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Multibeam surveys can provide detailed bathymetry data for the continental slope from
which quantitative descriptors of the seabed terrain (e.g., slope) may be obtained. We
illustrate the value of these descriptors for benthic habitat mapping, and highlight the
advantages of multiscale analysis. We examine the application of these descriptors as
predictor variables for species distribution models, which are particularly valuable in
the deep sea where opportunities to directly survey the benthic fauna remain limited. Our
initial models are encouraging and suggest that wider adoption of these methods may
assist the delivery of ecologically relevant information to marine resource managers.
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Introduction

Ecologists involved in terrestrial habitat and vegetation mapping studies have developed

their science against a backdrop of improving topographic information. Visualization

and analysis tools too have advanced and simple contour maps have now largely given

way to Digital Terrain Models (DTM), which may be readily analyzed in a geographic

information system (GIS) environment. Parameters derived from these DTMs have been

used in numerous studies to classify habitat and to predict soil, vegetation cover, and species

distributions at a variety of scales (Franklin 1995; Franklin et al. 2000; Hirzel 2001; Schmidt

and Hewitt 2004; Wu and Smeins 2000).

Until recently, no detailed terrain data were available for the marine environment.

Historically, bathymetry data were acquired primarily for navigation purposes and, while

certain coastal areas may be reasonably well charted, vast areas of the deep sea remain

largely unexplored. Even when studies such as Le Danois (1948) provided evidence that the

deep sea supported a variety of benthic fauna and began describing its regional distribution,

attempts at habitat mapping were limited without this baseline bathymetry information.

With only a basic knowledge of seafloor bathymetry coupled with imprecise position

information for biological samples, studies of the deep-sea benthic fauna tended to focus
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4 M. F. J. Wilson et al.

on ecology (e.g., Billett 1991) biodiversity (e.g., Rex et al. 1997), or biogeography of certain

species (e.g., Riemann-Zürneck 1986) without any explicit link to the seabed terrain.

With the advent of multibeam technology (Kenny et al. 2003), marine benthic habitat

mapping has entered a new era. Ship borne multibeam bathymetry surveys, such as those

conducted under the Irish National Seabed Survey (INSS) (GOTECH 2002), have provided

spectacular detail of deep sea terrain revealing numerous previously unrecognized features.

Multibeam surveys provide the detailed bathymetry data necessary for the production of

submarine DTMs which, unlike traditional charting formats (contours, soundings), lend

themselves well to terrain analysis. Multibeam data have proven their value for habitat

mapping (Kostylev et al. 2001; Parnum et al. 2004; Van De Beuque et al. 1999) and studies

of the distribution of benthic fauna (Kostylev et al. 2003). Shipborne multibeam data are

also being complemented by Remotely Operated Vehicle (ROV)-based multibeam surveys,

which provide a means to obtain submeter level bathymetry in deeper waters (e.g., Wilson

2006).

With the advent of ROV-based video surveys of the benthic fauna, we can now also

obtain precisely georeferenced visual data on the distribution of at least the larger animals

colonizing the seafloor – the benthic megafauna. These are generally visible in video data

and, thanks to precise position information from accurate underwater positioning systems,

we know exactly the location for each observation. Now that biological information can be

directly georeferenced to the underlying seabed terrain, we can begin to characterize the

distribution of the fauna in relation to this terrain and develop predictive habitat and species

distribution models. Renewed commercial interest in deep sea resources, coupled with the

need for sustainable management, demands habitat information and predictive models may

be the only practical way to address this demand in the deep sea.

While the distribution of benthic fauna may be controlled by a combination of

environmental and biological factors, it is generally recognized that many animals show

a particular affinity for certain types of terrain (e.g., Džeroski and Drumm 2003; Roberts

et al. 2003; Wilbur 2000), which provide the physical habitat or structure that is directly

or indirectly suited to their mode of living. Characterization of the seabed in terms of

terrain parameters such as slope, aspect, or curvature may therefore offer a valuable tool for

delineating regions of the continental slope that are likely to support particular fauna and

thereby provide a distinct habitat. Recent work in shallower water has indicated the potential

for these types of techniques (Bekkby et al. 2002; Dartnell and Gardner 2004; Lundblad

et al. 2006), but there has been little work in deeper waters beyond the continental shelf.

It is perhaps in the relatively inaccessible deep sea, where the expense of direct surveying

makes ground-truth observations scarce, that techniques such as terrain modeling based on

multibeam data can make a significant contribution to the prediction of benthic habitat.

One important issue that should be addressed by any attempt at habitat mapping,

observed or predicted, is that of spatial scale. With seabed habitats and benthic fauna

spanning a continuum of scales this is not an easy challenge to meet. Scale is especially

important in relation to terrain analysis, since both the initial DTM resolution and the

analysis scale will influence the results. For habitat mapping it is important to try

and match the data and analysis scales to those relevant to habitat size and the fauna

themselves. Previous investigations of deep-sea habitat using video (e.g., Klages et al. 2004)

have indicated that distribution of fauna exhibits patterns of variability on spatial scales

smaller than the resolution of ship-borne multibeam at continental slope depths. However,

these investigations have also revealed that certain fauna (e.g., cold water corals) exhibit

tendencies to associate with larger scale features of the terrain such as carbonate mounds

(De Mol et al. 2002). This suggests that larger-scale features may indeed be important
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 5

contributors to the distribution of some fauna. In practice, for animals exhibiting a preference

for particular types of terrain it is likely that a combination of large- and small-scale features

contribute to their chosen habitat. We investigate the interaction of spatial scales with

reference to a case study area in this paper. Several technical approaches that inherently

address issues of scale can be recognized, including multiscale GIS visualization and

analysis (Wood 1999), fractal dimension (Wallace et al. 2004), and wavelet analysis (Csillag

and Kabos 2002), each of which will be discussed further in this paper.

We begin with a review of methods for terrain analysis using deep-sea multibeam

data. We then provide examples in a case study on the upper continental slope to the

southwest of Ireland. Results of analyses at multiple scales are compared with each other

and with video observations of benthic fauna with the aim of addressing the following

questions:

Ĺ What terrain information can be derived from multibeam data?

Ĺ What are the benefits of analyzing data at multiple spatial scales?

Ĺ What spatial scales are most relevant to observed seabed habitat?

Ĺ Can the derived terrain variables be used to predict the distribution of benthic

fauna?

Bathymetric Terrain Analysis

The terrain analyses focus on techniques that have most potential relevance to benthic

habitat. Some of these methods are common to terrestrial applications; others have been

modified for the marine environment. Terrain analysis methods can be grouped into four

types of information (Figure 1):

Ĺ Slope,

Ĺ Orientation (aspect)

Ĺ Curvature and relative position of features

Ĺ Terrain variability

Each of these parameters potentially gives important information for the delineation

and characterization of habitats and may be valuable inputs to predictive habitat modeling.

In the following sections, we provide an overview of terrain analysis with notes on any

Figure 1. Major classes of terrain parameters that may be derived from bathymetry data.
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6 M. F. J. Wilson et al.

special considerations for deep-sea data and the relevance of each parameter to seabed

habitat.

