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ABSTRACT
Motivation: Large-scale gene expression data comprising
a variety of cellular conditions hold the promise of a global
view on the transcription program. While conventional cluster-
ing algorithms have been successfully applied to smaller
datasets, the utility of many algorithms for the analysis of
large-scale data is limited by their inability to capture com-
binatorial and condition-specific co-regulation. In addition,
there is an increasing need to integrate the rapidly accumu-
lating body of other high-throughput biological data with the
expression analysis. In a previous work, we introduced the
signature algorithm, which overcomes the problems of conven-
tional clustering and allows for intuitive integration of additional
biological data. However, this approach is constrained by the
comprehensiveness of relevant external data and its lacking
ability to capture hierarchical modularity.
Methods: We present a novel method for the analysis
of large-scale expression data, which assigns genes into
context-dependent and potentially overlapping regulatory
units. We introduce the notion of a transcription module as
a self-consistent regulatory unit consisting of a set of co-
regulated genes as well as the experimental conditions that
induce their co-regulation. Self-consistency is defined by
a rigorous mathematical criterion. We propose an efficient
algorithm to identify such modules, which is based on the
iterative application of the signature algorithm. A threshold
parameter that determines the resolution of the modular
decomposition is introduced.
Results: The method is applied systematically to over
1000 expression profiles of the yeast Saccharomyces
cerevisiae, and the results are presented using two comple-
mentary visualization schemes we developed. The average
biological coherence, as measured by the conservation of
putative cis-regulatory motifs between four related yeast spe-
cies, is higher for transcription modules than for clusters
identified by other methods applied to the same dataset. Our
method is related to singular value decomposition (SVD) and
to the pairwise average linkage clustering algorithm. It extends
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SVD by filtering out noise in the expression data and offer-
ing variable resolution to reveal hierarchical organization. It
furthermore has the advantage over both methods of cap-
turing overlapping modules in the presence of combinatorial
regulation.
Contact: naama.barkai@weizmann.ac.il
Supplementary information: http://www.weizmann.ac.il/
~barkai/modules

INTRODUCTION
Microarray experiments monitor the expression of thousands
of genes simultaneously. The availability of this high-
throughput technology has led to the accumulation of large
datasets comprising thousands of expression profiles for a
variety of organisms ranging from bacteria to human (Gollub
et al., 2003). While particular genome-wide expression
measurements are typically performed to address specific
biological issues, it is widely recognized that a wealth of addi-
tional information can be retrieved from a large and diverse
dataset describing the genomic response to a variety of dif-
ferent conditions (Lander, 1999). For example, such data can
be used to provide functional links for uncharacterized genes
(Hughes et al., 2000b; Ihmels et al., 2002; Tavazoie et al.,
1999; Wu et al., 2002), to predict novel cis-regulatory ele-
ments (Bussemaker et al., 2001; Hughes et al., 2000a) and
to elucidate design principles of transcriptional regulation
(Wang et al., 2002). Yet, a limiting factor for such applic-
ations is the lack of proper computational tools (Bittner et al.,
1999).

Grouping together genes of similar expression pattern is a
general starting point in the analyses of gene expression data.
Typically, similarity between genes is measured by the corre-
lation of their expression profiles, and clustering methods are
used to obtain a global partitioning of the data into clusters of
genes exhibiting a similar expression pattern. Commonly used
clustering algorithms include k-means clustering (Tavazoie
et al., 1999), self-organizing maps (SOM) (Tamayo et al.,
1999) and hierarchical methods (Alon et al., 1999; Eisen
et al., 1998). While these algorithms have led to remarkable
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results when applied to relatively small datasets, their utility
for the analysis of large datasets appears to be limited by
several drawbacks (Bittner et al., 1999; Cheng and Church,
2000; Gasch and Eisen, 2002; Getz et al., 2000; Hastie et al.,
2000; Tanay et al., 2002). First, commonly used methods
assign each gene to one cluster, while in fact genes may par-
ticipate in several biological functions and thus should be
included in multiple clusters. Second, correlation in expres-
sion pattern is measured over all conditions, although genes
are typically regulated only in specific experimental contexts.
Several methods have been put forward to address these issues
(Cheng and Church, 2000; Gasch and Eisen, 2002; Getz et al.,
2000; Hastie et al., 2000; Tanay et al., 2002). In a recent
work (Ihmels et al., 2002), we proposed a new approach
that overcomes these drawbacks by incorporating additional
biological information such as sequence data or functional
annotation. Such a priori information can be used to assemble
putative groups of co-regulated genes. We proposed a simple
algorithm, termed the signature algorithm, that refines such a
set by identifying a co-regulated subset, removing genes that
are in fact not co-regulated with this subset and adding genes
from the genome that exhibit similar expression patterns.
We have shown that this algorithm is capable of identifying
small subsets of co-regulated genes even if the putative set
contains a large number of unrelated genes. However, this
approach is constrained by the comprehensiveness of relev-
ant external data and its lacking ability to capture hierarchical
modularity.

