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1 Introduction

The Iterative Signature Algorithm (ISA) is a biclustering method. It finds
genes that are up- and/or downregulated consistently in a subset of samples,
in gene expression data. (Although, it can be also applied to other tabular
data sets.) Please see [Bergmann et al., 2003] for the details about the ISA,
and also the other tutorials at the ISA homepage, http://www.unil.ch/cbg/
ISA.

In this tutorial we show an example application of the ISA, for which we
use a publicly available data set, a panel of murine tissues. Basic understand-
ing of R and the ISA is a prerequisite for this tutorial, please see the introduc-
tory ISA tutorials at the ISA homepage first.

We use a number of R packages for this tutorial, all of them are avail-
able from the standard BioConductor or CRAN repositories. We will use the
GEOquery package [Davis and Meltzer, 2007] to download the raw data files
for the tissue-panel experiment. The eisa package contains the implemen-
tation of the ISA. The affy package [Gautier et al., 2004] is used to read in



the CEL files and calculate the MAS5 Present/Absent calls; the gcrma pack-
age contains the implementation of the GCRMA gene expression normaliza-
tion method [Wu et al., 2003]. GO.db contains the Gene Ontology database
[The Gene Ontology Consortium, 2000], KEGG.db the KEGG Pathway database
[Kanehisa and Goto, 2000]. The xtable package is used to create a nicely for-
matted table.

Let’s load all these packages first.

library (GEOquery)
library(eisa)
library(affy)
library(gcrma)
library(GO.db)
library (KEGG.db)
library(xtable)
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2 Loading the data set

First we define the data set that we want to use. This is a murine tissue panel
for 22 tissues, 3-5 samples each, 70 samples altogether. The different tissues
were dissected from 10-12 week old C57Bl6 mice for RNA extraction and hy-
bridization on Affymetrix microarrays. This is the ID of the experiment in the
Gene Expression Omnibus (GEO) [Barrett et al., 2009]:

> GEO <- "GSE9954"

To spare time and bandwidth, we download the data only once and store
it in the local disk, this facilitates running this tutorial more than once. The
getGEOSuppFile () function from the GEOquery package creates a directory in
the current working directory, names it according to the GEO id of the exper-
iment and stores the raw files there. Then, the untar() function unpacks the
downloaded archive. If this directory already exists, then we have nothing to
download or unpack.

> if (!file.exists(GED)) {
rawfiles <- getGEOSuppFiles (GEO)
tarfile <- grep("\\.tar$", rownames(rawfiles),
value = TRUE)
untar(tarfile, exdir = GEO)

Next, we read in the downloaded and unpacked CEL files and store the
data in an AffyBatch object. Because this is a quite lengthty process, we per-
form it only once and store the results in a file, in the same directory as the
raw CEL files. We don’t have to do anything if this file already exists.

> ABfile <- paste(GEO, sep = "/", "AB.Rdata")
> if (!file.exists(ABfile)) {



celfiles <- list.files(GEO, pattern = "\\.CEL.gz",
full.names = TRUE)

AB <- ReadAffy(filenames = celfiles)

save(AB, file = ABfile)

To get rid of the probesets that do not match a gene that is expressed
in any of the tissues, we calculate the MAS5 Present/Absent calls. These are
based on the perfect match and mismatch probes on the array and provide a
way to access the probes that are present in a tissue. We save the results in a
file. If the file already exists, then no calculation is needed, and we just load
it.

> PAfile <- paste(GEO, sep = "/", "PA.Rdata")
> if (!file.exists(PAfile)) {
load (ABfile)
PA <- masbcalls(AB)
save(PA, file = PAfile)
} else {
load (PAfile)
}

GCRMA normalization [Wu et al., 2003] is the next step of the analy-
sis. This results the background corrected, log2 transformed expression val-
ues. Running GCRMA takes a relatively long time, so we save these results
in a file, as well. If the file is already present, we just load it. EXP is an Ex-
pressionSet object here, it contains all the expression data, and may contain
experiment meta-data as well.

> EXPfile <- paste(GEO, sep = "/", "EXP.Rdata")
> if (!file.exists(EXPfile)) {
tissueEXP <- gcrma(AB, fast = FALSE)
save (tissueEXP, file = EXPfile)
} else {
load (EXPfile)
}

Next, we do the filtering, based on the previously calculated detection
calls. We keep only probesets that were called ‘Present’ in at least three sam-
ples.

