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Integrated genomic characterization of
endometrial carcinoma
The Cancer Genome Atlas Research Network*

We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas
using array- and sequencing-based technologies. Uterine serous tumours and 25% of high-grade endometrioid tumours
had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor
levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but
frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin
remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased
transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial
cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and
copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast
carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may
affect post-surgical adjuvant treatment for women with aggressive tumours.

Endometrial cancer arises from the lining of the uterus. It is the fourth
most common malignancy among women in the United States, with an
estimated 49,500 new cases and 8,200 deaths in 2013 (ref. 1). Most
patients present with low-grade, early-stage disease. The majority of
patients with more aggressive, high-grade tumours who have disease
spread beyond the uterus will progress within 1 year (refs 2, 3).
Endometrial cancers have been broadly classified into two groups4.
Type I endometrioid tumours are linked to oestrogen excess, obesity,
hormone-receptor positivity, and favourable prognosis compared with
type II, primarily serous, tumours that are more common in older,
non-obese women and have a worse outcome. Early-stage endome-
trioid cancers are often treated with adjuvant radiotherapy, whereas
serous tumours are treated with chemotherapy, similar to advanced-
stage cancers of either histological subtype. Therefore, proper subtype
classification is crucial for selecting appropriate adjuvant therapy.

Several previous reports suggest that PTEN mutations occur early in
the neoplastic process of type I tumours and co-exist frequently with
other mutations in the phosphatidylinositol-3-OH kinase (PI(3)K)/
AKT pathway5,6. Other commonly mutated genes in type I tumours
include FGFR2, ARID1A, CTNNB1, PIK3CA, PIK3R1 and KRAS7–9.
Microsatellite instability (MSI) is found in approximately one-third
of type I tumours, but is infrequent in type II tumours10. TP53, PIK3CA
and PPP2R1A mutations are frequent in type II tumours11,12. Most of
these studies have been limited to DNA sequencing only with samples
of heterogeneous histological subtypes and tumour grades. We present
a comprehensive, multiplatform analysis of 373 endometrial carcino-
mas including low-grade endometrioid, high-grade endometrioid, and
serous carcinomas. This integrated analysis provides key molecular
insights into tumour classification, which may have a direct effect on
treatment recommendations for patients, and provides opportunities
for genome-guided clinical trials and drug development.

Results
Tumour samples and corresponding germline DNA were collected
from 373 patients, including 307 endometrioid and 66 serous (53) or
mixed histology (13) cases. Local Institutional Review Boards approved

all tissue acquisition. The clinical and pathological characteristics of the
samples generally reflect a cross-section of individuals with recurrent
endometrial cancer2,3 (Supplementary Table 1.1). The median follow-up
of the cohort was 32 months (range, 1–195 months); 21% of the patients
have recurred, and 11% have died. Comprehensive molecular analyses
were performed at independent centres using six genomic or proteomic
platforms (Supplementary Table 1.2). MSI testing performed on all
samples using seven repeat loci (Supplementary Table 1.3) found MSI
in 40% of endometrioid tumours and 2% of serous tumours.

Somatic copy number alterations
Somatic copy number alterations (SCNAs) were assessed in 363 endo-
metrial carcinomas. Unsupervised hierarchical clustering grouped the
tumours into four clusters (Fig. 1a). The first three copy-number clus-
ters were composed almost exclusively (97%) of endometrioid tumours
without significant differences in tumour grades. Cluster 1 tumours
were nearly devoid of broad SCNAs, averaging less than 0.5% genome
alteration, with no significant recurrent events. Cluster 1 tumours also
had significantly increased non-synonymous mutation rates com-
pared to all others (median 7.2 3 1026 versus 1.7 3 1026 mutations
per megabase (Mb), P , 0.001). Copy-number clusters 2 and 3 con-
sisted mainly of endometrioid tumours, distinguished by more fre-
quent 1q amplification in cluster 3 than cluster 2 (100% of cluster 3
tumours versus 33% of cluster 2 tumours) and worse progression-free
survival (P 5 0.003, log-rank versus clusters 1 and 2; Fig. 1b).