GIS-Based Analyses

By converting the bathymetric DTM to a raster grid, terrain analysis can be performed

conveniently in a GIS environment. The raster resolution (also referred to by pixel or cell

size) will be determined by the original multibeam data and the purpose for which the

data are being prepared. One important point concerning multibeam data is that resolution

and data density decrease with depth as a consequence of the beam geometry and lower

multibeam frequencies used (Wilson 2006). Regardless of raster resolution, terrain analysis

may be performed. However, it is important to note that the cell size, the analysis scale, and

the choice of algorithm for the calculation of terrain parameters will all influence the results

obtained (Albani et al. 2004). Although we have gridded our data at an optimal resolution

for the study area, the majority of scientists and managers are restricted to working with

agency-produced DTMs at a particular resolution. Unless DTMs at the highest meaningful

resolution are available within the study area, the choice of algorithms and analysis scale

will be restricted and so it is particularly important to understand the impact these will have

on the analysis.

While certain terrain analyses may be performed on the basis of the raster grid and

algebraic interactions between pixels, a more elegant and robust solution is to use some

continuous representation of the DTM as a double-differentiable surface (e.g., Wood 1996).

As we will demonstrate, this approach offers great flexibility in the choice of algorithms

and the scales at which these analyses may be performed.

Using Evans’ (1980) method, the DTM surface is approximated by a bivariate quadratic

equation

Z = aX2 + bY 2 + cXY + dX + eY + f (1)

where Z is the height of the DTM surface and X and Y are the horizontal coordinates.

The coefficients in Eq. (1) can be solved within a window using simple combinations of

neighboring cells, the basis for terrain analysis in most commercial GIS, whether they

use grid-based methods or a mathematical representation of the DTM. To perform terrain

analysis across a variety of spatial scales, Wood (1996) solves this equation for an n by

n matrix with a local coordinate system (x, y, z) defined with the origin at the central

pixel (Figure 2). These matrix algebra methods are implemented in Landserf software

(Wood 2005) where the user may specify any odd number (n) for the size of the square

analysis window defining the portion of the raster DTM to be analyzed in relation to each

central pixel in turn. Calculation of the various terrain parameters (e.g., slope, aspect) is

achieved on the basis of a particular algorithm evaluated through solution of Eq. (1). Other

surface representations are possible (e.g., Horn 1981; Travis et al. 1975; Zevenbergen and

Thorne 1987). However, Evans’ (1980) method is one of the most precise methods at least

for first-order derivatives (Shary et al. 2002). While it might not be the best method for

all applications, it performs well in the presence of elevation errors (Albani et al. 2004;

Florinsky 1998).

Albani et al. (2004) present an analysis of the effect of scale on derived parameters for

terrestrial data. They note how small-scale analyses (e.g., using a standard 3 by 3 window)

are influenced by errors in the elevation surface or in the case of interpolated data prone to

exhibit properties of the interpolation process. They also note how at large window sizes
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 7

Figure 2. Raster grid, showing numbering system for cells in analysis window where Z is the value

of the raster. The central cell is the origin of the local coordinate system (x, y) and the positions

relative to this are denoted by subscripts. To simplify notation we use N = (n − 1)/2 for any n ×

n analysis window where n may be any odd integer smaller than the number of cells shortest side of

the raster. These are shown in full for a 3 × 3 window. Larger values of n mean that more cells (larger

area) are considered in the analysis.

the quadratic equation will be less likely to be a good descriptor of the terrain surface in

the neighborhood of the central cell suggesting a potential upper limit in the useful range

of analysis windows. Here we assess the choice of window sizes and their influence on

derived terrain variables visually and with reference to habitat suitability models.

Slope

Slope is thought to be an important factor in determining benthic habitat and colonization

in the deep sea at a variety of scales. Flat areas tend to exhibit different seabed facies and

support communities that are different from those on steeply sloping areas (Dartnell and

Gardner 2004; Iampietro et al. 2004; Lundblad et al. 2006). Slope may also contribute to

current flow amplification (Mohn and Beckmann 2002), which has consequences for the
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8 M. F. J. Wilson et al.

supply of food to the benthic fauna. In relation to anthropogenic impact, we also note that

slope may be a limiting factor in the use of particular fishing gears (Grehan et al. 2005a).

While slope analysis has been used in many marine based studies (e.g., Lundblad

et al. 2006; Roberts et al. 2005; Whitmire et al. 2004), there has been little discussion

in the associated literature of the algorithms used or the scale of analysis, which will

have consequences for the slope values. Several comparative studies of methods for

the calculation of slope have been reported for terrestrial DTMs (e.g., Florinsky 1998;

Jones 1998; Kienzle 2004; Warren et al. 2004; Zhang et al. 1999), each of which

reports a value in the direction of steepest slope within the analysis window. Other

techniques such as directional slope calculations (Jenness 2005), which calculate the

slope in a given direction, may be preferred for selected applications. Wavelet methods

offer a novel method for calculating multi-scale slopes and are included in this study for

comparison.

Evans’ (1980) methods are reviewed by Wood (1996) and implemented in the Landserf

software (Wood 2005). To calculate slope (or other terrain parameter), an analysis window

is effectively moved across the raster DTM surface such that each pixel in turn becomes the

central pixel on which calculations are based. The resulting calculations are still reported at

the original pixel size; it is merely the window size or ground area considered in the analysis

which varies. This generalization allows the parameter to be analyzed at a range of scales

(different values of n ≥ 3) but also serves the function of overcoming short-wavelength

noise in the data such as the line-associated artifacts that typically arise in multibeam data

(Hughes Clarke 2003). In this case, the user will have to decide the trade off between the

analysis scale and the sensitivity of their investigations to noise/artifacts.

Slope is calculated from Eq. (1):

∂Z

∂X
= Sx = 2aX + cY + d and

∂Z

∂Y
= Sy = 2bY + cX + e

By adopting a local coordinate system with the origin at the central point of the analysis

window (x, y = 0), the slope at the centre of the (moving) analysis window is:

slope = arctan(
√

d2 + e2)

Orientation (Aspect)

Aspect is important to benthic habitat because it reflects the orientation of the seabed at

any given location. This orientation is particularly relevant to local and regional currents,

especially for suspension feeding fauna that rely on these currents to supply their food

(Gage and Tyler 1991). It provides information on the exposure of any given area to such

water movements, which may be important in shaping habitat and colonization. Slope and

aspect are intrinsically linked since slope reflects that change in elevation along the steepest

incline within the analysis window, whichever direction that may face. Despite this link,

aspect has not been as widely used in marine habitat-related studies as indices such as

slope. This may be partly because for many areas little is known about the oceanography

and circulation patterns which make aspect significant. Even observing, for instance, that

certain fauna occur on north facing slopes we gain an insight into the distribution of fauna.

Aspect calculations presented here are also based on Eq. (1) and calculated using Landserf.
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 9

The solution is:

aspect = arctan

(

e

d

)

It computes the azimuthal direction of steepest slope through the points in the analysis

window. In our experience, aspect calculations are particularly sensitive to any artifacts in

the DTM so it is important that the analysis scale is selected appropriately.

