Marius Audenis, Gabriel Chiche, Leana Ortolani Supervisor: Carlos Pulido Quetglas

HMM based classification for conserved protein domains (SNARE)

1

Background

SNAREs

- Role : membrane fusion
- Conserved domain : SNARE motif
- Classification: Qa, Qb, Qc, R, SNAP

- Goal : automatise the classification with a model
- Classification can be used to hypothesize important informations about a protein (function, location, etc...)

Classification – broad picture

Goal : input = sequence | output = classification of the sequence (group & subgroup)

Multiple Sequence Alignment

Data Collection

- Tracey database : SNAREs protein collection
- Motif sequences and full sequences
- Sequences from specific taxa :
 - Archaeplastida --> Viridiplantae
 - Opisthokonta --> Metazoa and Fungi

Alignment

Identification of sub-groups

- Full sequences alignment to build the trees
- Average distance, visualisation with ITOL
- Labelling of sub-groups
- MSA for each of the sub-groups

Sequences distribution across taxa

	V	М	F
Qa	471	3081	1481
Qb	316	1042	972
Qc	335	947	1327
R	448	2294	1416
SN	60	786	283

03 HMM

Hidden Markov Models, Profiles and search

What are HMM profiles?

- Based on multiple sequences alignements
- Probabilistic models used to represent a family of sequences
- They capture conserved and variable regions, as well as insertions and deletions
- Allow to determine how likely it is for a sequence to belong a specific group

Arthur Gruber ResearchGate

Building and using the HMM profiles

HMM profiles performance

Accuracy = 0.92

13

04 Machine learning

Random forests

Machine learning – Random forests

- Commonly used model for classification
- Ensemble learning technique
- Creation of multiple decision trees
- Aggregation of results
- High accuracy and reduced overfitting

Dr Roi Yeoshua, Medium

Machine learning - input

Sequence	Score/length Qa	EvalQa	Score/length Qb	Eval Qb	Score/length Qc	Eval Qc	Score/length R	Eval R	Label
DiOr_Syx1a	0.86254	2.2e-79	NaN	NaN	0.076	6.6e-06	NaN	NaN	Qa
TrVi_Bos1	NaN	NaN	0.47964	8.2e-40	NaN	NaN	NaN	NaN	Qb
ChMy_Syx6	0.38248	9.4e-15	0.13983	0.0011	1.1024	6.2e-41	NaN	NaN	Qc

- No hits from the HMM profile do not return anything
- Need to set an appropriate value for the missing data for the model to work
- Different replacement values were tested, from 0.001 to 0.95
- Specific to the score
- Specific to the E-value

Machine learning - input

Sequence	Score/length Qa	EvalQa	Score/length Qb	Eval Qb	Score/length Qc	Eval Qc	Score/length R	Eval R	Label
DiOr_Syx1a	0.86254	2.2e-79	0.01	0.9	0.076	6.6e-06	0.01	0.9	Qa
TrVi_Bos1	0.01	0.9	0.47964	8.2e-40	0.01	0.9	0.01	0.9	Qb
ChMy_Syx6	0.38248	9.4e-15	0.13983	0.0011	1.1024	6.2e-41	0.01	0.9	Qc

- No hits from the HMM profile do not return anything
- Need to set an appropriate value for the missing data for the model to work
- Best working values :

Low replacement value for the score : 0.01

High replacement value for the E-values : 0.9

Machine Learning – Example tree

Machine learning – Main group results

• Confusion matrix

- Evaluation metrics:
- Accuracy: Correctly classified instances out of the total instances
- Precision: Ratio of TPs to the sum of TPs and FPs
- Recall: Ratio of TPs to the sum of TPs and FNs
- F1 score: Harmonic mean of precision and recall
- Accuracy: 0.9996
- Precision: 0.9996
- Recall: 0.9996
- F1: 0.9996

Machine learning – Qc subgroups results

• Confusion matrix

- Evaluation metrics:
- Accuracy: Correctly classified instances out of the total instances
- Precision: Ratio of TPs to the sum of TPs and FPs
- Recall: Ratio of TPs to the sum of TPs and FNs
- F1 score: Harmonic mean of precision and recall
- Accuracy: 0.967
- Precision: 0.967
- Recall: 0.967
- F1: 0.967

05 What's next ? Future things to implement

Challenges

- Using IqTree for better classification
- Using a tree to classify the main groups
- Investigating other ML models to upgrade the HMMs performance

Feedback

- It was really interesting to work practically
- Projects had a real biological meaning and were based on real data
- More time for the presentation would be appreciated

Thanks!

Do you have any questions?

Gabriel Chiche, Marius Audenis, Leana Ortolani Supervisor Carlos Pulido Quetglas

Qa Tree

Qc Tree

