The light grey area is
the predicted distribution range. Circles are
the validation sites (black, presence; open,
absence). Kappa values are shown for each
map.

05T

Kappa

= ENFA

~ DOMAIN
MD

=== NN

=== CD

7 GF

1

1

o
o
—

Sample size

5
10
20
35T
50 [
75 [

200 7

Fig. 4. Results of resampling experiments testing the effect of sample
size (number of observations in the calibration data set) on predictive
accuracy of niche-based models (ENFA, DOMAIN and MD)
and distance-based models (nearest neighbour distance, cumulative
distance and Gaussian filter). Analyses were performed using data
for 103 species with > 200 calibration records. Two-hundred pre-
dictions (repetitions) were generated for each species at each sample
size and the accuracy of each map was determined using Cohen’s
Kappa based on the field validation data. Error bars represent 1 SE.

ENVIRONMENTAL AND GEOGRAPHICAL DISTANCES

As we expected, validation sites classified as presences were
both environmentally similar and geographically close to sites
in which the relevant species was previously documented to
occur (Fig. 1a). Even within narrow ranges of environmental
distances, the frequency of validation sites classified as
presences decreased with increasing geographical distance
from known occurrences (Fig. 1b). These results are con-
sistent with previous studies showing that patterns of species
distribution are characterized by strong spatial autocorrelation
(Rushton, Ormerod & Kerby 2004; Heikkinen et al. 2004;
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Karst, Gilbert & Lechowicz 2005; Luoto et al. 2005; Sanderson,
Eyre & Rushton 2005; Betts et al. 2006; Segurado, Araujo &
Kunin 2006) and may explain the observed superiority of the
hybrid models over the niche-based models.

Of course, documenting spatial autocorrelation in dis-
tribution ranges does not provide much information about the
mechanisms that generate these patterns. Basically, patterns
of spatial autocorrelation in species’ distributions reflect the
combined effects of dispersal processes and spatial auto-
correlation in the environment (Sokal & Oden 1978; Legendre
1993; Lichstein et al. 2002; Miller & Franklin 2002). Distin-
guishing between these two effects and evaluating the relative
importance of each mechanism was beyond the scope of this
study. However, a previous analysis of data collected in our
study sites indicated that compositional similarity between
any two sites was negatively correlated with the geographical
distance between the sites. Such a negative correlation was
obtained for snails and birds even after controlling for spatial
autocorrelation in a wide spectrum of rainfall, temperature,
lithology and vegetation variables (Steinitz et al. 2005).
Further analyses indicated that the rate of decay in species’
similarity with increasing geographical distance differed sig-
nificantly between snails and birds, with snails showing much
steeper distance decays than birds (Steinitz ez al. 2006). All
these findings are consistent with the hypothesis of dispersal
limitation. It should also be noted that increasing the number
of environmental variables used by the SDM to 23 variables
did not lead to a significant improvement in predictive
accuracy (data not shown). A similar result was obtained in a
previous analysis of plant distribution in Israel (Farber &
Kadmon 2003). These findings suggest that dispersal limita-
tion plays an important role in determining the patterns of
species’ distributions observed in this study.

