
Genome-wide association study (GWAS) is a methodology that focus on the associations between single 
nucleotide polymorphisms (SNPs) and a phenotypic trait (or traits). In brief, a large cohort of individuals are 
characterized by their SNPs makeup using SNPs arrays (DNA microarray), and the collected data are used to test 
if specific SNP or cluster of SNPs, correlate with a specific phenotypic characteristic, for example a disease or his 
predisposition. This approach has been very successful so far to identify thousands of SNP association with 
multiple diseases (1). Despite GWAS does not give specific information about the gene (or genes) involved in a 
phenotype it offers a broad overview of potentials targets loci associated with the trait(s) that can be eventually 
screened afterword. This is particularly useful when the studied trait (or disease) is the result of multiple gene 
products and interactions that cannot be easily explained using classical approaches. The most common setup 
in GWAS is the case-control study, which compare the SNPs of 2 groups, for example healthy controls vs disease 
affected individuals. The odds of disease for individuals having a specific allele and the odds of disease for 
individuals who don t have the same allele are then express as a ratio and a P-value significance is derived by a 
simple chi-square test. The P-values are then plot as negative log of the P value creating the well know 
Manhattan plot where the most significant SNPs associations stand out on the plot. The conventional 
significance p value threshold is 5x10-8. There are multiple variations at the case-control setup in GWAS, for 
example quantitative phenotypic data can be used as traits (for example height or weight), gene expression, and 
biomarkers (for example blood or urine metabolites) (1-5). 
 
This last one concern this specific Case study in bioinformatic (6). 
 
The CoLaus cohort was used for the association study between SNPs genotyping and H-NMR urine metabolic 
profiles (metabolome). Indeed, the concentration and variety of small molecules (metabolites) in the urine is the 
result of the complex relationships between genetic makeup, environment and metabolism of each individual. 
The goal of metabolome-wide genome-wide association studies is to discover how genetic variation affects 
metabolome phenotypes. Those studies can at the end uncover clinical phenotypes and eventually predict 
disease progression. 
 
For this study the genotyping was performed using the Affymetrix GeneChip Human Mapping 500 K array set. 
Genotypes were called using BRLMM software and PLINK was used to detect and correct for population 
stratification, and only individuals with call rate over 90% were included. The software IMPUTE 0.2.0. was used 
for genetic imputation (to deduce unknown genotypes based on known ones). Expected allele dosages were 
computed for 2,557,249 SNPs. A total of 835 individuals were part of the study.   
 
H-NMR spectra for the urines were acquired using a Bruker Avance II 700 MHz spectrometer. Spectra were split 
in bins of chemical shift increments of 0.005 ppm (as average intensity per bin), resulting in metabolic profiles of 
2,200 metabolome features. Those were filtered removing features with more than 5% of missing values. Bin 
intensities were log-averaged across replicate samples for each individual. For each individual, it was applied a 
Z-score transformation in order to achieve zero mean and unit variance.  
 
In this study were first identified the genetic variants that correlates with any of the metabolome features 
(untargeted approach) and after was derived a profile of significance for association with all features.  
Then a new method was used to identify the underlying metabolites: metabomatching.  
 
The NMR spectrum for most metabolites presents multiple peaks, and the genetic effect of a SNP on a metabolite 
usually results in associations of that SNP with multiple metabolome features. It is then generated a pseudo-
spectrum of a SNP, consisting of a set of significant P values (−log(P-values)) for its associations with each feature. 
When genetic effect (association) is strong enough, the pseudo-spectrum is quite similar to the NMR spectrum 
for the underlying metabolite, allowing eventually its identification (6, 7). 
 
At the end, for each SNP association, metabomatching assigns scores to all genetically associated metabolites 
with known NMR spectrum. The scores are computed using the significance values of the features that 
correspond to peaks in the known spectra. The metabolites are then ranked, based on these scores, to identify 
the possible candidate metabolites. 
 