> keep <- rowSums (exprs(PA) == "P") >= 3
> EXP <- tissueEXP[keep, ]

Next, we load the annotation package of the array that was used in the
experiment. BioConductor provides annotation packages for all the standard
(and many non-standard) arrays. These packages include mappings from the
array probe ids to Entrez (and other) gene ids, and also mappings to databases.



The annotation() function gives the name of the annotation package. If you
don’t have the required annotation package installed, then please install it, the
same way as you install normal BioConductor packages.

> annotation (EXP)
[1] "mouse4302"

> annpackage <- paste(annotation(EXP), sep = ".",
”db”)
> library(annpackage, character.only = TRUE)

Unfortunately, the files downloaded from GEO do not contain any meta
data. We, however, need the tissue information for each sample, so we have to
download these separately. First we create a function (annotSample()) that
takes a sample name and downloads its corresponding meta data from GEO.
We only use the “sample source” (=tissue) information from the meta data.

We put the tissue labels into the ExpressionSet object, and save the
new version. If these labels are already present in the ExpressionSet, then
we don’t have to do anything.

> if (is.null(EXP$tissue)) {
annot <- getGEOfile(GEO, amount = '"quick")
annotSample <- function(x) {
x <- sub(".CEL.gz", "", x, fixed = TRUE)
f <- getGEOfile(x, amount = '"quick")
1 <- readLines(f)
s <- grep("Sample_source_name", 1, value = TRUE) [1]

strsplit(s, " = ")[[1]]1[2]
}
tissues <- sapply(sampleNames (EXP), annotSample)
tissueEXP$tissue <- sub("Mouse ", "", tissues,

fixed = TRUE)
EXP$tissue <- tissueEXP$tissue
save (tissueEXP, file = EXPfile)

3 Running the ISA

We are ready to run the ISA on the data. First we calculate the ISA normal-
ized expression matrix, see the documentation of the ISANormalize () func-
tion for details. (It is possible to use the un-normalized expression matrix in
any of following examples, but pre-calculating it saves some time later.)

We run the ISA with two threshold combinations. The gene threshold is
fixed at 3. (Meaning that the genes of a module must be at least 3 standard
deviations away from the (weighted) mean expression in the samples of the
module.) The condition threshold is set to 1 or 2. We expect to get smaller



modules (in terms of samples) for the stricter threshold. As before, we save
the modules in a file, to save a couple of minutes.

> NEXP <- ISANormalize (EXP)
> modulesfile <- paste(GEO, sep = "/", "modules.Rdata')
> if (!file.exists(modulesfile)) {
set.seed(123)
modules <- ISA(EXP, flist = NA, thr.gene = 3,
thr.cond = c(1, 2), no.seeds = 1000)
save(modules, file = modulesfile)
} else {
load (modulesfile)
}

Note, that we set the seed of the random number generator here with the
set.seed() function, to get the same results every time we run the code of
this tutorial. This is not needed for regular analysis. Also note, that even if
the random seed is the same, you might still get different results (=modules),
depending on your R version.

Let’s quickly check the modules, found by ISA.

> length(modules)
[1] 28
> getNoFeatures (modules)

[1] 346 166 246 332 192 363 172 360 248 259 341 279 204 242
[15] 180 267 179 180 200 240 114 135 144 78 209 207 282 191

> getNoSamples (modules)

(1] 3 3 3 3 5 3 3 4 3 7 3 3 3

3 3 3 3 3
[19] 3 3101010 6 6 7 6 6
We have 28 altogether. The largest one contains 363 genes, the smallest one
has 78 genes. As for the samples, most modules contain three samples only,
these should correspond to a single tissue, we will check this in a minute.
Some modules have more than three samples, these probably contain genes

that have high (or low) expression in multiple tissues.

4 Finding tissue selective modules

Tissue selectivity of a gene means that the gene has a higher expression in

one tissue, than in other tissues; even if it is expressed in a range of tissues.
There are various methods for testing the tissue selectivity of genes, see e.g.
[Van Deun et al., 2009] for a method that is well principled and efficient in

finding such genes.



The approach we are taking here with ISA is a bit different. We do not
ask the question of tissue-selectivity directly, but use an unsupervised method
to group genes together that are up- and downregulated together, in some
samples. These genes and samples form transcription modules. If it turns
out that the samples of a module correspond to a given tissue, then a mod-
ule of tissue-selective genes was found. It is also very well possible that the
ISA finds modules that are selective for two or three (or four, etc) tissues; the
genes of these modules are harder to find via direct testing, one would have to
test for all pairs, triples, etc. of tissues to find them.