EFFECT OF DISTANCE CONSTRAINTS ON PREDICTIVE
ACCURACY

All distance functions examined in this study improved the
accuracy of predictions generated by pure niche-based
models (Fig. 2). The fact that a significant improvement was
documented for a wide range of modelling algorithms and
taxonomic groups suggests that this finding is not unique to
the specific combinations of algorithms and/or organisms
examined in this study. We therefore recommend incorporat-
ing distance constraints in future applications of SDM. The
approach proposed in this study is one method by which such
constraints can be incorporated, and it has the advantage of
being very simple and applicable to any niche-based model.
One unexpected result of our study was that even pure
distance-based models outperformed niche-based models in
all cases (Fig. 2). This finding contrasts with the common
belief that niche-based models provide more accurate predic-
tions of species’ distributions than methods based on simple
spatial interpolation. Similar results were obtained by Araujo
& Williams (2000) for models based on presence—absence
data that were applied to 174 native tree species and subspecies
distributed across Europe. In their study distance constraints
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were modelled by contagion, an index relating the likelihood
of species’ occurrences in a site to the number and distance of
presence records in the neighbourhood of that site. As in our
study, predictions of distance-based models were more accurate
than those of niche-based models and the best predictions
were obtained using hybrid models (niche-based logistic regres-
sions incorporating the effect of contagion as an additional
predictor). Even in the hybrid models, contagion showed a
higher frequency of significant effects than any of the environ-
mental variables (Araujo & Williams 2000). Incorporating
the contagion index as a distance function in our models
produced poor results (data not shown), probably because our
analysis was carried out at a much higher spatial resolution.

Incorporating distance constraints may improve the
accuracy of SDM by accounting for dispersal limitation, which
prevents species colonizing isolated or remote sites even if
these are ecologically suitable (Guisan ef al. 2006). However,
distance constraints may also improve the performance of
niche-based models by accounting for spatially autocorre-
lated factors that are not included as predictors in the model
(Legendre 1993; Lichstein ef al. 2002; Miller & Franklin
2002; Barry & Elith 2006; Guisan et al. 2006). Taking into
account the fact that environmental factors are always auto-
correlated to some extent, and that predictive models never
include the full range of variables involved in determining
distribution patterns, distance constraints can be expected to
improve the performance of niche-based models even in the
absence of any limitation by dispersal. Yet the degree to which
incorporating distance constraints actually improves pre-
dictive accuracy can be expected to depend on the reliability of
the calibration data. If the data available for model calibration
do not represent the actual distribution of the modelled
species, incorporating distance constraints may not contribute
and may even deteriorate the accuracy of model predictions
by underestimating the true distribution range. Obviously,
distance-based methods cannot be applied to regions with no
data while niche-based methods can, given that the calibration
area represents the entire environmental space of the species.
Therefore, some useful applications of niche-based models,
such as evaluation of the spreading potential of invading
species (Higgins et al. 1999; Peterson & Vieglais 2001; Peterson
& Robins 2003; Rouget et al. 2004) and the identification of
potential areas for successful re-introduction of endangered
species (Engler, Guisan & Rechsteiner 2004; Bourg, McShea
& Gill 2005), cannot be enhanced by incorporating distance
constraints. It should also be emphasized that the simple
distance-based functions we used do not account explicitly
for dispersal processes and are therefore of limited use for
studies of species’ responses to climate change. Models based
on cellular automata are more useful in such cases (Carey
1996; Iverson, Prasad & Schwartz 1999; Iverson, Schwartz &
Prasad 2004; Midgley et al. 2006).

EFFECT OF SAMPLE SIZE

Our simulations demonstrate that the effect of sample size on
the accuracy of model predictions depends on the specific
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modelling method (Fig. 4). ENFA and MD reached asymp-
totic values of Kappa at sample sizes of 50 records, a result
consistent with previous analyses of the performance of
niche-based models (Nix 1986; McKenney et al. 1998;
Stockwell & Peterson 2002; Kadmon, Farber & Danin 2003).
Distance-based methods produced predictions that were
comparable with those of niche-based models at the highest
sample size (200 records) but their accuracy deteriorated
sharply at smaller sample sizes (Fig. 4). These findings support
our prediction that niche-based methods cope better with
small sample sizes than distance-based methods, and demon-
strate the potential advantage of niche-based models when
calibration data are limited.