This approach was very successful to identify new SNPs associations and confirm previously know ones, 
suggesting it potential utility in any GWA-metabolome association studies (6, 7). 
 



Results: 
 

Code : Comment : 
Import Modules  
import pandas as pd;  
import matplotlib.pyplot as plt 
import scipy.stats as stats 
import numpy as np 
%matplotlib inline 

• pandas as pd for file I/O 
• numpy as np for scientific computing 
• scipy.stats as stats for statistical functions, and 
• matplotlib.pyplot as plt for  

Data Import: Import metabolome data and verify their consistency 

i1 = pd.read_csv('inpf.metabolome.csv') # i1: 
input 1 - metabolome 
metabolome = i1.values 

Load data for HNMR using panda pd. The metabolome file has multiple 
columns (1017 =metabolite features) and multiple rows (835= number of 
individuals). The header of the columns is the metabolome feature express 
in ppm (chemical shift 0.005 ppm) after data filtration. Along each single 
column the MNR data for the specific feature for each individual (835). The 
MNR data are saved as metabolome variable (as a data frame).  
 

feature_ppms_tmp__strings = i1.columns.tolist() 
feature_ppms_tmp__map = map(float,feature_ppms_tmp__strings) 
feature_ppms = list(feature_ppms_tmp__map) 
print("Number of features: " + str(len(feature_ppms))) 
print("Chemical shifts ranging from: " + str(min(feature_ppms))) 
print("to: " + str(max(feature_ppms))) 
 
Number of features: 1017 Chemical shifts ranging from: 0.7025 to: 8.8425 

The column.tolist get from pandas DataFrame 
column headers; map apply the function float 
to all items and then the items are saved as a 
list. In the end the columns header is saved as 
feature ppms variable (as a list). Some info 
about it are printed out (number of features 
(spectra bins), min and max). 
 

metabolome_feature = metabolome[:,3] 
plt.figure() 
plt.hist(metabolome_feature,20) 
 

Checking normally distribution of the data. Necessary for running linear 
regression later. In this case feature 3 and bins size 20. 

 
Data Import: Import genome SNPs data and verify their consistency 

i2 = pd.read_csv('inpf.genome.csv') 
genome = i2.values 
snp_of_interest_name = 'rs2287921' 
snp_of_interest_index = 1 
 

Load data for genotyping using panda pd. The file has 6 columns and the first 
top element of each column contains the rs number, which identifies the 
genetic variant (SNP); subsequent elements contain the corresponding 
genotype. Only a part of the whole data is shared for this exercise. Indeed, 
having the whole SNPs per each individual would allow us students to pin 
point any donor and this is not contemplated in the ethical rules for this study. 
Again, in line 2 is performed the split of header from the data. To the second 
column of the data frame is given the full name rs2287921. 

genome_snp = genome[:,1] 
plt.figure() 
plt.hist(genome_snp,20) 
 
 

Each SNP can have 3 genotypes (AA, AB, BB) and for the rs2287921 we are 

building the histogram for the allele dosage.  
Regression For a random feature f and SNP rs2287921, run a simple linear regression with f as the response 
variable, and rs2287921as the explanatory variable. Collect association statistics, that is: the effect size βfs, 
the standard error Sfs, the pfs-value. 
 
# Compute - 1 feature 1 SNP 
 
association_statistics_simple=np.zeros([1,3]) # numpy create an empty array to store 3 values. 
snp_values = genome[:,snp_of_interest_index] # collecting the genomic info for the rs2287921 previously defined 



feature_values = metabolome[:,snp_of_interest_index] # collecting the metabolome info for the rs2287921 previously defined 
slope, _, _, p_value, std_err = stats.linregress(snp_values, feature_values)   # calculate a linear regression using scipy.stat 
between the last 2 variables 
association_statistics_simple=[slope,p_value,std_err] # collect the stats of the linear regression 
print (association_statistics_simple) # print them 
[-0.004183056475831504, 0.9396402341289458, 0.05522557992674742] 
 