Aspect is typically measured in degrees from north but presents a difficulty that values

numerically distant may be oriented in the same general direction (e.g. 1◦ and 359◦). Several

researchers (Hirzel et al. 2002; Patthey 2003) have found that for certain analyses it may be

useful to split aspect into two components following conversion from degrees to radians.

eastness = sin(aspect)

northness = cos(aspect)

These indices of northness and eastness provide continuous measures (−1 to +1) describing

orientation.

Curvature and Relative Position of Features

Curvature and related measures that describe the relative position of terrain features are

important to benthic habitat in terms of exposure to currents and may also be linked to the

nature of the seabed. For instance certain fauna will tend to colonize elevated positions,

whilst others prefer low lying, or flat areas. Multi-scale analysis allows us to further

delineate between favorable and unfavorable habitat for any particular animal, since local

and broader scale influences are likely to be important (Guisan and Thuiller 2005).

Surface curvature. Curvature is a second spatial derivative of the seabed terrain. It is

one of the basic terrain parameters described by Evans (1980) and is commonly used in

terrestrial terrain analysis. It has found detailed application in soil science and has been

found to be important in the classification of landforms (Schmidt and Hewitt 2004; Shary

et al. 2002). It helps to delimit regions of distinct habitat by identifying boundaries in the

character of the terrain. The importance of analysis scale is highlighted by Schmidt and

Hewitt (2004) who illustrate the significance of profile curvature, calculated at different

scales, as a predictor of soil properties. Curvature seems to have been largely overlooked

by most researchers studying submarine terrain, perhaps due in part to the confusing array

of possible curvature calculations (Schmidt et al. 2003; Shary et al. 2002).

The two most frequently calculated forms are profile and plan curvature (Gallant and

Wilson 2000). Profile curvature is the curvature of the surface in the steepest down-slope

direction. It describes the rate of change of slope along a profile in the surface and may

be useful to highlight convex and concave slopes across the DTM. Plan curvature is the

curvature of a contour drawn through the central pixel. It describes the rate of change of

aspect in plan across the surface and may be useful in defining ridges, valleys and slopes

along the side of these features.

Based on Eq. (1), Wood (1996) defines profile curvature as:

profc =
−200(ad2 + be2 + cde)

(e2 + d2)(1 + e2 + d2)1.5
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10 M. F. J. Wilson et al.

and plan curvature is given by:

planc =
200(bd2 + ae2 − cde)

(e2 + d2)1.5

Note that these terms are multiplied by 100 to express curvature as percent gradient

per unit length (Albani et al. 2004).

These calculations depend on the slope (Schmidt et al. 2003; Shary et al. 2002) and

are based on the curvature of a line formed by the intersection of a plane (defining the

orientation of the curvature) and the DTM surface (Wood 1996). Maximum curvature

(convexity), minimum curvature (concavity) are independent of slope and are based solely

on surface geometry (Schmidt et al. 2003; Shary et al. 2002). They occur at regions where

the slope is zero, where plan and profile curvature remain undefined and there is zero

component to plan curvature.

Minimum and maximum curvature are calculated according to the formulae provided

by Evans (1980)

profcmax = −a − b +
√

(a − b)2 + c2

profcmin = −a − b −
√

(a − b)2 + c2

Mean curvature is simply the average of these two values, since plan curvature is zero at

these points:

mean curvature = profcmean = −a − b

These and other curvature calculations are reviewed by Schmidt et al. (2003) who also

clarify the confusion caused by different terminology.

Bathymetric Position Index. The bathymetric position index (BPI) is the marine version

of the topographic position index (TPI) introduced by Weiss (2001) and has been applied to

a number of benthic habitat studies in recent years (Iampietro and Kvitek 2002; Iampietro

et al. 2004; Lundblad et al. 2006). The BPI value provides an indication of whether any

particular pixel forms part of a positive (e.g., crest) or negative (e.g., trough) feature of the

surrounding terrain. The calculation is a raster-grid based method rather than one based on

quadratic representation of the DTM surface. Nevertheless, since the BPI is based on the

variation among cells within a specified radius or annulus, it may be calculated at a variety

of user-defined scales so as to capture local- and broad-scale variations in bathymetric

position. Our calculations were performed using ArcInfo’s raster calculator using a

slightly modified version of the formula used by Lundblad et al. (2006), without integer

rounding.

BPI = Zgrid − focalmean(Zgrid, circle, r)

where Zgrid is the raster bathymetry grid. The ‘focalmean’ calculation reports the mean of

the raster values within the circle of radius r. We follow Lundblad’s notation indicating the

scale of the BPI calculation which is denoted as BPI〈scalefactor〉, where

scalefactor = r × (cell size of Zgrid)

Lundblad et al. (2006) also present an alternative calculation based on an annulus rather

than a circle. Visually we found little difference in the results between the two methods. For
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 11

low-lying areas we find it preferable to keep a full floating point grid of values, particularly

for further analysis such as habitat suitability modeling.

Feature extraction. Eq. (1) can also be written in the form of the general conic (Wood

1996)

aX2 + 2

(

c

2

)

XY + bY 2 + 2

(

d

2

)

Y + 2

(

e

2

)

Y + (f − z)

or as

aX2 + 2hXY + bY 2 + 2jY + 2kY + m

Consideration of the quadratic surface as a conic section allows morphometric features to

be identified as peaks or pits (elliptic), ridges or channels (parabolic), passes (hyperbolic),

or the special case of a planar surface (Wood 1996; Wood 1998). The basic form of the

surface is defined by the values of the coefficients a, b and h and further distinctions

between feature classes are detailed by Wood (1996). Feature extraction may be performed

at multiple scales using the methods outlined in Wood (1998), which are implemented in

Landserf. These techniques have been developed to include fuzzy classification across a

range of scales (Fisher et al. 2004). Membership of any class at a particular location is given

as a weighted average of the Boolean memberships of that class over the scales considered.

In this study, we consider these methods implemented in Landserf in order to get an idea if

this analysis is useful for the delineation of benthic habitats.

Other methods for feature extraction have also been proposed, for example on the

basis of terrain (bathymetric) position, slope and rugosity (Lundblad et al. 2006); or using

a combination of slope, curvature and terrain position (Schmidt and Hewitt 2004) who also

employ fuzzy classification.

Terrain Variability

The variability or complexity of the terrain has been linked to the distribution of fauna

by several researchers (Beck 2000; Kostylev et al. 2005), and, at the appropriate scales,

may be a key parameter in distinguishing suitable habitat for particular fauna. At a

local level, certain species require a complex habitat with a strong structural component

(e.g., rocky outcrops) whilst others tend to occupy flat terrain typical of soft sediment

areas. At a broader scale, terrain variability indices reflect variations related to seabed

morphology.

Terrain Ruggedness Index. The Terrain Ruggedness Index (TRI) was adapted by

Valentine et al. (2004) for bathymetry data from the method presented by Riley et al. (1999)

for terrestrial ruggedness. The TRI value is a measure of the local variation in seabed terrain

about a central pixel. Since variations in the seabed terrain are associated with changes in

habitat and colonization, they may be particularly relevant for habitat mapping studies. The

TRI value is calculated by comparing a central pixel with its neighbors, taking the absolute

values of the differences, and averaging the result.