Here, we propose a novel scheme that retains the advant-
ages of the signature algorithm, while providing a global
decomposition of the expression data into a hierarchy of
transcription units at various resolutions. This approach is
suitable for cases where no a priori information is avail-
able, and can also be used to integrate external data in a
natural way (Ihmels et al., 2004). In contrast to most clus-
tering methods, where genes are grouped by optimizing all
clusters simultaneously (Duda et al., 2001), our approach
focuses on the properties of the individual co-regulated units
themselves. We provide a rigorous definition of a transcrip-
tion module as a self-consistent regulatory unit consisting of
co-regulated genes and the regulating conditions. A threshold
parameter controls the stringency of co-regulation between the
module genes. We propose an efficient method for identifying
and visualizing transcription modules at different resolutions.
Within our approach, each module is evaluated individually,
allowing the assignment of genes or conditions to several
modules. We apply our method to over 1000 expression pro-
files of the yeast Saccharomyces cerevisiae and analyze the
results. Finally, we compare the results with those of com-
monly used clustering methods that were applied to the same
dataset, using an objective biological figure of merit (BFM),
which is based on conservation of putative cis-regulatory
elements between four related yeast species (Kellis et al.,
2003).

METHODS AND ALGORITHM
Transcription modules
Definition A transcription module consists of a set of
co-regulated genes (a subset Gm of all genes G) and an
associated set of regulating conditions (a subset Cm of all
conditions C). Optionally, each gene g and each condition
c may also be characterized by scores sg and sc, respect-
ively, that indicate their relative importance. If no preference
is given to any of the genes or conditions all scores are set to
unity. The defining property of a transcription module is self-
consistency, which is introduced as follows: first, we assign
new scores to both genes and conditions that reflect their actual
degree of association with the module. The gene score is the
average expression of each gene over the module conditions,
weighted by the condition score: sg = 〈scEgc

C 〉c∈Cm
, where 〈〉i

denotes the average over the subscript i. Analogously, the con-
dition score is the weighted average over the module genes,
sc = 〈sgEgc

G 〉g∈Gm
. Here, E

gc

G and E
gc

C are the log-expression
ratios of gene g in condition c normalized over genes and con-
ditions, respectively, such that 〈Egc

G 〉g∈G = 0, 〈(Egc

G )2〉g∈G =
1 for each c and 〈Egc

C 〉c∈C = 0, 〈(Egc

C )2〉c∈C = 1 for each g.
Self-consistency denotes the property that the genes of the
module are exactly those genes of the dataset that receive
the highest scores sg while the module conditions are those
conditions of the dataset with the highest scores sc.

Identification through iterative signature algorithm To
identify transcription modules, we iteratively apply the sig-
nature algorithm introduced in Ihmels et al. (2002). The
signature algorithm consists of the following two steps: first,
all conditions in the dataset are scored, following the scor-
ing procedure described above, using a given set of genes as
reference. In the iterative scheme, this initial reference set
of genes G(0) is chosen at random, and we assign a uniform
score to its genes. The conditions whose absolute score |sc|
exceeds the condition threshold tC are selected. This set of
conditions is by denoted C(0). In the second step, all genes
are scored, using C(0) as the reference condition set. The
genes with a score sg greater than the gene threshold tG are
selected. This set of genes is denoted as G(1) and (together
with their associated score) defines the output of the signature
algorithm. Subsequently, we apply the signature algorithm
to G(1) to obtain G(2). We repeat this procedure until con-
vergence is reached, i.e. G(n+1) = G(n). By definition, the
fixed-point G(n) defines a transcription module. The threshold
values are given in units of the expected SD (corresponding
to uncorrelated genes or conditions).

