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Background
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SNAREs
● Role : membrane fusion

● Conserved domain : SNARE motif

● Classification : Qa, Qb, Qc, R, SNAP

• Goal : automatise the classification with a model

• Classification can be used to hypothesize important 
informations about a protein (function, location, etc...)
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Classification – broad picture

Sequences

MSA

Scores and E-values

HMM profiles

Random forestClassification

Goal : input = sequence | output = classification of the sequence (group & subgroup)
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MSA
Multiple Sequence Alignment
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Data Collection

● Tracey database : SNAREs protein collection

● Motif sequences and full sequences

● Sequences from specific taxa :

o Archaeplastida --> Viridiplantae

o Opisthokonta --> Metazoa and Fungi
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Alignment
● Python script that calls MAFFT, a tool for multiple sequencealignment

● Motif sequences : alignment for Qa, Qb, Qc and R
● Full sequences : alignment for Qa, Qb, Qc, R and SNAP
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Identification of sub-groups
● Full sequences alignment to build the trees

● Average distance, visualisation with ITOL

● Labelling of sub-groups

● MSA for each of the sub-groups

R Tree
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Sequences distribution across taxa

V M F

Qa 471 3081 1481

Qb 316 1042 972

Qc 335 947 1327

R 448 2294 1416

SN 60 786 283
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HMM
Hidden Markov Models, Profiles and 
search
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What are HMM profiles?
● Based on multiple sequences

alignements
● Probabilistic models used to 

represent a family of sequences

● They capture conserved and variable 
regions, as well as insertions and 
deletions

● Allow to determine how likely it is for a 
sequence to belong a specific group

Arthur Gruber ResearchGate
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FDiagram-representing-a-profile-hidden-Markov-model-profile-HMM-Notes-Match-states-are_fig1_318463636&psig=AOvVaw1Ynyg4ITYnQCrfAsdDizrT&ust=1716456156803000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCJD9veb4oIYDFQAAAAAdAAAAABAh


Building and using the HMM profiles

MSA HMMER HMM profile

HMM-based sequence

database searching

Sequences

Input matrix for ML
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HMM profiles performance

Accuracy = 0.92
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Machine 
learning

04

Random forests

14



Machine learning – Random forests
● Commonly used model for 

classification
● Ensemble learning technique
● Creation of multiple decision 

trees
● Aggregation of results
● High accuracy and reduced 

overfitting

Dr Roi Yeoshua, Medium
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https://medium.com/@roiyeho/random-forests-98892261dc49


Machine learning - input
Sequence Score/length 

Qa
EvalQa Score/length

Qb
Eval Qb Score/length

Qc
Eval Qc Score/length 

R
Eval R Label

DiOr_Syx1a 0.86254 2.2e-79 NaN NaN 0.076 6.6e-06 NaN NaN Qa

TrVi_Bos1 NaN NaN 0.47964 8.2e-40 NaN NaN NaN NaN Qb

ChMy_Syx6 0.38248 9.4e-15 0.13983 0.0011 1.1024 6.2e-41 NaN NaN Qc

… … … … … … … … … …

• No hits from the HMM profile do not return anything

• Need to set an appropriate value for the missing data for the model to work
• Different replacement values were tested, from 0.001 to 0.95
• Specific to the score

• Specific to the E-value
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Machine learning - input
Sequence Score/length 

Qa
EvalQa Score/length

Qb
Eval Qb Score/length

Qc
Eval Qc Score/length 

R
Eval R Label

DiOr_Syx1a 0.86254 2.2e-79 0.01 0.9 0.076 6.6e-06 0.01 0.9 Qa

TrVi_Bos1 0.01 0.9 0.47964 8.2e-40 0.01 0.9 0.01 0.9 Qb

ChMy_Syx6 0.38248 9.4e-15 0.13983 0.0011 1.1024 6.2e-41 0.01 0.9 Qc

… … … … … … … … … …

• No hits from the HMM profile do not return anything

• Need to set an appropriate value for the missing data for the model to work
• Best working values : 

Low replacement value for the score : 0.01

High replacement value for the E-values : 0.9
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Machine Learning – Example tree
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Machine learning – Main group results
● Confusion matrix ● Evaluation metrics:

● Accuracy: Correctly classified 
instances out of the total instances

● Precision: Ratio of TPs to the sum of 
TPs and FPs

● Recall: Ratio of TPs to the sum of TPs 
and FNs

● F1 score: Harmonic mean of precision 
and recall

● Accuracy: 0.9996
● Precision: 0.9996
● Recall: 0.9996 
● F1: 0.9996
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Machine learning – Qc subgroups results

● Confusion matrix
● Evaluation metrics:
● Accuracy: Correctly classified 

instances out of the total instances
● Precision: Ratio of TPs to the sum of 

TPs and FPs
● Recall: Ratio of TPs to the sum of TPs 

and FNs
● F1 score: Harmonic mean of precision 

and recall

● Accuracy: 0.967
● Precision: 0.967
● Recall: 0.967
● F1: 0.967
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What’snext
?
Future things to implement

05
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Challenges
● Using IqTree for better classification

● Using a tree to classify the main groups

● Investigating other ML models to upgrade the HMMs performance
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Feedback
● It was really interesting to work practically

● Projects had a real biological meaning and were based on real data

● More time for the presentationwould be appreciated
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CREDITS: This presentation template was created by 
Slidesgo, and includes icons by Flaticon, and 

infographics & images by Freepik

Thanks!
Do you have any questions?

Gabriel Chiche, Marius Audenis, Leana Ortolani
Supervisor Carlos Pulido Quetglas

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


Qa Tree



Qc Tree



SNAP Tree
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