Using the notation in Figure 2 for a 3×3 window we have:

TRI =

(

|z(−1,1) − z(0,0)| + |z(0,1) − z(0.0)| + |z(1,1) − z(0,0)| + |z(−1,0) − z(0,0)|

+|z(1,0) − z(0,0)| + |z(1,−1) − z(0,0)| + |z(0,−1) − z(0,0)| + |z(1,−1) − z(0,0)|

)/

8
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12 M. F. J. Wilson et al.

Calculations were performed in ArcInfo using a macro developed by Valentine et al.

(2004). Neighborhood mean filters may optionally be applied in ArcInfo to smooth the

results. This index is conceptually similar to the Terrain Amplitude Index introduced by

Dı́az (1999), although there are differences in the computation methods.

It is possible to extend the technique to a multiscale version by applying the technique

to DTM surfaces previously generalized to other analysis scales using the methods of

Wood (1996), or by averaging the results through a neighborhood filter in ArcGIS, an

approach to multiscale analysis taken by (Bekkby et al. 2005). Alternatively, we may

extend Valentine’s (2004) definition to a multiscale TRI equation that allows computation

using an n × n window where N =
(n−1)

2
:

TRI(n) =

∑N
i=−N

∑N
j=−N |Zij − Z00|

(n2 − 1)

This calculation could be implemented in GIS using an extended macro; alternatively it

may serve as a basis for other computation methods such as wavelet analysis.

Rugosity. The rugosity (Jenness 2002) has been used by a number of marine habitat

studies to date (Iampietro et al. 2004; Lundblad et al. 2006). This is the ratio of the surface

area to the planar area across the neighborhood of our central pixel.

rugosity =
surface area of 3x3 neighbourhood

planar area of 3x3 neighbourhood

By this method flat areas will have a rugosity value near to 1, while high relief areas

will exhibit higher values of rugosity. Calculations were performed in ArcView 3.3 using

the Surface Areas and Elevation Grids extension (Jenness 2002). Using this extension, the

analysis is limited to a single scale and whether or not it captures rugosity at a level relevant

to observed habitat is therefore sensitive to the initial raster resolution.

As with TRI, we may extend this technique to multiscale analysis using a generalized

surface or by implementing a multiscale version of the rugosity calculation in our GIS

using an n × n window, extending the methods described by Jenness (2002).

Roughness. Dartnell (2000) used the focal statistics routines available in ArcInfo

to compute the maximum or minimum bathymetry value within a user defined n × n

rectangular neighborhood (Figure 2) surrounding the central pixel. The roughness (R) is

then calculated as the difference between these maximum and minimum values.

Bmax(n) = maximum Z in n × n window

Bmin(n) = minimum Z in n × n window

R(n) = Bmax − Bmin

Fractal dimension. The fractal concept (Mandelbrot 1983) is often referred to as

a measure of the surface complexity, which has been linked to habitat structure and

biodiversity on rocky shores (Commito and Rusignuolo 2000; Kostylev et al. 2005). Fractal

approaches have been adopted in the study of tropical coral reefs (Basillais 1997; Bradbury

and Reichelt 1983; Mark 1984); however, these tend to focus on the coral structures

themselves rather than the underlying seabed terrain. Simulated fractal surfaces have been

used as models in ecological studies (Keitt 2000; With and King 1997) and to assist in the

development of underwater technology (Riordan et al. 2005).
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 13

Real landscapes typically exhibit fractal behavior within a local area. Topography

can generally be considered self-similar in the two horizontal directions and self-affine

in cross-section (Turcotte 1992). Following consideration of various topographic surfaces,

Herzfeld and Overbeck (1999), in one of the few published studies of fractals in relation

to seafloor bathymetry, conclude: “It is heuristically clear that seafloor or landscape

topography is best described by fractal geometry, because of the different and increasingly

detailed features appearing at increasing resolution.”

There are a variety of methods available for the calculation of the fractal dimension (D)

of topography that will give a D value between 2 (flat surface) and 3 (a space filling rough

surface). The choice of method will be influenced by the data, study objective and ease of

computation (Halley et al. 2004; Herzfeld and Overbeck 1999). One problem highlighted

by comparative studies is that different methods can produce different estimates of the

fractal dimension for the same surface. Tate and Wood (2001) report how this has led some

researchers to conclude that apparent variations in D reported for real landscapes are due

mostly to the variations in the calculation methods, rather than differences in the topography

itself. However if a single method of calculation is employed to compare D for different

areas we should still gain a reasonable measure of the relative variation which is relevant

to seabed habitat.

Landserf implements the variogram method (e.g., Mark and Aronson 1984), which we

use for the analyses presented here. The variogram is calculated as:

γ (h) =
1

2n(h)

n
∑

i=1

n
∑

j=1

(zi − zj )2

where h is the lag between measured cells and n is the number of pairs considered.

Computation of D is achieved through a plot of the log of variance against the log of lag,

typically referred to simply as the log-log variogram. This method has been found the

most applicable for multibeam bathymetry data (Herzfeld and Overbeck 1999). The value

computed as part of the standard statistics in Landserf is a global measure of D across

the whole raster surface and so it can hide non-fractal behavior and spatial variation in

roughness. It may, however, be useful as a general descriptor of the surface in a particular

study area, and visual examination of the variogram (i.e., linearity of the log-log plot)

will provide an indication of the extent to which the surface is truly fractal. An alternative

approach in Landserf calculates D within a moving window around each cell across the

raster. This calculation has more relevance to habitat mapping since we gain an indication

of how the surface roughness/complexity changes over the study area. D may be calculated

at different window sizes for n ≥ 9.

For habitat mapping purposes, we are interested in determining whether the fractal

dimension can offer a useful measure of the complexity of the seabed terrain with

relevance for benthic habitat and the distribution of fauna. We are also interested in

examining the effects of the data resolution and data smoothing on the fractal dimension

calculations.

Wavelet-Based Analyses

An alternative to GIS-based terrain analysis is offered by methods based on the wavelet

transform (Csillag and Kabos 2002; Keitt and Urban 2005; Kumar and Foufoula-Georgiou

1997; Saunders et al. 2005) that offers a potentially elegant means by which to perform
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14 M. F. J. Wilson et al.

multiscale analysis of seafloor bathymetry. Wavelet analysis has been likened to a

mathematical microscope (Mallat 1999), in reference to the ability provided by shifting

the wavelet (an oscillatory mathematical function) along a signal so that it can zoom in

on different areas of the signal to quantify attributes of the signal at different scales. A

small-scale wavelet is able to detect rapidly changing details, whereas a large-scale wavelet

is able to detect slowly changing coarse features. In contrast to the Fourier Transform the

wavelet transform is a local transform, which allows us to examine bathymetric data at

different scales at a particular location.

Multiscale terrain analysis using wavelets exploits this multi-resolution property

central to wavelet theory. During wavelet decomposition, the original signal (bathymetry)

passes through two filters and emerges as two signals down-sampled in accordance with

the Nyquist sampling theorem to retain all the information content of the signal while

reducing the volume of data. This decomposition process can be iterated and eventually

the original signal is broken down into many lower resolution components forming a

wavelet decomposition tree. This process is called the Discrete Wavelet Transform (DWT).