# Compute- ALL features 1 SNP 
 
number_features = len(feature_ppms) # calculate the number of features 
association_statistics=np.zeros([number_features,3]) # numpy create an empty array to store 3 values for each feature. 
snp_values = genome[:,snp_of_interest_index] # collecting the genomic info for the rs2287921 previously defined 
for feature_index in range(number_features): # calculate the linear regression and saving the stats in this case using a for loop  
    feature_values = metabolome[:,feature_index] 
    slope, _, _, p_value, std_err = stats.linregress(snp_values, feature_values)             
    association_statistics[feature_index,:]=[slope,p_value,std_err] 
 
# Compute - ALL features ALL SNP: same as before but nesting for loops in 
order to compute for each feature for all the SNPs. Because we have 6 SNP and 3 
values for each are calculated (slope ,p_value, std_err), at the end we will have 
18 values to save. 
 
number_snps = genome.shape[1] 
number_features = len(feature_ppms) 
association_statistics__all_snps=np.zeros([number_features, 3*number_snps]) 
 
for snp_of_interest_index in range(number_snps): 
    snp_values = genome[:,snp_of_interest_index] 
    for feature_index in range(number_features): 
        feature_values = metabolome[:,feature_index] 
        slope, _, _, p_value, std_err = stats.linregress(snp_values, feature_values) 
        start = 3 * snp_of_interest_index 
        until = start + 3 
        association_statistics__all_snps[feature_index, 
start:until]=[slope,p_value,std_err] 
 

For each feature f and SNP rs2287921, 
run a simple linear regression with f as the 
response variable, and rs2287921 as the 
explanatory variable. For each regression, 
collect association statistics, that are: the 
effect size βfs, the standard error Sfs, the 
pfs-value. 

Visualize pseudo-spectrum of a SNP  

x_axis = -np.array(feature_ppms); 
plt.figure() 
pval = association_statistics__all_snps[:,1] 
y_axis = -np.log10(pval) 
plt.ylabel('-log(p)'); plt.xlabel('chemical shift') 
plt.title(snp_of_interest_name) 
plt.bar(x_axis, y_axis, 0.05) 

 

For SNP rs2287921, plot the 
−log10(pvalue) of the SNP's association 
with each feature. This will generate the 
pseudo-spectrum of a SNP, consisting of a 
set of significance values (−log(P-values)) 
of its associations with each feature. 

 

Data Export Write the associations statics to file, conforming to the format required by metabomatching 
within phenomenal. The format is described in the documentation, which is available for your perusal here 
(section 2.1.1)  
 
The pseudospectrum is loaded in metabomatching as a tab-separated file name   .tsv 



The file has 4 columns, the header labels are shift, beta (effect size), se (standard error) and p. The next N rows have the stat 
data for the association for the N specific metabolome features, indexed by chemical shift. 
 
# Export ALL features 1 SNP ####################################################### 
 
pseudospectrum_label = ['shift'] # create the label shift 
pseudospectrum_label.append('beta/' + snp_of_interest_name) # create the label beta 
pseudospectrum_label.append('p/' + snp_of_interest_name) # create the label p 
pseudospectrum_label.append('se/' + snp_of_interest_name) # create the label se 
pseudospectrum = np.column_stack((np.array(feature_ppms),association_statistics)) #creation of the dataframe data 
pseudospectrum_df = pd.DataFrame(pseudospectrum,columns=pseudospectrum_label) # merging dataframe data and labels 

pseudospectrum_df.to_csv('pseudospectrum.tsv',sep='\t',index=False,float_format="%.4g")  # export the file 