The results obtained for DOMAIN were exceptional and
showed a pattern that was more similar to the distance-based
methods (Fig. 4). We attribute this anomaly to the fact that
DOMAIN defines the suitability of a potential site based on
its distance to the closest species record in the environmental
hyperspace. As the distance to a single record is used, exclu-
sion of this record from the data set affects greatly the per-
formance of the model. The two other niche-based methods
(ENFA and MD) use all records in the data set for scoring
each potential site, and are therefore more robust to exclusion
of individual records from the calibration data set. It is inter-
esting to note that, in contrast with its poor performance in
simulations based on small sample sizes (Fig. 4), DOMAIN
was the most accurate niche-based model in tests based on the
entire calibration data set (Fig. 2). This result is consistent
with the fact that DOMAIN was the only niche-based model
that did not reach saturation at the highest sample size (Fig. 4).

The fact that distance-based methods performed better
than niche-based methods when applied to the entire data
set, in spite of being more sensitive to simulated small sample
sizes, may indicate the high quality of the calibration data
used in this study. However, our calibration data set was far
from being optimal. A naive distance-based model, predicting
presence if and only if the calibration data set contained a
record at the relevant site and absence otherwise, performed
no better than random (Kappa = 0-054).

Our results suggest that comparative analyses of alterna-
tive SDM should pay more attention to the sensitivity of
model predictions to variation in the size of the calibration
data set. According to our results, conclusions derived from
such comparisons (and thus the selection of ‘optimal’ models
for specific applications) may be biased by the size (and
maybe other characteristics) of the specific data set used in the
evaluation. Such interactions between properties of the data
and properties of the model have rarely been investigated (but
see Stockwell & Peterson 2002; Hernandez et al. 2006) and
should receive more attention in future applications of SDM.

METHODOLOGICAL CONSIDERATIONS

The method we used to combine the effects of geographical
and environmental thresholds in our hybrid models implicitly
assumes independence of the two thresholds (Fig. 5a). More
sophisticated approaches may assume compensation of one

Geographical
distance

>

s

v

Environmental
distance

Environmental
distance

Fig. 5. Two possible approaches for determining environmental and
distance thresholds for transforming continuous predictions of
hybrid SDM to binary presence—absence maps. (a) Rectilinear
envelope (the two thresholds are assumed to be independent). (b)
Triangular envelope (a trade-off is assumed between the two
thresholds). Grey areas indicate prediction of presence.

threshold for the other to reflect better possible interactions
between the effects of geographical and environmental dis-
tances (Fig. 5b). If, for example, a species is highly prevalent
in the neighbourhood of a relatively unsuitable site, it is also
likely to be present in the unsuitable site because of a mass
effect (Shmida & Wilson 1985). On the other hand, if a site is
highly suitable in its ecological conditions, it is likely to be
occupied even if it is relatively distant from other presence
locations, as rare colonization events might be enough for the
species to establish and maintain itself. Our finding that small
geographical distances may compensate for large environ-
mental distances in determining the frequency of occupied
sites (Fig. 1b) is consistent with these assumptions. Another
indication for such compensation is that the thresholds of
geographical distances that maximized the accuracy of hybrid
models were larger than those maximizing the accuracy of
pure distance-based models. Further support for the assump-
tion of threshold compensation comes from an analysis of
factors affecting the degree of similarity in species com-
position among our study sites (Steinitz ez al. 2006), which
indicated that a small geographical distance between sites may
compensate for large environmental distances in determining
the degree of between-site similarity in species composition.
We therefore recommend that future developments of hybrid
models should take into account the potential implications of
a trade-off between the environmental and geographical
thresholds.

When interpreting predictive maps produced by SDM, one
should take into account source-sink population dynamics
(Pulliam 1988, 2000). Source-sink dynamics may deteriorate
the predictive power of SDM by two contrasting effects. First,
including records from sink populations in the calibration
data set may lead to overestimation of the fundamental niche.
Secondly, and in contrast, predictions based on records from
source populations may underestimate the actual distribution
range if part of the distribution range consists of sink popu-
lations. Metapopulation dynamics further deteriorate the
predictive power of SDM because species may be absent from
source sites as a result of stochastic local extinctions. Incor-
porating distance constraints into SDM may reduce the
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magnitude of errors generated by both mechanisms because
sites close to established populations have a higher probability of
being colonized if empty and a lower probability of extinction
if they are inhabited (because of the rescue effect; Brown &
Kodric-Brown 1977) than sites distant from established
populations.