Bathymetric data can be decomposed to whatever scales are required (above the smallest

scale present in the DTM) and in our examples follow the dyadic scale (Misiti et al.

2002).

One of the most important properties of wavelets is the vanishing moment (Mallat

1999). Shao and Ma (2003) use this property to construct derivatives of a signal at the

nth order differentiation of a function. The nth-order spatial derivatives of the bathymetric

data can be obtained through a wavelet transform with a wavelet of n vanishing moments.

For example the first derivative of the bathymetry (i.e., slope) can be calculated with a

Daubechies wavelet db1 or a Biorthogonal Bior1.5 wavelet, which have one vanishing

moment, and aspect may be calculated from this. A second order derivative (i.e., curvature)

can be found from a wavelet transform with a Daubechies db2 wavelet or a Biorthogonal

Bior2.6 wavelet, which have 2 vanishing moments.

Terrain Analysis of Multibeam Bathymetry Data in the Porcupine Seabight,
SW Ireland

The data are from the continental slope to the southwest of Ireland, on the eastern flank of

the Porcupine Seabight. The region includes a region of small mounds and a large slope

and channel feature spanning water depths from 300 to 500 m (Figure 3). The extent and

ecological relevance of these mounds are reported by Wilson (2006).

The origin of the Macnas mounds is unknown; they are near circular with diameters of

between 50 and 100 m rising only around 5 m above the ambient seabed. The study area is

on a general west-facing slope between 300 and 500 m depth. Towards the north-west the

gentle slope, where most of the mounds occur becomes a wider, steeper slope which opens

into a channel. The area is of interest in terms of benthic habitat since it is noted as a hake

(Merluccius merluccius) spawning ground. Video observations conducted using an ROV

revealed that the mound and inter-mound areas contain distinct habitats hosting contrasting

fauna. These observations suggest that the mounds are colonized by squat lobsters (Munida

sp.) living on coral rubble, whilst the inter-mound areas consist of soft sediments, often

colonized by anemones. Anecdotal information suggests that these mounds supported coral

stands prior to the recent advent of industrial trawling in the area. No samples have been

collected to confirm the age of the corals.
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 15

Figure 3. The Macnas Mounds study area in the Porcupine Seabight (PSB) to the SW of Ireland

(IRL). The position of the Porcupine Bank (PB) is noted for reference. Projected coordinates UTM

Zone 29 N (WGS84).

Data Analysis

Ship-borne multibeam data were acquired as part of the Irish National Seabed (Zone 3)

Survey between 2000 and 2003. The multibeam system was the Kongsberg Simrad EM1002,

which was hull mounted on the survey vessel S. V. Siren. The bathymetry data were collected

in accordance with hydrographic standards using high-quality (DGPS) positioning, regular

sound velocity profiles, and calibration offsets from a thorough patch-test. Further details

on systems and data quality are supplied by GOTECH, (2002). The data for our study area

were processed by the authors using CARIS HIPS 5.4 and used to produce a bathymetry grid

with a cell size of 15 m. Wavelet calculations were performed on ASCII gridded data and the

gridded data were converted to GIS raster grids for the remaining terrain analysis. During

data processing, we found the data to be of good quality, with sounding densities and depth

accuracy well within hydrographic standards. Since our data were to be used for terrain

analysis, however, we paid particular attention to the removal of line-to-line mismatches

and spurious data towards the outer beams of the multibeam swath (for further details,

see Wilson 2006). Such details would be evident in our 15 m grid and unduly influence

the results of terrain analysis, although they would be unimportant for the production of

regional bathymetric charts based on a larger bathymetric grid. Our processed bathymetric

grid shows the seabed terrain in good detail with few of the artifacts common in multibeam

data (Hughes Clarke 2003).

Video transect data acquired from ROV platforms flown close to the seabed provide a

georeferenced visual record of the seabed habitat and fauna within the study area. The data

were collected using the Bathysaurus ROV during June 2005 from the R. V. Celtic Explorer

(Grehan et al. 2005b). Video data were acquired on mound and inter-mound areas, spaced

as regularly as practical along a SE-NW transect through the northern part of the study

area. Georeferenced images sampled from the video stream of a downward facing video
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16 M. F. J. Wilson et al.

camera were analyzed. These images are of sufficient resolution to confirm the occurrence

of megafauna, which are our primary interest in terms of habitat mapping.

Terrain analysis was performed at a variety of scales on each dataset using the methods

outlined above. For the GIS-based analyses, window sizes were selected using a subset of

the Fibonacci sequence, which offers a convenient template for progressively increasing

window sizes. The values n = 3, 9, 17, 33, 65 offer a reasonable range of analysis scales,

and using a 15 m grid, these correspond to ground distances of 45, 135, 225, 495, 975 m for

each side of the analysis window. This is the range of meso-scale habitat features (Greene

et al. 1999). In the case of the BPI calculations we used r = 3, 9, . . . 65. The values of the

various terrain variables were compared visually with video observations to assess their

relevance in relation to observed seabed habitat, and to develop preliminary habitat models

for the study area.

Habitat Suitability Modeling

Terrain variables are suited to use as indirect predictors of habitat for a given species. We

present an example of their contribution to habitat suitability modeling using the Ecological

Niche Factor Analysis (ENFA) technique (Hirzel et al. 2002) which relies on observations

of a species presence, e.g., birds (Brotons et al. 2004), mammals (Dettki et al. 2003; Hirzel

et al. 2002), corals (Leverette and Metaxas 2005), and plants (Engler et al. 2004; Zaniewski

et al. 2002). In contrast to some more traditional techniques, the ENFA technique does

not require absence data, which may be difficult, costly, or unreliable in the deep sea

environment. For example video footage may miss the presence of fauna due to poor image

quality caused by turbidity or excessive motion of the ROV; the image may be blurred

due to technical problems such as poor focus or inadequate lighting; or the image may

be acquired when the ROV is too far from the seabed to resolve the fauna. The models

presented here are for the squat lobster (Munida sp.), which was one of the most abundant

animals observed in the video footage.

ENFA uses a suite of predictor variables, eco-geographic variables (EGVs) for the

study area and relates them to species observations in order to compute a habitat suitability

(HS) model. The EGVs are first reduced to a few uncorrelated factors using eigensystem

computation. These factors explain most of the information related to the distributions of

the original EGVs and constitute the dimensions of the environmental space for the habitat

suitability calculation. The most important feature of ENFA, and that which distinguishes

it from other data reduction techniques such as principal components analysis, is that rather

than just accounting for the variance among factors the ENFA factors have ecological

relevance. The first factor accounts for all the marginality (M) of the species, i.e., how the

occupied cells differ from the average conditions of the study area; this is related to the

mean of the distribution. The other factors account for successive amounts of specialization

(S) which describe how selective the species is on the range of environmental conditions;

this is related to the variance of the distribution. The contribution of individual EGVs to

each factor gives an indication of their ecological relevance with respect to the species

distribution. The amount of information explained by each factor in turn weights the

EGV-space dimensions in which the habitat suitability is calculated. The models presented

here were calculated using the harmonic mean algorithm (Hirzel and Arlettaz 2003). This

is a distance-based algorithm that computes the harmonic mean of the distances to all

observations in EGV-space. Effectively this method examines the influence field of each

species observation in EGV-space such that when species observations are close together
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 17

they serve to reinforce each other (Hirzel and Arlettaz 2003). Several other algorithms are

available within BioMapper, and inter-algorithm performance is discussed further by Hirzel

and Arlettaz (2003) and Wilson (2006).

