"Computation of Brownian Motion in Python, a model to study evolution of
polymorphism"”

"Computation of Brownian Motion in
Python, a model to study evolution of
polymorphism”

Rémy Morier-Genoud

Supervisors: Anna Kostikova, Nicolas Salamin
In Sven Bergmann's Class: "Solving biological problem that requires Math (2012)"

References

Butler M. A, King A. A., 2004. "Phylogenetic Comparative Analysis: A Modelling Approach for
Adaptive Evolution", p 683 in The American Naturalist vol146 N°6.

Appendix from M. A. Butler and A. A. King, “Phylogenetic Comparative Analysis: A Modelling
Approach for Adaptive Evolution”.

Walsh B., 2004. "Markov Chain Monte Carlo and Gibbs Sampling". Lecture Notes for EEB 581.

Summary

Brownian Motion implementation in Python

Implementation of Brownian Motion in Python should be divided in three main steps. First we
need to implement the data: A phylogenetic tree and phenotypical traits measurements.
Secondly we have to calculate a Variance & Covariance matrix based on distance from the tree.
Thirdly we could optimize the Likelihood, which is calculated using a formula including Variance
& Covariance matrix multiplication and the given traits (Butler et al. 2004), to estimated the
unknown parameters 6 & o.

Tools
* Phylogenetic tree in Newick format is saved on a separate file.
* Phenotypical traits values are saved in a separated file in csv format.
* Variance & Covariance matrix calculation is done with a new algorithm.
* Likelihood estimation is done using Numpy Library.
* Likelihood optimization is done using Scipy Library.

L L A -’:\‘.‘ "k. fii® N A ~‘3i‘
Amolops marmoratus (left) and Amolops larutensis (right), www.google.ch/image.

"Computation of Brownian Motion in Python, a model to study evolution of
polymorphism"”

Project's main steps summary & Python Code explanation

Data requires to run the model (Step 1)

Ultrametric Tree (separated file save in Newick format)

Implementation of the BM model in Python requires some data of specific forms. First we need a
phylogenetic ultrametric tree in Newick format, on which the calculation of a matrix of Variance
& Covariance will be based. The Newick format is a standardized format for phylogenetic tree, on
which we could work with Dendropy library on Python, or easily elaborate some new
algortithms to read this format. In this experiment, we work with the following tree (A Lineage
of Chinese frogs, Amolops sp.) called “frogs-2.tre":

((((larute:0.288231,spinap:0.111924)0.618000:0.017046,Chongk:0.181
915,(ricket:0.011689,wuyien:0.030254)0.897000:0.039276)0.942000:0.
047573)0.710000:0.03377,(marmor:0.21305,panhai:0.155244)0.893000:0
.067422)0.852000:0.027263,(tuberod:0.007844,10l0en:0.032906)0.7820
00:0.014999)0.964000;

Note that actually, the implemented tree needs to be save in a file on one single strip, ended with

a"; " character to be treated without problems by the algorithms.

Phenotypical trait value (separated file save in Csv format)

Secondly, we need some phenotypical traits values. They are simply measurements for a given
trait in each actual taxon of the previously given tree. These numerical values are stocked on a
.csv file, and can be easily simulated on R with the rTraitCont() function of Ape library. We then
write a small function, Read_traits(), which converts the data of this .csv file in a numpy.array()
in Python (in the same ordered as list taxa). The phenotypical traits values should be, by
example, the mean annual Temperature (Biocliml) in different regions of China where live each
species of Amolops frogs. The array will look as the following:

numpy.array([23.2, 21.1, 20.2, 17.1, 17.6, 25.5, 26.1, 10.8, 10.8])

Building the Variance & Covariance matrix using a new algorithm
(Step 2)

Get information from the Newick format tree

After data implementation (Step 1), we need to get some information from the tree. We want the
length of edges shared by pairs of taxon in order to build the Variance & Covariance matrix.
There were two options to calculate these values. Firstly we can use Dendropy library on Python.
Dendropy is a module specialised on reading and calculation of phylogenetic trees. But the way
the function of this library are shown and explained on tutorial, and the fact that no Dendropy's
functions already available seem to directly lead to the wanted matrix make us choose a second
option. We then write a new algorithm to get the metric data from the tree in Newick format and
compute them in a matrix (type list of list, in a way we can converted it in numpy array later).