Most of the serous (50 out of 53; 94%) and mixed histology (8 out of
13; 62%) tumours clustered with 36 (12%) of the 289 endometrioid
tumours, including 24% of grade 3 and 5% of grade 1 or 2, into copy-
number cluster 4; a single group characterized by a very high degree of
SCNAs (Supplementary Fig. 2.1; focal SCNAs with false discovery rate
(FDR) , 0.15, and Supplementary Data 2.1). Cluster 4 tumours were
characterized by significantly recurrent previously reported focal
amplifications of the oncogenes MYC (8q24.12), ERBB2 (17q12)
and CCNE1 (19q12)13, and by SCNAs previously unreported in endo-
metrial cancers including those containing FGFR3 (4p16.3) and SOX17
(8q11.23). Cluster 4 tumours also had frequent TP53 mutations (90%),
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little MSI (6%), and fewer PTEN mutations (11%) than other endome-
trioid tumours (84%). Overall, these findings suggest that a subset of
endometrial tumours contain distinct patterns of SCNAs and muta-
tions that do not correlate with traditional tumour histology or grade.

As expected, tumours in the ‘serous-like’ cluster (cluster 4) had signifi-
cantly worse progression-free survival than tumours in the endometrioid
cluster groups (P 5 0.003, log-rank, Fig. 1b). Potential therapeutically
relevant SCNAs included the cluster 2 15q26.2 focal amplification, which
contained IGF1R; and cluster 4 amplifications of ERBB2, FGFR1 and
FGFR3, and LRP1B deletion, which was recently associated with resistance
to liposomal doxorubicin in serous ovarian cancer14.

Exome sequence analysis
We sequenced the exomes of 248 tumour/normal pairs. On the basis
of a combination of somatic nucleotide substitutions, MSI and
SCNAs, the endometrial tumours were classified into four groups
(Fig. 2a, b): (1) an ultramutated group with unusually high mutation
rates (232 3 1026 mutations per Mb) and a unique nucleotide change
spectrum; (2) a hypermutated group (18 3 1026 mutations per Mb) of
MSI tumours, most with MLH1 promoter methylation; (3) a group
with lower mutation frequency (2.9 3 1026 mutations per Mb) and
most of the microsatellite stable (MSS) endometrioid cancers; and (4)
a group that consists primarily of serous-like cancers with extensive
SCNA (copy-number cluster 4) and a low mutation rate (2.3 3 1026

mutations per Mb). The ultramutated group consisted of 17 (7%)
tumours exemplified by an increased CRA transversion frequency,
all with mutations in the exonuclease domain of POLE, and an improved
progression-free survival (Fig. 2a, c). POLE is a catalytic subunit of DNA
polymerase epsilon involved in nuclear DNA replication and repair. We

identified hotspot mutations in POLE at Pro286Arg and Val411Leu
present in 13 (76%) of the 17 ultramutated samples. Significantly
mutated genes (SMGs) identified at low FDRs (Q) in this subset included
PTEN (94%, Q 5 0), PIK3R1 (65%, Q 5 8.3 3 1027), PIK3CA (71%,
Q 5 9.1 3 1025), FBXW7 (82%, Q 5 1.4 3 1024), KRAS (53%,
Q 5 9.2 3 1024) and POLE (100%, Q 5 4.2 3 1023). Mutation rates in
POLE mutant endometrial and previously reported ultramutated colo-
rectal tumours exceeded those found in any other lineage including lung
cancer and melanoma15–17. Germline susceptibility variants have been
reported in POLE (Leu424Val) and POLD1 (Ser478Asn), but were not
found in our endometrial normal exome-seq reads18.