Model performance was assessed using a k-fold cross validation procedure based on

the method of Boyce et al. (2002), which is implemented in BioMapper 3.1. This method

splits the species data into k sets then uses all but one of these to calibrate the model and the

remaining set to validate it. We used k = 7 (Huberty’s rule) and three bins of equal width

(0–33; 34–67; 68–100) in all cases to allow comparison between models. Examination of

the area-adjusted frequency across the range of HS values provides a measure of model

performance. The area-adjusted frequencies (AAFs) is the frequency of testing points lying

within a bin, divided by the frequency of locations belonging to that bin across the study

area (Hirzel and Arlettaz 2003). For a model with good predictive power, the AAF should

be <1 for unsuitable habitat and ≫1 (e.g., 10 or more) for suitable habitat. For a poor

model, which predicts no better than by chance alone, AAF will be ∼1 for all HS values.

The maximum value of AAF at the highest HS bin reflects the deviation from randomness

(Hirzel et al. 2006) with higher values indicative of a better model. This value can be used

to compare models for the same species within the same area.

We produced and assessed the performance of several models; one using all available

terrain variables (slope, aspect, etc., at the 5 scales) and others using only a subset of the

variables (e.g., single scale, single parameter). Examination of the contribution of each

parameter to the HS model allows us to gain an insight into the interaction of the different

parameters and their importance in the prediction of the target fauna at different analysis

scales.

Results

Slope

Two important features emerge from our multi-scale slope analyses (Figure 4). First,

features with the largest slopes vary with the analysis scale; small window sizes effectively

pick out the small scale variability around the mounds, larger scale analyses fail to do so and

only highlight the larger scale slope towards the northwest of the study area. Second, the

values of slope vary according to the size of the analysis window (Figure 5); with steeper

slopes being identified over shorter distances considered in the smaller window sizes.

The values of slope will also vary with grid resolution since this sets the minimum

scale length to perform a multiscale terrain analysis. We note however the potential for

multi-scale analysis to help match the scale of analysis across different data resolutions

obtained from different depths on the continental slope. For example, data from our study

area may be gridded at 15 m owing to the spatially dense data produced by the multibeam

system at this relatively shallow region of the slope. If the data had come from deeper on

the slope (e.g., 1500 m) our best grid resolution might be 75 m. The results of the slope

analysis simulating this effect are shown for the northern part of the study area (Figure 6).

Aspect

Aspect calculations effectively pick out the orientation of the terrain across the various

analysis scales. There is a noticeable difference between the orientations of features

resolved at the different scales (Figure 7). The largest scale (n = 33) only picks out the
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18 M. F. J. Wilson et al.

Figure 4. Variation in slope analysis and features delineated at different analysis scales. 3D views of

Macnas Mounds area from west. Note that the multi-scale analyses results in no-data values towards

the edge of the raster grid (black edge). The window size must always contain n × n cells so towards

the edge of the raster there are insufficient cells to contribute to the analysis window, especially at

large window sizes.

Figure 5. Variation in calculated values of slope at different analysis scales.
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 19

Figure 6. Slope analyses performed over analysis window (a, b) 135 × 135 m and (c, d) 225 ×

225 m to demonstrate matching the scale of analyses between using rasters with different grid

resolutions. Projected coordinates UTM Zone 29 N (WGS84).
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20 M. F. J. Wilson et al.

Figure 7. Aspect calculated at three different analysis scales from multibeam bathymetry of Macnas

Mounds (15 m grid cell size). (a) aspect calculated using a local (3 × 3 cell = 45 × 45 m) window

which effectively picks out the small scale variations in orientation corresponding to the individual

Macnas Mounds, (b) aspect calculated using a moderate (9 × 9 cell = 135 × 135 m) window which

still highlights some variation in orientation associated with the mounds (c) aspect calculated using

a larger (33 × 33 cell = 495 × 495 m) window which effectively highlights the large-scale changes

in orientation across the area.

general orientation of the slope and the large channel whilst the individual mounds are not

resolved.

The changing values obtained for terrain variables calculated at different analysis scales

may be explored using interactive multiscale visualization tools (Wood 1999). Figure 8

highlights how a point on one side of a small-scale feature may exhibit quite different

values for aspect across the range of analysis scales. At small scales it is facing generally

east; however, at larger scales it is merely part of the general west-facing slope.

Curvature

Profile curvature (Figure 9a) and plan curvature (Figure 9b) separate curvature into two

orthogonal components where the effects of gravitational process are either maximized

(profile) or minimized (plan) (Wood 1996). This may be relevant to the distribution

of sediment facies and sediment pathways. Profile curvature highlights the variation in

curvature in the direction of the steepest gradient, effectively highlighting along-slope

ridges and crests. Plan curvature shows the variation in curvature in the direction of the

contours, thus highlighting the ridges and crests operating down-slope.

Maximum curvature (convexity) and minimum curvature (concavity) are defined for

regions of zero gradient. Although they may be used independently, the mean curvature

appears to provide a good general summary of the surface curvature and effectively

delineates positive (e.g., mounds) and negative features of the terrain, making it similar
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 21

Figure 8. Multi-scale visualisation of aspect across different scales (redrawn from values given by

multi-scale query tool in Landserf) from a point on the upslope side of the Macnas Mounds study

area.

in effect to the BPI calculation. For this area we know from video observations that the

mound summits are covered with coral rubble, while the inter-mound areas comprise soft

sediments. By delineating these topographic highs and lows, we may therefore obtain a

proxy to the sediment type that may be significant to our HS models, particularly where

surficial geology data are unavailable, or to complement such data.

Figure 9. Examples of (a) profile (b) plan and (c) mean curvature calculated using a 17×17 analysis

window for the Macnas Mounds.
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22 M. F. J. Wilson et al.

Figure 10. Bathymetric position index for r = 9 (BPI〈135〉) with 3 dimensional and profile view to

illustrate how the algorithm effectively picks out positive and negative features of the terrain along a

1 km line transect.

Feature extraction. We extracted a range of terrain features using user-defined analysis

scales and fuzzy feature classification. There are a number of limitations in using these

features for HS modeling. Features calculated at a particular analysis scale produce a

set of unique values corresponding to each type of feature (categorical data); they would

therefore require further conversion to be suitable for use as continuous variables in our

HS models. Since the features are merely based on curvature values, we found greater

success by simply using the curvature values themselves rather than the classified features.

Fuzzy feature classification produces continuous values (0 to 1) across the raster surface

indicating to what extent each pixel belongs to a particular feature class at all scales up

to the user-defined window size. For this particular study area where the planar class

was dominant, this meant large portions of the raster had near-zero values. This lack of

variation is not well suited to HS modeling. Despite these limitations, we recognize that

(fuzzy) feature classification shows promise for habitat mapping, particularly in areas of

more rugged seabed terrain.