 
# Export ALL features ALL SNPs #################################################### 
# Same as before but for all SNPs using a for loop 
 
snp_names = i2.columns 
pseudospectrum_label = ['shift']; 
for snp_of_interest_index in range(number_snps): 
    snp_of_interest_name = snp_names[snp_of_interest_index] 
    pseudospectrum_label.append('beta/rs' + snp_of_interest_name) 
    pseudospectrum_label.append('p/rs' + snp_of_interest_name) 
    pseudospectrum_label.append('se/rs' + snp_of_interest_name) 
pseudospectrum = np.column_stack((np.array(feature_ppms),association_statistics__all_snps)) 
pseudospectrum_df = pd.DataFrame(pseudospectrum,columns=pseudospectrum_label) 
pseudospectrum_df.to_csv('pseudospectrum_all_snps.tsv',sep='\t',index=False,float_format="%.4g") 
 
Metabomatching 

We will use metabomatching to identify the metabolites underlying significant SNP  
feature associations. A few ways to do this are described on 
https://www2.unil.ch/cbg/index.php?title=Metabomatching. The simplest way, and 
the way on which we'll focus, is to use PhenoMeNal https://public.phenomenal-
h2020.eu/ 

In brief, after loading our data, metabomatching will assigns scores to all 
metabolites with known NMR spectrum. The scores are computed using the 
significance values of the features that correspond to peaks in the known spectra. 
The metabolites are then ranked, based on these scores, to identify the candidate 
metabolites most likely to underlie the association. We will get also a graphic 
output, with the summary of score and rank for metabolite. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Discussion 
 
Here presented the methodology applied for a metabolome- and genome-wide association study on H-NMR 
urine metabolic profiles. The aim of the code here presented was to generate the association between the SNPs 
and the metabolome features, to generate the pseudo-spectrum associations and to export them in a valid 
format in order metabomatching can be applied. 
 
Normally those studies use a target approach: metabolome data are acquired, identified and their concentration 
quantified and tested for association with SNPs. In this case the metabolome data are binned in metabolome 
features and tested against genetic associations. The genetically associates features tend to be similar to the 
NMR peaks for a specific metabolite. In brief Metabomatching is a methodology that use genetic spiking 
information to identify metabolite candidates, as long as those last ones are present in a spectral database.  
The features that presented a genetic association were subjected to both manual (using public databases) and 
automated metabolite annotation. 
The automated annotation in particular was performed using the metabomatching approach, using the 
association p-values, effect sizes (β), and standard errors (s) generated from the simple linear regressions analysis 
between a SNP and all metabolome features (pseudospectrum of the SNP). 

 The comparison of speudospectra and metabolome reference spectra was performed generating a 
feature match set Fδ(m) for every metabolite m in the reference database. Fδ(m) contain all features f within a 
neighborhood of δ ppm of any spectrum peak listed in the peak description of m. For the pseudospectrum of a 
given SNP r and the spectrum of every metabolite m, it was computed the match sum with βrf the effect size and 
srf the standard error of the association between SNP r and feature f. The match sum was considered to be χ2-
distributed with |Fδ(m)| degrees of freedom to define the score for the tested metabolite as the negative 
logarithm of the corresponding p-value. The high-ranking metabolites are most likely to underlie the SNP-feature 
associations. 
 
This strategy has multiple advantages: because the metabolite identification is performed after the association 
study (the normalized H-NMR data themselves were used as phenotypes), this allow to not discard any 
metabolites from the study; only the metabolites with a proven genetic component are at the end taken in 
consideration, reducing the burden associated with the metabolic identification. Very importantly the 
metabomatching method can be applied to any similar study, indeed the GWAs signals can overlap the NMR 
signal identification itself. The method can then even detect association with unknow metabolites that can be 
identified afterword as soon as the NMR databases for individual metabolites became more and more accurate.  
The assignment of a metabolite to all associated features can be difficult (but essential to give a direct 
mechanistic interpretation) but not necessary if the aim is to find new genetic loci relevant to metabolic 
variability and eventually relevant as clinical result. 
The performance of metabomatching is clearly linked to the strength of genetic spiking and the quality of spectral 
databases but was robust enough at the end to discover and confirm new SNPs association across 2 different 
cohorts (6). Metabomatching is therefore likely to become an important tool in metabolome- and genome-wide 
association studies. 
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