MATHÉMATIQUES APPLIQUÉES À LA BIOLOGIE

Discovery of phenotypes influenced by the season of birth

Assistants:

Diana Marek, Zoltan Kutalik et Rico Rueedi

Etudiants:

Charles Lehmann et Loïc Spinazza

OBJECTIF

• Tenter de démontrer si la quantité de lumière reçue durant la période de naissance a une influence sur des phénotypes comportementaux.

Introduction Pourquoi?

• Expérience faite sur des organismes modèles (mise en évidence de l'horloge biologique).

INTRODUCTION COMMENT?

CoLaus

- o Utilisation de la base de données de CoLaus:
 - contient plus de 6000 sujets Lausannois.
 - 495 paramètres:
 - o âge,
 - o sexe,
 - o dépression,
 - o etc.

PHÉNOTYPES COMPORTEMENTAUX

- Nous nous sommes concentrés sur 10 phénotypes :
 - Dépressions toutes confondues
 - Dépression de type A
 - Dépression récurrente
 - Bipolarité
 - Anxiété
 - Phobie
 - Panique
 - Stress post-traumatique
 - Agoraphobie
 - Désordre d'anxiété généralisée

PROCÉDURE UTILISATION DE MATLAB

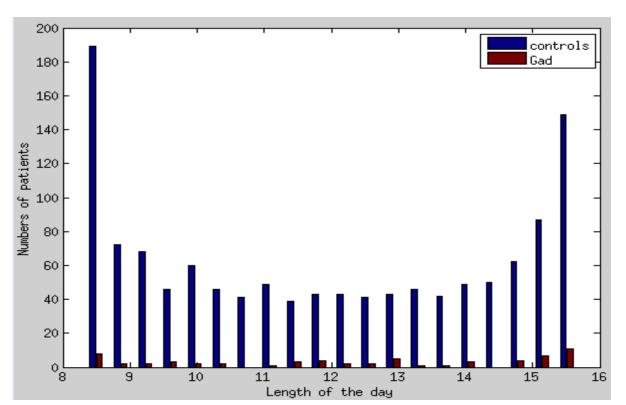
- Extraire les bonnes données
- Rendre les données utilisables
- Convertir les jours en heures de lumière (voir exemple)
- Test de covariables (phénotype par rapport au génotype)
- Graphique
- •Mise en évidence de significativité

Intérêt : chercher si la quantité de lumière reçue le jour de naissance influence les phénotypes comportementaux.

PROCÉDURE EXTRACTIONS ET MODIFICATIONS

• Formule extraction:

```
day\_of\_birth = \\ (datenum(ddn)/365.25-floor(datenum(ddn)/365.25))*365.25
```


o Formule pour la quantité de lumière de <u>Herbert</u> <u>Glarner</u>

```
day = (round(day_of_birth))
j = pi/182.625
conv = pi/180
axis = 23.439*conv
lat = 47*conv
m = 1-tan(lat)*tan(axis*cos(j*day))
b =((acos (1-m))/pi)*24
nhl= b
```

PROCÉDURE

o Comparer les phénotypes comportementaux selon la quantité de lumière reçue.

Contrôles VS différents cas (régression logistique

PROCÉDURE TEST

- Régression logistique
 - Forme de régression utilisée pour des données binaires qui exprime sous forme de risque la relation entre une variable Y binaire et plusieurs variables qualitatives ou quantitatives.
 - Autrement dit:
 - C'est une méthode d'estimation de l'association entre les facteurs à risque et le phénotype.
- Régression logistique dans MATLAB:
 - [pv(3,i) facteur(3,i)]=log_reg(pheno(:,i)-1,[],nhl);
 - $[pv(6,i) facteur(6,i)] = log_reg(pheno(:,i)-1,[sex age],nhl);$

RÉGRESSION LOGISTIQUE

Résultats

		Phenotypes									
			Depr. A type	Depr. Recur	Bipolar	Any anxiety	Phobia	Panic	Ptsd	AGO	Gad
influenced by light	p-value	0.1078	0.3964	0.221	0.2086	0.5818	0.9123	0.9149	0.2681	0.7735	0.0888
	Effets	0.0249	0.0191	0.025	0.072	0.0112	0.0026	0.0044	0.0393	0.0105	0.0852
influenced by light with co- variables sex and age		0.0524	0.123	0.0773	0.1695	0.3464	0.5539	0.5911	0.099	0.4668	0.0439
	Effets	0.0324									

DISCUSSION

- On constate que:
 - Gad est « faiblement » significatif pour une régression logistique.
 - De plus, le facteur est de 0.1017

pv<0.05 rejet H0: significatif 0.05<pv<0.5: non significatif pv>0.5 H0 non rejetée

H0: il n'y a pas d'influence de la lumière

H1: il y a une influence de la lumière

- o MAIS avec une correction de Bonferroni.
 - Seuil=0.05/10(le nombre de groupes)