The MSI endometrioid tumours had a mutation frequency approxi-
mately tenfold greater than MSS endometrioid tumours, few SCNAs,
frameshift deletions in RPL22, frequent non-synonymous KRAS muta-
tions, and few mutations in FBXW7, CTNNB1, PPP2R1A and TP53.
The MSS, copy-number low, endometrioid tumours had an unusually
high frequency of CTNNB1 mutations (52%); the only gene with a
higher mutation frequency than the MSI samples. The copy-number
high group contained all of the remaining serous cases and one-quarter
of the grade 3 endometrioid cases. Most of these tumours had TP53
mutations and a high frequency of FBXW7 (22%, Q 5 0) and PPP2R1A
(22%, Q 5 1.7 3 10216) mutations, previously reported as common in
uterine serous but not endometrioid carcinomas. Thus, a subset of
high-grade endometrioid tumours had similar SCNAs and mutation
spectra as uterine serous carcinomas, suggesting that these patients
might benefit from treatment approaches that parallel those for serous
tumours.

There were 48 genes with differential mutation frequencies across
the four groups (Fig. 2d and Supplementary Data 3.1). ARID5B, a
member of the same AT-rich interaction domain (ARID) family as
ARID1A, was more frequently mutated in MSI (23.1%) than in either
MSS endometrioid (5.6%) or high SCNA serous tumours (0%), a
novel finding for endometrial cancer. Frameshifting RPL22 indels
near a homopolymer at Lys 15 were almost exclusively found in the
MSI group (36.9%). The TP53 mutation frequency (.90%) in serous
tumours differentiated them from the endometrioid subtypes
(11.4%). However, many (10 out of 20; 50%) endometrioid tumours
with a non-silent TP53 mutation also had non-silent mutations in
PTEN, compared to only 1 out of 39 (2.6%) serous tumours with non-
silent TP53 mutations. Although TP53 mutations are not restricted to
serous tumours, the co-existing PTEN mutations in the endometrioid
cases suggest a distinct tumorigenic mechanism.

Comparisons of 66 SMGs between traditional histological subtypes
are provided (Supplementary Methods 3), and SMGs across other
subcohorts can be found in Supplementary Data 3.2. The spectrum
of PIK3CA and PTEN mutations in endometrial cancer also differed
from other solid tumours (Supplementary Methods 3). Integrated
analysis may be useful for identifying histologically misclassified
cases. For example, a single serous case was identified without a
TP53 mutation or extensive SCNAs and with a KRAS mutation and
high mutation rate. After re-review of the histological section, the case
was deemed consistent with a grade 3 endometrioid tumour, dem-
onstrating how molecular analysis could reclassify tumour histology
and potentially affect treatment decisions.

Multiplatform subtype classifications
All of the endometrial tumours were examined for messenger RNA
expression (n 5 333), protein expression (n 5 293), microRNA expres-
sion (n 5 367), and DNA methylation (n 5 373) (Supplementary
Methods 4–7). Unsupervised k-means clustering of mRNA expression
from RNA sequencing identified three robust clusters termed ‘mitotic’,
‘hormonal’ and ‘immunoreactive’ (Supplementary Fig. 4.1) that were
significantly correlated with the four integrated clusters; POLE, MSI,
copy-number low and copy-number high (P , 0.0001). Supervised
analysis identified signature genes of the POLE cluster (n 5 17) mostly
involved in cellular metabolism (Fig. 3a). Among the few signature genes
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Figure 1 | SCNAs in endometrial carcinomas. a, Tumours were
hierarchically clustered into four groups based on SCNAs. The heat map shows
SCNAs in each tumour (horizontal axis) plotted by chromosomal location
(vertical axis). Chr., chromosome. b, Kaplan–Meier curves of progression-free
survival for each copy-number cluster.
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in the MSI cluster was decreased MLH1 mRNA expression, probably
due to its promoter methylation. Increased progesterone receptor (PGR)
expression was noted in the copy-number low cluster, suggesting res-
ponsiveness to hormonal therapy. The copy-number high cluster, which
included most of the serous and serous-like endometrioid tumours,
exhibited the greatest transcriptional activity exemplified by increased
cell cycle deregulation (for example, CCNE1, PIK3CA, MYC and
CDKN2A) and TP53 mutation (Supplementary Figs 4.2 and 4.3).
This is consistent with reports that increased CDKN2A can distinguish
serous from endometrioid carcinomas19. Approximately 85% of cases
in the copy-number high cluster shared membership with the ‘mitotic’
mRNA subtype.

