
Chapter 1

Phase portrait and its null-cline approximation

1.1 General ideas

Many biological systems are described by one or several differential equations. One of the most famous
examples is an equation for the logistic growth of a population:

dx/dt = rx(1−x/k) (1.1)

This equation describes growth of a populationx in a medium with limited resources. The parametersr
andk determine the growth rate and the carrying capacity of this population.

Although the exact solution of this equation is not trivial, it can easily be studied using the qualitative
method of one-dimensional phase portrait, or phase flow on a line. You have learned these methods in
your previous course of mathematics. I will review them on the example of eq.(1.1). In general, to sketch
a phase portrait of an equation

dx/dt = f (x) (1.2)

we need to draw ’→’ or ’←’ arrows on thex-axis, which indicates the direction of change ofx in the
course of time. The ’→’ arrow means growth ofx, or dx

dt > 0. The ’←’ arrow means decreasing ofx, or
dx
dt < 0. Due to eq.(1.2) the ’→’ arrow also meansf (x) > 0, and the ’←’ arrow meansf (x) < 0. Thus
from the graph off (x) we can easily obtain a phase portrait and dynamics of the population as indicated
in fig.1.1. We see that independent from initial conditions, the size of the population approaches the
value ofn = k.
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Figure 1.1:

Let us analyze the phase portrait of this equation. We see (fig.1.1) that the regions of different
direction of flow (the ’→’ and ’←’ arrows) are separated by pointsA andB which are called equilibria

4



1.2. PHASE PORTRAIT OF SYSTEM OF TWO DIFFERENTIAL EQUATIONS 5

points and which are located atx = 0 andx = k. If the population is at one of these points it will stay
there forever, as theref (x) = 0 and the size of the population does not change in the course of time
(dx/dt = f (x) = 0). However, the dynamics of the population around the equilibria are very different.
If the initial value ofx is a bit above ofx = 0 thex will grow and it will move further and further from
this equilibrium point. If, however, the initial value ofx is around the pointx = k the x will quickly
return to this equilibrium point. Thus pointx = 0 is called an unstable and pointx = k is called a stable
equilibrium. Stable equilibria are also called attractors and are of great importance for the dynamics of
biological models as they mainly determine the qualitative dynamics of our model, as we see in fig.1.1.

The main aim of this course is to extend this description to models which are expressed in terms
of systems of two differential equations. It turns out that such systems are of great interest for many
biological models.

1.2 Phase portrait of system of two differential equations

The method which we will develop will work for so-called autonomous system of two differential equa-
tions which has the following general form:{

dx/dt = f (x,y)
dy/dt = g(x,y) (1.3)

Many biological systems are described by such systems. One of the classical examples of ecological
models (the predator-prey model) can be derived as follows. Let us consider the prey populationx with
a logistic growth given by eq.(1.1), which interacts with the predatory and let us assume that the effect
of the predator on the prey population is given by the term−bxy. Then, if we assume that the growth of
the predator population is proportional to the predator prey interactioncxyand that the death rate of the
predator is given by−dy, we will get the following system of differential equations:{

dx/dt = rx(1−x/k)−bxy
dy/dt = cxy−dy

(1.4)

Formally system (1.4) describes the predator-prey interactions with competition in the prey population.
It has several parameters, which account for the specific properties of the populations. Let us study it for
r = 3,k = 1,b = 1.5,c = 0.5,d = 0.25:{

dx/dt = 3x(1−x)−1.5xy
dy/dt = 0.5xy−0.25y

(1.5)

Let us first solve this system on a computer. For that we need to choose some initial sizes of the predator
and of the prey populations and find their dynamics in the course of time using a numerical integrator.
Solutions forx(0) = 2,y(0) = 1.5 are shown in fig.1.2. We see, that in the course of time,x and y
approach the stationary valuesx = 0.5;y = 1.

Let us introduce the concept of phase portrait for this system. For one dimensional eq.(1.2) we
presented the dynamics in terms of a one-dimensional phase portrait using only thex-axis. Because
in two dimensions we have two variables, we need to use two axes to represent the dynamics. Let us
consider a two dimensional coordinate systemOxywith thex-axis for the variablex and they-axis for
the variable y. Such a coordinate system is calleda phase space. Let us represent the trajectory from
fig.2.1 on theOxy-plane. The initial sizes of the populations werex(0) = 2,y(0) = 1.5, thus we put this
point (2,1.5) on theOxy-plane. At the next moment of time we get other values forx andy and we also
put them on theOxy-plane, etc. Finally, we will get the line shown in fig.1.3a. To show the direction
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Figure 1.2:

of the x andy change in time we draw the arrows as in fig.1.3a. This trajectory is the first element of
the phase portrait. If we start many trajectories from different initial conditions we will get the complete
phase portrait of system (1.5) (fig.1.3b). Note, that each trajectory represents a certain type of dynamics
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Figure 1.3:

of x(t),y(t), which can be easily shown on time plots similar to fig.1.2.
The main aim of our course is to develop the procedure of drawing a phase portrait of a general

system of two differential equations without using a computer. In 1D case the phase portrait included
two main elements: equilibria points and flows (trajectories) between them. As we will see similar
elements also compose the phase portrait of a system of two differential equations (1.3). Let us start
with the first question and understand what are the equilibria points in that case.

1.3 Equilibria

In 1D case the equilibria were the points where our system is stationary: placed at equilibrium point
system will stay there forever. Mathematically equilibria for eq.(1.2) were determined as the points
wheredx/dt = 0, i.e. wheref (x) = 0. Similar condition of stationarity in 2D case should require that
both variablesx andy are stationary at equilibria points, i.e. bothdx

dt = 0 and dy
dt = 0. Because these

derivatives can be expressed in terms of system (1.3) asdx
dt = f (x,y) and dy

dt = g(x,y), it yields the
following definition of equilibria in 2D:

Definition 1 A point(x∗,y∗) is called an equilibrium point of a system (1.3) if

f (x∗,y∗) = 0, g(x∗,y∗) = 0 (1.6)

Equilibria in two dimensions are also stationary points, i.e. if system is placed to the equilibrium it will
stay there forever. Thus this trajectory will contain just one point.

Example. Find the equilibria of the system (1.5):
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Solution To find the equilibria we need to solve a system of algebraic equations (1.6) which in our
case becomes: {

3x(1−x)−1.5xy= 0
0.5xy−0.25y = 0

(1.7)

From the second equation we findy(0.5x−0.25) = 0, which can be either wheny = 0 or whenx = 0.5.
Substitution ofy= 0 to the first equation yields 3x(1−x)−0= 0. This equation has two solutionsx = 0
andx= 1. Substitution of the other casex= 0.5 to the first equation gives 3∗0.5∗(1−0.5)−1.5∗0.5y=
0, ory = 1. Thus we have found three equilibria points:(0,0),(1,0) and(0.5,1).

We see in fig.1.3 that point(0.5,1) is indeed an important attractor of our system which determines
the final state of the populations. The other two points are not apparent in fig.1.3, however, as we will
see later they also account for important changes of trajectories of our system.

Thus we have defined equilibria for 2D systems. Our next step is to understand what is 2D analog of
flows, which on 1D phase portrait were represented by the ’→’ or ← arrows.

1.4 Vector field

In 1D flows were visualizations of the direction of change of the variablex expressed via the sign of its
derivativedx/dt. In 2D both variables can change and the rate of their change is given by the derivatives
dx/dt anddy/dt. In 1D we were able to find the direction of flow at any pointx from the right hand
side function of the equationdx/dt = f (x). Similarly in 2D we can finddx/dt anddy/dt at any point
(x,y) from the right hand sides of system (1.3) ( functionsf (x,y) and(g(x,y)). For example for system
(1.5) at a pointx = 1,y = 1 we find dx/dt = f (x,y) = 3x− 3x2− 1.5xy = 3− 3− 1.5 = −1.5, and
dy/dt = g(x,y) = 0.5xy−0.25y. = 0.5−0.25= 0.25. However, what do these two numbers show? They
tell us that if the size of the prey populationx = 1 and the size of the predator population isy = 1, then
the prey population decreases with the rate of−1.5 and the predator population grows with the rate of
0.25. On the phase planex,y this will result in a shift of a point representing populations from point
(1,1) (pointA in fig.1.4a) to some pointB which is to the left and upward from pointA. Let us make it
more quantitative. We know that rate of change ofx in our case is 1.5/0.25 times larger than the rate
of change ofy. This determines the direction of shift of pointB relative to pointA. The easiest way to
represent it is to draw from point(1,1) a horizontal arrow heading to the left with the length of 1.5 and
a vertical arrow heading upward with the length of 0.25. The direction of the overall shift will be given
by the well known rule of the parallelogram fig.1.4b. More precisely the resulting vector will give us the
direction tangent to the trajectory which goes through the given point. We can generalize this result as:
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Conclusion 1 At any point(x,y) of a phase space for an autonomous system (1.3), we can define the
vector~V with the components( f (x,y),g(x,y)). Such vectors will be tangent to the trajectories of our