Note that while conditions may have negative scores, gene
scores are always positive, such that only positively cor-
related genes are assigned to the same module. Negative
correlations can be captured through correlations between
separate modules (see discussion below and supplementary
data).
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Fixed-points are identified heuristically, by initiating the
signature algorithm with a large number of random initial
sets. The gene threshold tG determines the resolution of the
modular decomposition, and was varied over the range from
1.8 to 4.0 in steps of 0.1 in the present work. The condition
threshold was found to have a minor effect on the resulting
fixed-points over a comparable range, and was set to tC = 2
throughout the analysis.

Module fusion
Application of the iterative scheme to random input sets fre-
quently produces a number of highly similar fixed-points that
differ only by a few genes. Since such small differences are
unlikely to be of biological origin, we fused those fixed-points
whose correlation coefficients (calculated according to gene
and condition scores) exceeded some threshold (taken here
as 0.8). The results are not sensitive to the exact threshold
value. A representative transcriptional module was found by
reiterating the average of all these fixed-points.

Clusters defined by other methods
Pair-wise average linkage, K-means and SOM Clusters
were generated using the program ‘Cluster’ (Eisen et al.,
1998) using the default parameters and normalizations as
prescribed in the manual. The program is available at
http://rana.lbl.gov

Singular value decomposition (SVD) The standard Matlab
SVD function was used to decompose the expression matrix
into eigengenes and eigenconditions. Modules were extracted
by defining a cut-off for the eigenconditions, normalized such
that the maximum absolute component for each eigencon-
dition was unity. For each eigencondition, the genes whose
value exceed the cut-off constitute the corresponding cluster.
Several values for the cut-offs were tested (0.1, 0.3, 0.5, 0.7
and 0.9), as well as choosing genes by their signed or abso-
lute value. Shown in this work are the best results (cut-off 0.1,
signed values).

Bi-clustering Bi-clusters were generated using the program
‘Bi-cluster’ published in (Cheng and Church, 2000) (available
at http://cheng.ececs.uc.edu/biclustering). The program was
applied to the expression data both in the form of ratios as well
as the logarithm of ratios. The results shown were obtained
from the log-based expression matrix, which were slightly
better.

Coupled two-way clustering (CTWC) The clustering
algorithm used was SPC (Blatt et al., 1996). Minimum sample
size was 5, ignore drop out size was 9 for genes and 4 for
samples, stable delta T was 1 for genes and 2 for samples,
K = 15 for genes and automatic determination for samples,
depth was maximal.

Definition of overlaps
The symmetric overlap between clusters A and B was defined
as OLsym(A, B) = NA∩B/

√
NA · NB . Here, NA and NB

denote the sizes of A and B, respectively, and NA∩B denotes
the size of their intersect. The asymmetric overlap is normal-
ized by the size of only the first cluster: OLasym(A, B) =
NA∩B/NA.

Sequence information for the four yeast species
The sequence information for the four yeast species
S.cerevisiae, Saccharomyces paradoxus, Saccharomyces
mikatae and Saccharomyces bayanus were downloaded from
the supplementary information page of Kellis et al. (2003) at
http://www-genome.wi.mit.edu/personal/manoli/yeasts/. For
each open reading frame (ORF) in S.cerevisiae, a 600 bp
sequence upstream of the start site was identified in each of
the species (provided the homolog existed).

Calculation of enrichment p-values
To test whether a hexamer h is significantly overrepresented in
the upstream region of a given set of genes, we calculated the
probability of obtaining the observed enrichment by chance
(p-value). Consider a group of N genes, where a number
z of these genes contain the hexamer h in their upstream
region. The significance of this observation depends on the
overall number of genes in the genome containing h, denoted
by K . The corresponding p-values were computed using the
hypergeometric probability density function given by

P(h; cluster) = 1 −
z−1∑
x=0




(
K
x

)
·
(

M−K
N−x

)
(

M
N

)

 ,

where M is the total number of genes in the genome and
K denotes the total number of genes containing the sequence.
We use the form

P =

N∑
x=z

(
K
x

)
·
(

M−K
N−x

)

(
M
N

)

for numerical precision, and use − log10(P ) throughout
the work.

Definition of the biological figure of merit
To calculate the BFM for a given set of genes g we proceeded
in three steps:

First, we identified all hexamers that are significantly
overrepresented in the 600 bp upstream region of all genes in
g in S.cerevisiae. To this end, we calculated for each possible
hexamer the enrichment p-value, denoted Pcer, as described
in the previous section.