Supervised clustering of the reverse phase protein array (RPPA)
expression data was consistent with loss of function for many of the
mutated genes (Fig. 3b). TP53 was frequently mutated in the copy-
number high group (P 5 2.5 3 10227) and its protein expression was
also increased, suggesting that these mutations are associated with
increased expression. By contrast, PTEN (P 5 2.8 3 10219) and
ARID1A (P 5 1.2 3 1026) had high mutation rates in the remaining
groups, but their expression was decreased, suggesting inactivating
mutations in both genes. The copy-number high group also had
decreased levels of phospho-AKT, consistent with downregulation of
the AKT pathway. The copy-number low group had raised RAD50
expression, which is associated with DNA repair, explaining some of
the differences between the copy-number high and low groups. The
POLE group had high expression of ASNS and CCNB1, whereas the
MSI tumours had both high phospho-AKT and low PTEN expression.

Unsupervised clustering of DNA methylation data generated from
Illumina Infinium DNA methylation arrays revealed four unique subtypes
(MC1–4) that support the four integrative clusters. A heavily methylated
subtype (MC1) reminiscent of the CpG island methylator phenotype

(CIMP) described in colon cancers and glioblastomas20–22 was associated
with the MSI subtype and attributable to promoter hypermethylation of
MLH1. A serous-like cluster (MC3) with minimal DNA methylation
changes was composed primarily of serous tumours and some endome-
trioid tumours (Supplementary Fig. 7.1) and contained most of the copy-
number high tumours.

Integrative clustering using the iCluster framework returned two
major clusters split primarily on serous and endometrioid histology
highlighting TP53 mutations, lack of PTEN mutation and encompas-
sing almost exclusively copy-number high tumours23 (Supplementary
Fig. 8.1). We developed a new clustering algorithm, called Super-
Cluster, to derive overall subtypes based on sample cluster member-
ships across all data types (Supplementary Fig. 9.1). SuperCluster
identified four clusters that generally confirmed the contributions of
individual platforms to the overall integrated clusters. No major batch
effects were identified for any platform (Supplementary Methods 10).

Structural aberrations
To identify somatic chromosomal aberrations, we performed low-
pass, paired-end, whole-genome sequencing on 106 tumours with
matched normals. We found recurrent translocations involving genes
in several pathways including WNT, EGFR–RAS–MAPK, PI(3)K,
protein kinase A, retinoblastoma and apoptosis. The most frequent
translocations (5 out of 106) involved a member of the BCL family
(BCL2, BCL7A, BCL9 and BCL2L11). Four of these were confirmed by
identification of the translocation junction point and two were also
confirmed by high-throughput RNA sequencing (RNA-Seq). In all
cases the translocations result in in-frame fusions and are predicted
to result in activation or increased expression of the BCL family
members (Supplementary Fig. 3.2). Translocations involving mem-
bers of the BCL family leading to reduced apoptosis have been
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Figure 2 | Mutation spectra across endometrial carcinomas. a, Mutation
frequencies (vertical axis, top panel) plotted for each tumour (horizontal axis).
Nucleotide substitutions are shown in the middle panel, with a high frequency
of C-to-A transversions in the samples with POLE exonuclease mutations. CN,
copy number. b, Tumours were stratified into the four groups by (1) nucleotide
substitution frequencies and patterns, (2) MSI status, and (3) copy-number

cluster. SNV, single nucleotide variant. c, POLE-mutant tumours have
significantly better progression-free survival, whereas copy-number high
tumours have the poorest outcome. d, Recurrently mutated genes are different
between the four subgroups. Shown are the mutation frequencies of all genes
that were significantly mutated in at least one of the four subgroups (MUSiC,
asterisk denotes FDR , 0.05).
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described in other tumour types24 and our results suggest that similar
mechanisms may be operative here.