Bathymetric position index (BPI). The bathymetric position index effectively high-

lights positive and negative features of the terrain (Figure 10). This analysis performs well

across the entire range of window scales and the use of floating-point rather than integer

values (cf. (Lundblad et al. 2006)) enhances use of this index in HS models.

Terrain Variability

Both the TRI and rugosity calculations are effective at highlighting small-scale variations

in the terrain. The results tend to pick out the same features as the slope calculations with
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Multiscale Terrain Analysis of Multibeam Bathymetry Data 23

Figure 11. Fractal dimension calculated at (a) 9 × 9 analysis window (b) 33 ×33 analysis window.

n = 3. We tested the roughness index on several datasets using both a rectangular and a

circular neighborhood. In both cases we found that while the method is effective at picking

out features of the terrain at small window sizes, at larger window sizes the results exhibit

artifacts of the analysis window shape rather than of the terrain itself.

Fractal dimension. The global fractal dimension for the study area is calculated to

be 2.16, indicating that the region as a whole is relatively flat. Analysis of the variation

in fractal dimension across the raster surface (Figure 11) reveals the surface complexity

across the study area. Since smaller window sizes consider a smaller ground area they

tend to capture the local variability of the terrain and report higher values for the fractal

dimension. Larger window sizes generate lower values closer to those of the global fractal

dimension; however, they still distinguish between areas where the surface is flat or complex

(e.g., containing mounds).

We also examined the fractal dimension of the bathymetry surface (Figure 12) after

smoothing through different size analysis windows. Research using one-dimensional fractal

dimensions for the scaling of species distribution patterns (Hartley et al. 2004) has indicated

at some intermediate spatial scale D may exhibit a discontinuity marking the boundary

between local- and broad-scale properties of the variable from which D is being calculated.

We note two distinct portions of our curve indicating that there may be a break in

detecting local and regional scale features at a value of n ≈ 21. This coincides with our

observations of the terrain features highlighted by terrain analyses at scales above (n =
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24 M. F. J. Wilson et al.

Figure 12. Global fractal dimension for bathymetry surfaces generalized ‘smoothed’ through

analysis window of side n.

33, 65) and below (n = 3, 9, 17) this value. If this property is indeed a general property

of habitat suitability, this analysis may yield an important guide for selecting the analysis

scales to capture local (below break) and broad-scale (above break) properties of the terrain.

We also examined the global fractal dimension for bathymetric grids of the study area

at different resolutions. For each grid cell size tested from 15 m to 325 m we found that the

global fractal dimension only varied within the range of 2.14–2.16 and did not illustrate the

same pattern we get from ‘smoothed’ bathymetry.

Wavelet Terrain Analysis

Figure 13 shows example terrain parameters derived using the wavelet method using a local

and broad analysis scale. Like the GIS-based methods, the wavelet approach effectively

allows us to capture different scale properties of the terrain for each parameter. For

both slope and TRI, the variation associated with individual mounds is captured at small

analysis scales (Figures 13a and 13c), while the larger analysis scale (Figures 13b and 13d)

highlights properties associated with the larger features of the terrain. These initial results

are encouraging for further development of this approach to terrain analysis. The approach

offers an elegant and efficient means for computing these variables, particularly when

working with large grids. For example, we found clear advantages in computation speed

using the wavelet approach for analysis of our Macnas Mounds gridded bathymetry data.

Multiscale slope, aspect, terrain ruggedness, and generalized bathymetry were obtained

simultaneously with wavelet analysis in just a few seconds using a standard desktop PC.

This compares favorably with the GIS-based analysis which, although quick for small

window sizes, takes over a minute to calculate a single parameter using the larger analysis

windows.

Use of Terrain Variables for Habitat Suitability Modeling

Our ecological niche factor analysis reveals that the squat lobster is quite restricted in

terms of suitable habitat with a marginality value of 3.166 indicating a preference for areas

differing from the average conditions within the study and a tolerance (1/specialisation)
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Figure 13. Three dimensional views of the Macnas Mounds area from west showing results of

multi-scale terrain analysis using wavelets for (a, b) slopes and (c, d) TRI, at dyadic scales 4 and

32 (i.e. 60 m and 480 m). Slopes were calculated using the techniques with the help of the wavelet

toolbox in MATLAB. Since the wavelet used in the analysis corresponds to a larger ground area in

(b) we observe a pixelated appearance in the shaded surface. TRI values were calculated based on

the n × n version of the TRI equation. In order to demonstrate how we can obtain wavelet-based TRI

values at each cell in the original grid, we have re-sampled the wavelet outputs to give the smooth

shaded surfaces for both scales in (c, d).

value of 0.05, indicating that this animal is quite restricted in the range of conditions it

occupies. The EGVs were converted to a set of uncorrelated factors of which four were

retained for the factor map computation. These four factors (selected by comparison with

the broken stick distribution (Hirzel et al. 2002; MacArthur 1960)) account for 97% of

the total information (100% of the marginality and 95% of the specialization). The first

factor alone accounts for 100% of the marginality and 42% of the specialization, while the

remaining specialization is explained by the remaining factors. In Table 1 we can observe

the contribution to each factor of the individual EGVs—the larger the absolute value the

greater that variable’s weight on that factor. We have highlighted the major contributors to

the first factor, which is the most influential to our model. These tend to be those terrain

variables that highlight the mound features including measures of curvature (particularly the

smaller scale variables), BPI and fractal dimension. The second factor accounts for a large

proportion (30%) of the remaining specialization and includes bathymetry, orientation, and

some of the larger-scale measures of curvature and BPI. Our model includes most of the

calculated terrain variables as EGVs. However, we found that the model performed better

without the inclusion of the largest scale variables n = 65 which included large regions

with little variation and therefore contribute little to the overall model. Larger scale terrain

features such as the channel to the northwest of the study area are still highlighted by the

n = 33 variables; however, eastness (33) was also excluded on the basis of little variation.

Using these four factors, we successfully fitted a model using the harmonic mean

algorithm. Our model (Figure 14) indicates that the most suitable habitat for squat lobsters

is on the top of the mounds. The model performed convincingly during cross-validation.

Area-adjusted frequency (AAF) scores for the high habitat suitability bins are well above

those that could be generated by chance alone (mean AAF = 1), and the scores for the

lowest bin are below 1, proving that between cross-validation runs we encounter few
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Table 1

Contribution of EGVs to factors generated by ENFA. Those EGVs making the largest

contribution (<−0.1 or >0.1) to each factor are highlighted bold. Note that for the first

factor positive signs indicate a preference by the species for values above the mean for

each EGV while negative values indicate a preference for values below the mean. For the

remaining factors signs have no ecological relevance

EGV

Factor 1

Marginalilty

(100%)

Specialization

(42%)

Factor 2

Specialization

(30%)

Factors

Specialization

(19%)

Factor 4

Specialization

(4%)