Condition plots are good for finding tissue selective modules. A condition
plot is a barplot of sample scores, potentially also containing (non-zero) scores
for the samples that are not included in the module. Let’s create a condition
plot for a transcription module, module 24.

First, we define some parameters that make the plot look better. We
group the samples according to tissues and also assign different colors to the
tissues. Please see the documentation of the condPlot () function for details
about these parameters.

> sep <- c(which(!duplicated (NEXP$tissue))[-1] -
1, ncol(NEXP))
> names (sep) <- NEXP$tissue[!duplicated(NEXP$tissue)]
colbar <- rainbow(length(sep))
> col <- colbar[as.factor (NEXP$tissue)]

v

We are ready to create the plot, see the results in Fig. 1.
> condPlot (modules, mymod, NEXP, sep = sep, col = col)

This module contains samples from 2 tissues: adipose tissue, ES cells.

Now we look for tissue selective modules. In order to consider a module
tissue selective, we require that the non-zero sample scores of a tissue have
the same signs; i.e. the genes of the module are regulated the same way in all
samples of the tissue. We also mark oppositely regulated tissues with a ‘d’ in
parentheses.

> tspec <- function(mod) {
t <- EXP$tissue[getSamples(modules, mod)[[1]]]
s <- getSampleScores(modules, mod) [[1]]
tl[s < 0] <- paste(t[s < 0], sep =" ", "(d)")
unique (t)
}
> spec <- sapply(seq_len(length(modules)), tspec)
> specc <- sapply(spec, paste, collapse = ", ")
> specc

[1] "small intestine"
[2] "ES cells"
[3] "spleen"
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Figure 1: Condition plot for module 24. This module has 78 genes and 6 sam-
ples. The samples belong to two tissues: adipose tissue and ES cells. (ES cells
were considered as a separate tissue in the experiment.) Out of the 78 genes
of the module, 50 are upregulated in the ES cell samples and down-regulated
in the adipose tissue samples. The rest of the genes, 28, have opposite regula-
tion.



[4] neye (d)"
[5] "pituitary gland"

[6] "kidney"

[7] "heart"

[8] "brain"

[9] "ovary"

[10] "placenta (d)"
[11] "liver"

[12] "lung"

[13] "bone marrow (d)"

[14] "salivary gland"

[15] "diaphragm, muscle"

[16] "adipose tissue"

[17] "fetus"

[18] "adrenal gland"

[19] "thymus"

[20] "seminal vesicle"

[21] "diaphragm, muscle, heart"
[22] "diaphragm, muscle, heart"
[23] "spleen, bone marrow, thymus"
[24] "adipose tissue (d), ES cells"
[25] "salivary gland (d), seminal vesicle (d)"
[26] "spleen, bone marrow"

[27] "brain, adrenal gland (d)"
[28] "adipose tissue, fetus (d)"

19 modules contain a single tissue only, 6 contain exactly two tissues, regu-
lated either the same way, or oppositely. 3 contain three or more tissues.

As another example, we create a plot for four modules that are selective
for a single tissue.

> to.plot <- which(sapply(spec, length) == 1)[1:4]
> layout (rbind(1:2, 3:4))
> for (p in to.plot) {
condPlot (modules, p, NEXP, sep = sep, col = col)
}

5 Enrichment analysis

It is easy to perform enrichment calculations to check whether the tissue selec-
tive genes are actually on a common pathway. As usual, we save the results to
a file. Note, that the ISAGO() and ISAKEGG() functions also perform multiple
testing correction.

> enrichFile <- paste(GEO, sep = "/", "enrichment.Rdata")
> if (!file.exists(enrichFile)) {
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Figure 2: Condition plots for four modules that are selective for a single tissue, modules:

1, 2, 3, 4 (from top to bottom and left to right). They are selective to small intestine, ES

cells, spleen, eye, respectively.



GO <- ISAGO(modules)

KEGG <- ISAKEGG (modules)

save (GO, KEGG, file = enrichFile)
} else {

load(enrichFile)
}
> GO

$BP
Gene to GO List BP test for over-representation
27683 GO List BP ids tested (0-119 have p < 0.05)
Selected gene set sizes: 51-266

Gene universe size: 11252

Annotation package: mouse4302

$cc
Gene to GO List CC test for over-representation
3962 GO List CC ids tested (0-30 have p < 0.05)
Selected gene set sizes: 59-279

Gene universe size: 12527

Annotation package: mouse4302

$MF
Gene to GO List MF test for over-representation
8141 GO List MF ids tested (1-44 have p < 0.05)
Selected gene set sizes: 49-282

Gene universe size: 12034

Annotation package: mouse4302

> KEGG

Gene to  test for over-representation
1822 ids tested (0-18 have p < 0.05)
Selected gene set sizes: 12-151
Gene universe size: 4113
Annotation package: mouse4302

Most of the modules are enriched with some Gene Ontology term and/or
KEGG pathway. Let’s create a table that lists the tissues associated with a
module, together with the enriched GO terms and KEGG pathways.