Pathway alterations
Multiple platform data were integrated to identify recurrently altered
pathways in the four endometrial cancer integrated subgroups.
Because of the high background mutation rate and small sample size,
we excluded the POLE subgroup from this analysis. Considering all
recurrently mutated, homozygously deleted, and amplified genes, we
used MEMo25 to identify gene networks with mutually exclusive
alteration patterns in each subgroup. The most significant module
was found in the copy-number low group and contained CTNNB1,
KRAS and SOX17 (Fig. 4a). The very strong mutual exclusivity
between mutations in these three genes suggests that alternative
mechanisms activate WNT signalling in endometrioid endometrial
cancer. Activating KRAS mutations have been shown to increase the
stability of b-catenin via glycogen synthase kinase 3b (GSK-3b), lead-
ing to an alternative mechanism of b-catenin activation other than
adenomatous polyposis coli degradation26. SOX17, which mediates
proteasomal degradation of b-catenin27,28, is mutated exclusively in
the copy-number low group (8%) at recurrent positions (Ala96Gly
and Ser403Ile) not previously described. Other genes with mutually
exclusive alteration patterns in this module were FBXW7, FGFR2 and
ERBB2 (ref. 29). ERBB2 was focally amplified with protein overex-
pression in 25% of the serous or serous-like tumours, suggesting a
potential role for human epidermal growth factor receptor 2 (HER2)-
targeted inhibitors. A small clinical trial of trastuzumab found no
activity in endometrial carcinoma, but accrued few HER2 fluor-
escence in situ hybridization (FISH)-amplified serous carcinomas30.

PIK3CA and PIK3R1 mutations were frequent and showed a strong
tendency for mutual exclusivity in all subgroups, but unlike other
tumour types, they co-occurred with PTEN mutations in the MSI
and copy-number low subgroups as previously reported5,9 (Fig. 4b).
The copy-number high subgroup showed mutual exclusivity between

alterations of all three genes. Overall, 93% of endometrioid tumours
had mutations that suggested potential for targeted therapy with
PI(3)K/AKT pathway inhibitors.

Consensus clustering of copy number, mRNA expression and path-
way interaction data for 324 samples yielded five PARADIGM clusters
with distinct pathway activation patterns31 (Fig. 4c and Supplementary
Methods 11). PARADIGM cluster 1 had the lowest level of MYC
pathway activation and highest level of WNT pathway activation,
consistent with its composition of copy-number low cases having fre-
quent CTNNB1 mutations. PARADIGM cluster 3 was composed pre-
dominantly of the copy-number high cases, with relatively high MYC/
MAX signalling but low oestrogen receptor/FOXA1 signalling and p53
activity. Only TP53 truncation and not missense mutations were impli-
cated as loss-of-function mutations, suggesting different classes of p53
mutations may have distinct signalling consequences. PARADIGM
cluster 5 was enriched for hormone receptor expression.

Comparison to ovarian and breast cancers
The clinical and pathologic features of uterine serous carcinoma and
high-grade serous ovarian carcinoma (HGSOC) are quite similar.
HGSOC shares many similar molecular features with basal-like breast
carcinoma32. Focal SCNA patterns were similar between these three
tumour subtypes and unsupervised clustering identified relatedness
(Fig. 5a and Supplementary Fig. 12.1). Supervised analysis of trans-
criptome data sets showed high correlation between tumour subtypes
(Supplementary Fig. 12.2). The MC3 DNA methylation subtype with
minimal DNA methylation changes was also similar to basal-like
breast and HGSOCs (Supplementary Fig. 12.3). A high frequency of
TP53 mutations is shared across these tumour subtypes (uterine ser-
ous, 91%; HGSOC, 96%; basal-like breast, 84%)33,34, as is the very low
frequency of PTEN mutations (uterine serous, 2%; HGSOC, 1%;
basal-like breast, 1%). Differences included a higher frequency of
FBXW7, PPP2R1A and PIK3CA mutations in uterine serous com-
pared to basal-like breast and HGSOCs (Fig. 5b). We showed that
uterine serous carcinomas share many molecular features with both
HGSOCs and basal-like breast carcinomas, despite more frequent
mutations, suggesting new opportunities for overlapping treatment
paradigms.