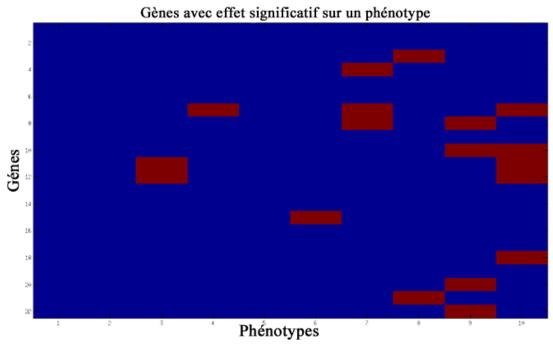
RAPPEL PRÉSENTATION MARTIN PREISSIG

Les gènes et la dépression

- OUtilisation d'une grande base de données pour déceler des effets d'un gène ou plusieurs sur les maladies bipolaires et autres formes de dépression.
- Relation entre dépression et MCV.
- Etudes sur un grand nombre de maladies affectant le psychique.

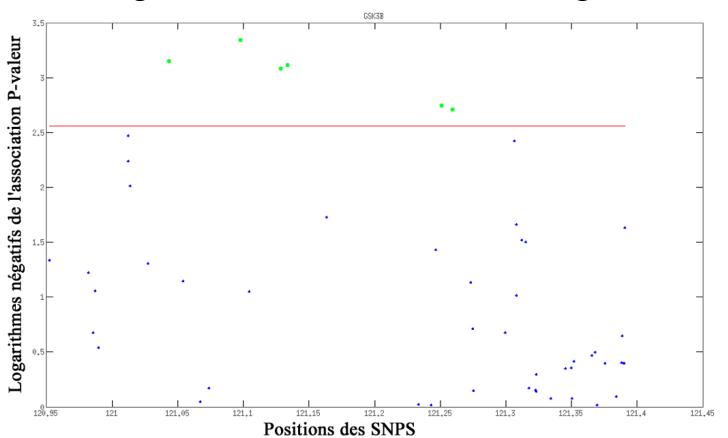
ETAPES D'ANALYSE DU GÉNOTYPE

• Première étape : filtrer SNP qui suivent HW, MAF (seuil 0.05) et call rate (% de non attribué, - de 10%).


o Deuxième étape : régression logistique sur nos nouvelles données.

[pvSNP_asnhl(:,i) facteurSNP_asnhl(:,i)]= log_reg(pheno(:,i)-1,[nhl age sex],Gclean);

o Troisième étape : Manhattan plot sur les résultats significatifs et identification de gènes.


GÈNES AVEC EFFET SIGNIFICATIF SUR UN PHÉNOTYPE

- Nous avons obtenu un effet significatif avec les phénotypes suivants.
 - Dépression récurrente
 - Bipolarité
 - Anxiété
 - Panique
 - Stress post-traumatique
 - Agoraphobie
 - Désordre de type anxiété généralisée

ETAPE D'ANALYSE DU GÉNOTYPE

o Troisième étape : Manhattan plot sur les résultats significatifs et identification de gènes.

TABLEAU RÉCAPITULATIF

Phénotypes	Chromosomes	Gènes	SNPs	pv	Effets
	4	FGF2	19778233	0.7597	-0.0127
	3	GSK3B	19881467	0.0625	0.0178
			19890782	0.7046	1.3392
			19899488	0.566	0.0236
Désordre générale de			19929346	0.8508	0.0391
l'anxiété			19952897	0.7589	0.0721
			19955784	0.9355	0.0786
	5	HTR1A	19890782	0.7046	1.3392
	13	HTR2A	8685291	0.867	1.4601
	9	NTRK2	19868078	0.6834	0.0191

LES GÈNES ET LEURS FONCTIONS

Gènes	Fonctions
FGF2	Code pour protéine de croissance des fibroblastes. Récemment mis en évidence qu'un faible taux avait une incidence sur l'anxiété.
GSK3B	Code pour une sérine-thréonine kinase. Impliqué dans les maladies dégénératives du cerveau.
HTR1A	Code pour un récepteur à la sérotonine. Impliqué dans la sociabilité, l'impulsivité , l'addiction, etc.
HTR2A	Aussi un récepteur à sérotonine. Une mutation dans ce gène est associée à la schizophrénie, troubles obsessionnels compulsifs et d'autres dépressions.
NTRK2	Code pour un récepteur à la tyrosine kinase. Une mutation dans ce gène est associée à des troubles de l'appétit et de l'humeur.

PERSPECTIVES

- Vérifier chez d'autres personnes, plus grand échantillon.
- o D'autres phénotypes.
- Mettre en relation avec les MCV et investiguer.
- A partir des Manhattan plot et des SNP, identifier précisément le nucléotide et/ou la mutation.

CONCLUSION

- Première partie:
 - Les résultats ne sont pas ceux espérés.
- o Deuxième partie:
 - Les résultats sont cohérents avec la littérature.
 - Stimule notre curiosité.

MATHÉMATIQUES APPLIQUÉES À LA BIOLOGIE

Discovery of phenotypes influenced by the season of birth