Scale is another major factor that should be considered in
interpreting the results of SDM (Pearson & Dawson 2003;
Thuiller, Aratjo & Lavorel 2004; Guisan & Thuiller 2005). At
relatively coarse spatial scales, climatic factors play an impor-
tant role in determining patterns of species’ distributions,
which may explain the relatively high success of climate-based
SDM at such scales (Venier et al. 1999; Pearson et al. 2002).
At smaller scales, factors such as land cover, disturbance and
biotic interactions become increasingly important (Willis &
Whittaker 2002; Pearson & Dawson 2003). The idea that
factors affecting species’ distributions are scale-dependent
has long been accepted by ecologists (Wiens, Rotenberry &
Vanhorne 1987; Levin 1992; Willis & Whittaker 2002) but has
rarely been implemented in SDM. Recently, Pearson, Dawson
& Liu (2004) offered a hierarchical framework for SDM,
where climate determines species’ distributions at relatively
large scales, and additional factors are incorporated to predict
distribution patterns at finer scales. Our modelling approach
can be considered as an implicit implementation of this
approach, with distance constraints functioning as surrogates
for dispersal limitation and for environmental factors operating
at relatively small spatial scales.

Soberon & Peterson (2005; see also Peterson 2006)
proposed a conceptual framework for distribution modelling
that combines the idea that factors affecting distribution
ranges are scale-dependent with the concept of the ecological
niche. According to their approach, a species is expected to
occur at a site only if three conditions are satisfied: (i) the
abiotic conditions at the site are favourable; (ii) appropriate
biotic conditions are satisfied (presence of hosts, food plants,
pollinators, etc., and absence of competitors, diseases and
predators); and (iii) the site is accessible to dispersal by the
species from established populations. They further argued
that the first condition defines the fundamental niche of the
species while its intersection with the second condition
defines the realized niche. The intersection of the three con-
ditions defines the actual geographical distribution of the spe-
cies (although sink populations may occur even if the first two
conditions are not satisfied). According to this framework,
niche-based SDM predict the fundamental niche (Soberon &
Peterson 2005) or the realized niche (Pearson & Dawson
2003). Still, in many practical applications of SDM, particularly
those applied for conservation and management purposes, the
main aim is to predict the actual distribution of the modelled
species. Incorporating distance constraints as modelled in
this study is one possible approach for approximating actual
distribution ranges better in such applications.

In a recent review of species distribution models, Guisan
et al. (2006) highlighted the need for strengthening the link
between ecological theory and modelling tools and called for
more consideration of spatial aspects in SDM. Most SDM
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still largely ignore issues such as spatial autocorrelation, dis-
persal limitation and biotic interactions, or deal with a single
issue at a time (Guisan et al. 2006). Our method provides a
simple yet powerful tool to account for all of the above issues
simultaneously, and connects better SDM to ecological theory.

CONCLUSIONS

Almost any textbook in ecology emphasizes the importance
of dispersal as one of the main factors that limit the distribu-
tion of species. Yet most applications of SDM ignore the
potential consequences of dispersal limitation. In this study
we propose a simple approach by which dispersal limitation
can be incorporated into SDM and provide empirical evidence
that the proposed approach significantly enhances the
accuracy of model predictions. Even if dispersal is not a
limiting factor, our approach can be expected to enhance the
predictive power of SDM by accounting for spatial mass
effects and spatial autocorrelation in environmental factors
that are not included as predictors in the model. The fact that
a significant improvement in predictive accuracy was obtained
for different taxonomic groups, different modelling techniques
and different distance functions is encouraging, and suggests
that our approach can be applied successfully to a wide range
of systems.
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