Bathymetry 0.087 −0.316 0.454 −0.337

Slope (3) 0.092 0.02 0.006 0.003

Slope (9) 0.013 0.00 −0.004 −0.032

Slope (17) 0.033 0.007 −0.107 −0.22

Slope (33) 0.052 0.046 −0.331 0.265

Northness (3) 0.095 0.01 0.003 −0.023

Northness (9) 0.061 −0.007 −0.008 −0.027

Northness (17) 0.067 −0.365 −0.31 −0.071

Northness (33) −0.008 0.181 −0.042 −0.216

Easiness (3) 0.063 −0.006 0.021 0.006

Easiness (9) −0.058 0.009 0.013 −0.032

Plan curvature (3) −0.128 −0.017 0.003 −0.004

Plan curvature (9) −0.197 0.002 0.025 0.019

Plan curvature (17) −0.082 −0.072 0.046 0.174

Plan curvature (33) 0.059 0.204 0.171 −0.447

Profile curvature (3) 0.139 0.009 0.004 −0.008

Profile curvature (9) 0.308 −0.016 −0.029 −0.011

Profile curvature (17) 0.183 0.076 −0.087 −0.157

Profile curvature (33) 0.142 −0.125 −0.108 0.124

Mean curvature (3) 0.200 −0.017 −0.007 0.002

Mean curvature (9) 0.323 −0.002 0.069 0.081

Mean curvature (17) 0.172 −0.122 0.085 0.245

Mean curvature (33) 0.055 0.093 0.055 −0.21

BPI 〈45〉 0.267 −0.007 0.004 0.036

BPI 〈135〉 0.321 −0.081 −0.221 −0.126

BPI 〈255〉 0.276 0.101 0.427 −0.213

BPI 〈495〉 0.240 0.445 −0.336 0.211

BPI 〈975〉 0.204 −0.546 0.224 0.13

Rugosity 0.212 0.007 0.012 0.011

TRI 0.207 0.001 −0.01 0.004

FD (9) 0.063 −0.013 −0.027 −0.045

FD (17) 0.174 −0.029 −0.078 −0.163

FD (33) 0.160 −0.031 −0.135 0.033

FD (65) 0.090 0.017 −0.204 0.392
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Figure 14. Predicted habitat suitability for squat lobsters in the Macnas Mounds study area based on

multiscale, multiparameter terrain variables (Table 1). Habitat suitability (HS) calculated using ENFA

in BioMapper 3.1 using the Harmonic Mean Algorithm. Grid cell size 15 m. Projected coordinates

UTM Zone 29 N (WGS84).

species observations at low HS scores rising to many species observations at high HS

scores. This indicates good predictive power in terms of mean AAF score for the high

HS bins, comparable with those indicated in other published studies using cross validation

(e.g., Boyce et al. 2002; Hirzel and Arlettaz 2003). Our model does exhibit quite a range of

variability among cross validation results, particularly for high HS bins. However, even the

lower end of this range produces high scores for the area-adjusted frequency. The reason

for this variability may be due to the relatively few observations across the study area, or

may point to the fact that some other predictor variables should be included in the model

(e.g., surficial geology, current velocities, water mass properties).

We compared the performance of our model containing multi-scale multi-parameter

EGVs with those constructed using only EGVs from single scale analyses or single

parameters. We performed cross validation on each of the models (Figure 15). Examination

of the mean AAF scores across HS bins clearly indicates that the multi-scale, multi-

parameter model performs best. Although some of the models based on a subset of

parameters performed reasonably well in cross validation, on looking at the visual

representation of the results in our GIS, we have reservations about their predictions. For

this dataset the analyses at an intermediate scale n = 17 produced the best cross validation

results using single scale variables, and visually the model output looks reasonable. We

have greatest confidence in the multiscale model as it also includes all the small-scale

terrain variability relevant to the species distribution.
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Figure 15. (a) Comparison of cross validation performance for multi-scale, multi-parameter HS

model with single-scale, multi-parameter models. HS bin 1 (0–33), bin 2 (34–67), bin 3 (68–100).

(b) Comparison of cross validation performance for multi-scale, multi-parameter HS model (ALL

EGV) with multi-scale, single-parameter models. Note higher max AAF score obtained with model

using all EGVs.
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Discussion

Terrain analysis of deep-water multibeam bathymetry will always be complicated by the

fact that on the continental slope we obtain data at different resolutions. We have shown

that a variety of methods exist for terrain analysis on these data and these have been

successfully applied to the generation of a suite of quantitative descriptor variables of

relevance to benthic habitat. In several cases (e.g., slope, curvature, roughness) we have

highlighted the fact that several different methods exist for the calculation of nominally the

same parameter or the same type of variable. The algorithm should be chosen with regard

for the particular analysis required (Warren et al. 2004). We also have highlighted the use

of methods such as curvature and fractal dimension, which have largely been overlooked in

previous terrain analyses of multibeam data but may offer valuable additional information

for habitat mapping and conservation. For example, although not based on multibeam data,

a study by Schwinghamer et al. (1996) suggested that the fractal dimension of the seabed

is reduced in areas that have been trawled.

Perhaps most importantly we have shown that the computation of these terrain variables

needs not be restricted by grid-cell size to the immediate neighborhood surrounding each

raster cell. By highlighting methods which facilitate multiscale analysis, we have shown

how the analysis scale may be selected by the user, perhaps to delineate terrain features at a

particular scale, or to match up the analysis scale with data gridded at a different resolution.

Extending the work of Lundblad et al. (2006), an integrated tool for performing BPI,

rugosity and slope calculations and classifying benthic terrain in terms of these metrics

has recently been developed as an ArcGIS extension by Rinehart et al. (2004). While this

tool facilitates the computation of BPI at multiple scales the other terrain parameters are

currently limited to single scale analysis. Increased awareness and availability of multi-scale

methods should help promote their use in terrain analysis using bathymetric data for habitat

mapping and related work. At present, it seems GIS-based methods are the most readily

available to the scientific community. However, further development with wavelet methods

may yield more efficient and flexible computation in the future.

Although we only had species observation data for a portion of the study area, the

ENFA method successfully allowed us to produce HS maps on the basis of this information.

Based on the maximum scores attained by the mean AAF values, our models appear to

perform particularly well. However, we note comments by Hirzel et al. (2006) that the

absolute values for mean AAF are influenced by the extent of the study relative to the

species distribution and therefore may not be relevant when comparing models for different

regions or species. Rather, the shape of the curve and variability among bins and cross

validation results are more important for these purposes. In Figure 14 we presented our

HS scores on a continuous scale; however, it may be more useful (Hirzel et al. 2006) to

limit our classification to a few classes that are well defined by our model. This aspect

of presentation and confidence in the product will become increasingly important as this

type of predictive map gains attention for management and conservation beyond purely

scientific circles.

We have clearly demonstrated that HS models based on a combination of terrain

variables and scales perform better in cross validation and when assessed visually for

their ecological relevance than those based on single parameters or scales. We note the

limitations of our models in that we did not include other intermediate scales which may

be just as important in determining faunal distribution. However, our results suggest that

several spatial scales rather than any one scale are relevant to observed seabed habitat,

and it is likely that the most relevant spatial scales will vary depending on the study
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area, bathymetric data, and fauna considered. There are also other environmental predictor

variables (e.g., surficial geology, current velocities, water mass properties) which, where

available, could be used in tandem with terrain variables to improve the precision of future

models. Results from our initial models also indicate that there may be an upper limit to

the scale of analysis that may be useful for modeling, or characterizing, terrain in a given

study area. Further experience with HS models for other fauna in this area confirm that the

ENFA technique is well matched to our requirements.
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