"Computation of Brownian Motion in Python, a model to study evolution of
polymorphism"”

New Algorithm, First part: Getting information from the tree

Here is given a simple example of a tree in Newick format:
((A:0.1,B:0.1)AncAB:0.6,(C:0.3,(D:0.1,E:0.1)AncDE:0.2)AncCDE:0.4)AncRoot:0.9;

The Newick format is built with names ("A", "B", "AncAB" etc), edges length, and some characters
"¢, M ™" """ and ";") which structure the information in a standardize way and encoded the

phylogenetic position of each taxa in the tree. Here is given the corresponding plot, visualize
with Dendropy's function t.pint_plot() (were t is the name of the example tree):

[——————————————————— e A
f——————— - +
| \ e B
+
| [e C
\————————— +
| f—————— D
\———— +
\mmmm e E

As we import the tree in Newick format in Python with the functions open(file, "r”) and
treadline(), the imported tree is seen as a string element. So in a first time, we defined a list,
list Parentheses, in which brackets postitions in this string have to been stocked. Then we
defined 2 other lists, list_taxa, in which the extracted name of each taxon will be stocked, and
list_info_taxa, in which the corresponding position of the taxon on the string (marked by ":") will
be stocked.

We associate each couple of brackets (an opening bracket and its ending partner) at their
position in the string. Opening brackets are find screening the string for "(” characters, while
their ending partner are find using a simple counter varialbe, P_open, which counts the number
of brackets still open. This counter begin at zero when an opening brackets is found, increase of
one each time a new bracket is open and decrease of one each time a closing brackets is found.
So it falls to zero when the closing bracket linked to the opening bracket found with screening is
found. Then the position of the couple is saved in list Parentheses and the algorithm go on
screening for the next opening bracket.

Once list_Parenthses is filled with each couple of brackets position, we extract the names of taxa
contained between each couple of brackets and add them after corresponding brackets position
in list_Parentheses. A list, list_taxa, containing the names of all taxa in the order they are found in
the string (for example: ['A’, 'B, 'C', 'D’, 'E']) is made in parallel, using the function Is_taxa()
which check if the given name is already presents in list_taxa to avoid splitting. Each time a new
taxon is added in list_taxa, the position of ":" character following the name of the taxon in the
string is reported in one other list, list_info_taxa. The extraction of names is made cutting the

string, knowing that each name is always preceded by a "(" or "," character and followed by ":"
character, position of which is reported in list_info_taxa.

Example of list_Parentheses (for the given example tree):
cf1,13,C'A','8']11, [29,63,['C','D","E"]], [36,48,['D', "E']]]
Note that list_Parentheses is composed of smaller lists, were the first element is the opening

bracket position in the string, the second element the ending bracket position, and the third
element is a list filled with the name of each taxon presents between this two brackets.

"Computation of Brownian Motion in Python, a model to study evolution of
polymorphism"”

New Algorithm, Second Part: Edges length shared by 2 taxa

Now that we have listed each taxon of the tree and stocked some information on the structure of
the tree, we want to calculate the distance between 2 taxa. The main idea is to sum each edges of
common ancestor to the two taxa given. In Newick tree, the edges value for each ancestor is
written (example: (A:0.1,B:0.1)AncAB:0.6 means that the "A" and "B" have a common ancestor
"AncAB", and that the distance between AncAB and its own ancestor (the preceding nodes on
the tree) is equal to 0.6). An interesting characteristic of the Newick format is that each time that
two taxa are contained between the same brackets, they shared a common ancestor, which is
given right next to the ending bracket. So we can easily take two different taxa, search for each
brackets where they are together, and sum the ancestor edge to obtain the distance shared by
these two taxa. Indeed, the function Check for_taxa() return a list containing the position in
list Parentheses of each couple of brackets containing both taxa. Secondly, a function
Find_Common_Edge_Distance() catch each ancestor edge value and return the sum of all these
values. As for the names of taxa before, the string must be cut at the right place to catch the
value. So it begins to screen, at each ending brackets returned by Check_for_taxa(), for ":"
character, which is the character right before the first character of the value. It cuts from this
point to the next ")" or "," character. The cut strings must be change in float and then can be sum.
If the two given taxa are identical, which will be the case for the Variance & Covariance matrix's
diagonal, a single value corresponding to the distance between the last node and the taxon must
be added. If this is the case, the function Taxa_ItSelf{) screen for the position of the given taxon
in list_taxa and get the ":" position in the string in list_info_taxa at the same indice that list_taxa.
Exactly as describe for Find Common_Edge_Distance(), it cut the value right after the ":"
character in the string and convert it to a float, in a way it should be added to
Find_Common_Edge_Distance() restult to obtain the total distance of the edge of this taxon
(because the distance shared by a taxon and itself is equal to its total edge length).