First we define two functions that translate GO and KEGG ids to cate-
gory and pathway names. These functions also handle NA values.

> goterm <- function(x) {
gt <- sapply(mget(na.omit(x), GOTERM), Term)
res <- character(length(x))
res[!is.na(x)] <- gt
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res[is.na(x)] <- NA
res
}
> keggpath <- function(x) {
kp <- unlist(mget(na.omit(x), KEGGPATHID2NAME))
res <- character(length(x))
res[!is.na(x)] <- kp
res[is.na(x)] <- NA
res

The first () function takes a list of vectors and returns the first element
of each vector, we will use this later, to query the most significantly enriched
terms.

> first <- function(x) if (length(x) >= 1) x[[1]] else NA

We are ready to create the list of the most significantly enriched GO
terms, for each module. We use the summary () function to create a table for
the enrichment and take the best p-value for each ontology. We choose the
ontology with the best p-value then. Finally, we also query the id of the best
enrichment, using the sigCategories() function and use the goterm() func-
tion that we just defined to translate it to a category name.

> topgo <- sapply(seq_len(length(modules)), function(x) {

p <- c(BP = summary(GO$BP, p = 2)[[x]][1,
J$Pvalue, CC = summary(GO$CC, p = 2)[[x]][1,
J]$Pvalue, MF = summary(GO$MF, p = 2)[[x]1][1,
J$Pvalue)

mc <- names(which.min(p))

paste(goterm(sigCategories(GO[[mcl], p = 2)[[x]1]1[1]),
sep = ", p=", format(min(p), digits = 3))

»

We do a similar thing for KEGG now. This is simpler, as we don’t have
multiple ontologies here, all we need is the name and p-value of the most sig-
nificant enrichment.

> keggterms <- keggpath (sapply(sigCategories (KEGG,
p = 2), first))
> keggp <- sapply(summary(KEGG, p = 2), function(x) x$Pvalue(1])

Everything is set for creating the table. It has three columns, the name(s)
of the tissue(s), the Gene Ontology enrichment and the KEGG enrichment.

> eTable <- data.frame(Tissue = specc, GO = topgo,
KEGG = paste(keggterms, sep = ", p=", format (keggp,
digits = 3)))

11



We use the xtable package to create a nice printed version of the table.
Because GO category names tend to be long, we typeset the table in land-
scape mode. In order to make it fit into this document, we only include the
first 20 modules.

> caption <- paste("The most significantly enriched GO categories",
"and KEGG pathways for the (first 20)", "transcription modules.",
"Oppositely regulated tissues are marged with “d'.")

> if (nrow(eTable) > 20) {
eTable2 <- eTable[1:20, ]

}

> print (xtable(eTable2, caption = caption, align = c("r@{\\hspace{lem}}",
"p{4.5cm}@{\\hspace{lem}}", "p{7.5cm}@{\\hspace{lem}}",
"p{7.5cm}")), floating.environment = "sidewaystable",
tabular.environment = "tabular")

6 Session information

The version number of R and packages loaded for generating this vignette were:

e R version 2.10.1 (2009-12-14), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, methods, stats, utils

e Other packages: affy 1.24.2, AnnotationDbi 1.8.1, Biobase 2.6.1, bitops 1.0-4.1,
Category 2.12.0, DBI 0.2-5, eisa 0.2.2, gcrma 2.18.1, genefilter 1.28.2,
GEOquery 2.11.3, GO.db 2.3.5, isa2 0.2, KEGG.db 2.3.5, mouse4302.db 2.3.5,
org.Mm.eg.db 2.3.6, RCurl 1.3-0, RSQLite 0.8-3, xtable 1.5-6

e Loaded via a namespace (and not attached): affyio 1.14.0, annotate 1.24.1,
biclust 0.9.1, Biostrings 2.14.12, colorspace 1.0-1, graph 1.24.4, grid 2.10.1,
GSEABase 1.8.0, IRanges 1.4.11, MASS 7.3-4, preprocessCore 1.8.0,

RBGL 1.22.0, splines 2.10.1, survival 2.35-7, tools 2.10.1, ved 1.2-8, XML 2.6-0
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