Discussion
This integrated genomic and proteomic analysis of 373 endometrial
cancers provides insights into disease biology and diagnostic classifica-
tion that could have immediate therapeutic application. Our analysis
identified four new groups of tumours based on integrated genomic
data, including a novel POLE subtype in ,10% of endometrioid
tumours. Ultrahigh somatic mutation frequency, MSS, and common,
newly identified hotspot mutations in the exonuclease domain of
POLE characterize this subtype. SCNAs add a layer of resolution,
revealing that most endometrioid tumours have few SCNAs, most
serous and serous-like tumours exhibit extensive SCNAs, and the
extent of SCNA roughly correlates with progression-free survival.

Endometrial cancer has more frequent mutations in the PI(3)K/
AKT pathway than any other tumour type studied by The Cancer
Genome Atlas (TCGA) so far. Endometrioid endometrial carcinomas
share many characteristics with colorectal carcinoma including a high
frequency of MSI (40% and 11%, respectively), POLE mutations (7%
and 3%, respectively) leading to ultrahigh mutation rates, and fre-
quent activation of WNT/CTNNB1 signalling; yet endometrial carci-
nomas have novel exclusivity of KRAS and CTNNB1 mutations and a
distinct mechanism of pathway activation. Uterine serous carcinomas
share many similar characteristics with basal-like breast and HGSOCs;
three tumour types with high-frequency non-silent TP53 mutations
and extensive SCNA. However, the high frequency of PIK3CA, FBXW7,
PPP2R1A and ARID1A mutations in uterine serous carcinomas are not
found in basal-like breast and HGSOCs. The frequency of mutations in
PIK3CA, FBXW7 and PPP2R1A was ,30% higher than in a recently
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reported study of 76 uterine serous carcinomas11, but similar to another
study12. Uterine serous carcinomas have ERBB2 amplification in 27% of
tumours and PIK3CA mutations in 42%, which provide translational
opportunities for targeted therapeutics.

Early stage type I endometrioid tumours are often treated with
adjuvant radiotherapy, whereas similarly staged type II serous tumours
are treated with chemotherapy. High-grade serous and endometrioid
endometrial carcinomas are difficult to subtype correctly, and intra-
observer concordance among speciality pathologists is low7,34–36. Our
molecular characterization data demonstrate that ,25% of tumours
classified as high-grade endometrioid by pathologists have a molecular
phenotype similar to uterine serous carcinomas, including frequent
TP53 mutations and extensive SCNA. The compelling similarities
between this subset of endometrioid tumours and uterine serous car-
cinomas suggest that genomic-based classification may lead to
improved management of these patients. Clinicians should carefully
consider treating copy-number-altered endometrioid patients with
chemotherapy rather than adjuvant radiotherapy and formally test
such hypotheses in prospective clinical trials. Furthermore, the marked
molecular differences between endometrioid and serous-like tumours
suggest that these tumours warrant separate clinical trials to develop
the independent treatment paradigms that have improved outcomes in
other tumour types, such as breast cancer.

METHODS SUMMARY
Biospecimens were obtained from 373 patients after Institutional Review Board-
approved consents. DNA and RNA were co-isolated using a modified AllPrep kit
(Qiagen). We used Affymetrix SNP 6.0 microarrays to detect SCNAs in 363
samples and GISTIC analysis to identify recurrent events37. The exomes of 248
tumours were sequenced to a read-depth of at least 320. We performed low-pass
whole-genome sequencing on 107 tumours to a mean depth of 36. Consensus
clustering was used to analyse mRNA, miRNA, RPPA and methylation data with
methods previously described38–40. Integrated cross-platform analyses were per-
formed using MEMo, iCluster and PARADIGM25,31.
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CORRECTIONS & AMENDMENTS

ERRATUM
doi:10.1038/nature12325

Erratum: Integrated genomic
characterization of endometrial
carcinoma
The Cancer Genome Atlas Research Network

Nature 497, 67–73 (2013); doi:10.1038/nature12113

In the ‘Results’ section of this Article, the range in the sentence ‘‘The
median follow-up of the cohort was 32 months (range, 1–19 months);
21% of the patients have recurred, and 11% have died.’’ should have
been 1–195 months. This error has been corrected in the HTML and
PDF versions of the paper.
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