Example of shared distance: between D & E: 0.4+0.2 = 0.6; between D & D 0.6+0.1 = 0.7
New Algorithm, Third Part: Variance & Covariance matrix building

At this point, we are able to build the Variance & Covariance matrix easily. This matrix is a list of
lists, where columns are small lists nested on a bigger list, matrix. Each cases of this matrix must
be filled with the distance shared by two taxa, in a way that all combinations of taxa are done.
The diagonal corresponds to total edge lengths for each taxon. To fill the matrix, we test each
taxon with all the taxa of list_taxa, following the order of this list, which has to be the same order
as the given array of phenotypical trait values. The Calc VARCOVAR() function tests if the two
given taxa are identical, and in this case calls Find_Common_Edge_Distance() and sums its result
with Taxa_ItSelf{) result, although only Find_Common_Edge_Distance() is required if the two taxa
are different.

Example of Variance & Covariance matrix (for given example tree):

[[o.7,

, 0, 0, 0], [0.6, 0.7, @, @, 0], [0, 0, 0.7, 0.4, 0.4],
[0, O, 0

0.6
0.4, 0.7, 0.6], [0, 0, 0.4, 0.6, 0.7]]

"Computation of Brownian Motion in Python, a model to study evolution of
polymorphism”

Likelihood equation optimization with Numpy & Scipy libraries (Step 3)

Write a function which return Likelihood for given parameters

On the bases of the Variance & Covariance matrix calculated on the tree (Inputl) and a given
numpy.array (Input2) containing the phenotypical traits for each taxa on the tree, wee can
estimated the strength of the drift (o) which explain at best the evolutive story of the lineage
and the phenotypical trait value of the last common ancestor (at the root of the tree) of this
lineage (Banc)- To estimate these two parameters, we have to check for their values minimizing
the following Likelihood equation:

_ (x—=WO0)7+V *(x—WO0)) nxlog (2m) _ log(det(V)=[])
2 2 2

Likelihood =

We write a function, Likelihood(), which return this Likelihood value estimated for a given 6 and
o.

Optimize the Likelihood to estimate the 2 Unknown (6 & o)

We use scipy library in Python to find the 8 and o which minimize the Likelihood returned by
Likelihood() function. The function used in scipy library is fmin_bfgs(), based on Broyden-
Fletcher-Goldfarb-Shanno algorithm.

Next page: General scheme of the program with examples

"Computation of Brownian Motion in Python, a model to study evolution of

example: Inputl

polymorphism”

((A:0.1,B:0.1)AncAB:0.6,(C:0.3,(D:0.1,E:0.1)AncDE:0.2) AncCDE:0.4)AncRoot:0.9;

Inputl . X
Newick Tree open(Inputl) Inputl.readline() >—|‘ (type string)

list_Parentheses

example: list_Parentheses

Taxa_ItSelf() >_

/ Is_taxa ()
False: \ —
[s taxon already in list_taxa?
list_taxa list_taxa_info
example: list_taxa example: list_taxa_info sy,
['A%,'B"C.,'D","E'] [3.9, 31,38, 44) [[L13AVE]]
[29,63,['C'D"E']]
[36.48,['D", E']]]
Pairs of taxa:

list_taxa[i] x list_taxa[j)

.(Calc_VARCOVAR()

example: taxa D-D
inx: 'D"01

identical taxa? False:

™=] +1
= ifj>Nb_ taxa:i+ 1
= ifi > Nb_taxa: break

example: Var & Cov matrix

Check_for_taxa() :

/

example: taxa D-E

in list_Parentheses:
['C','D','E']
['D'E

Find_Common_
Edge_Distance ()

[[e.7, .6, 0.0, 0.0, 0.0], example: taxa D-D
[e.6, ©.7, 0.0, 0.0, 0.0], Anc['C'/DVE"]-> 0.4
[@.2, @.2, 2.7, 0.4, @.4], Anc['D"E']-> 0.2
[0.9, 9.2, 2.4, 2.7, 9.6], It_Self-= 0.1
[0.9, .2, @.4, 2.6, 2.7]] Sum_Dist == 0.7
Variance & Covariance
matrix - example: Input2
numpy.array(|20,21,22,23,24])
. scipy.optimize.
lnputz ‘ H leelyhood() H fmln_bfgs[) F
numpy.array(Traits)
¢ _ (x=WopeV o (x-W0) nelog(2n) log(det{V)+[T)
2 Unkno‘m leclyhood - - - 2 - 2

numpy.array([8, o])

scipy algorithm (method bfgs)

change the Unknown and reiterate