In the second step, we repeated the same procedure for four
related yeast strains (Kellis et al., 2003), where the enrich-
ment of genes containing the hexamer in the promoter region
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of all four species simultaneously was evaluated, yielding
the conservation p-value Pall. Thus, after the first two steps
every hexamer h was associated with two p-values Pcer(h)

and Pall(h).
In the last step, the most significant hexamer hsig with

the smallest p-value Pcer in S.cerevisiae was identified, and
the BFM is defined as the conservation p-value Pall of this
hexamer, BFM ≡ − log10 Pall(hsig). In order to take into
account not only the most enriched motif, but allow for either
motif-variations or multiple motif dependencies, we addition-
ally considered the hexamers whose value of − log10(Pcer)

was at least 50% of the maximum value identified (i.e. for
hsig). Note that therefore more than one BFM may be associ-
ated with one gene set. Only gene sets with between 20 and 400
genes were considered in the analysis. For clusters of the same
algorithm whose overlap exceeded 80%, one representative
with the largest BMF was chosen and the remaining clusters
were excluded.

Web site
The web site containing detailed information about
all transcription modules, sequences, alignments and
expression data references is available at http://www.
weizmann.ac.il/~barkai/Modules

RESULTS
Transcription modules
Our approach for decomposing the expression data into sets
of co-regulated genes focuses on the properties of the indi-
vidual co-regulated units. Such transcription modules consist
of a set of genes that are co-regulated in a specific cellular
context, and the set of experimental conditions where this co-
regulation is most stringent (Fig. 1a). The defining property
of a transcription module is its self-consistency. The module
includes those genes that are most tightly co-regulated over
the conditions assigned to the module. All genes outside the
module are less correlated than the included genes. Similarly,
the module conditions are those conditions in the dataset that
regulate the expression of the module genes most tightly, and
conditions not included in the module have less influence on
the module genes. A mathematical definition of a transcription
module is given in the Methods and algorithm section.

Having introduced a rigorous definition of a transcription
module, all possible sets of genes and conditions could in prin-
ciple be evaluated for their compatibility with this criterion.
However, since the number of all sets scales exponentially
with the size of the data, such a procedure is computation-
ally infeasible. Instead, we follow a heuristic approach for
identifying modules by iteratively refining a random set of
genes (or conditions) until a self-consistent unit is obtained.
Specifically, modules are fixed-points of the recently intro-
duced signature algorithm (Ihmels et al., 2002) (Methods
and algorithm section). Applying the signature algorithm

Fig. 1. Definition and properties of transcription modules. (a) A
transcription module is a self-consistent regulatory unit consisting
of co-regulated genes together with the experimental conditions that
induce their co-regulation. (b) Modules usually remain stable over
a range of thresholds with gradual changes in their content. How-
ever, significant modifications occur once the threshold is changed
beyond this range of stability. The genes assigned to a module at
each threshold are represented by small rectangles and are arranged
in a vertical sequence according to their gene score (Methods and
algorithm section). The glycolysis module (brown colors) remains
stable up to tG = 3.6. At lower thresholds, genes coding for
ribosomal proteins (green/blue colors) are added to this module,
reflecting some degree of correlation between the glycolysis and
ribosomal protein modules. These genes shift the co-regulation
pattern of the module, eventually leading to its convergence into
the ribosomal protein module. Sequences of stable modules are
represented by a line (c.f. module tree, Fig. 3).

iteratively refines the co-regulated unit with each step until
convergence is reached. Computationally, identifying indi-
vidual modules is efficient for two reasons. First, computation
time for each iteration step scales only linearly with the
number of genes and conditions (Bergmann et al., 2003).
Second, the capacity of the signature algorithm to separ-
ate co-regulated genes from unrelated genes ensures rapid
convergence of the algorithm (typically within only a few
iterations).

Our definition of a transcription module allows for different
degrees of co-regulation stringency. Within the iterative pro-
cedure a threshold parameter tG imposes the minimal level of
co-regulation within the module.

A set of genes that is self-consistent at a particular threshold
in general remains approximately a fixed-point also upon
increasing or decreasing the threshold by a small amount.
When the threshold is reduced, additional genes that are
related to the module are included. However, if the threshold
is lowered beyond a certain limit, the inclusion of remotely
related genes can shift the co-regulation pattern, resulting
in convergence to a different module. This new fixed-point
may not include any genes of the original module (Fig. 1b).
Conversely, when the threshold is increased, genes that are
the least co-regulated with the bulk of the module genes
are excluded. Raising the threshold beyond the actual level
of co-regulation between the module genes results in the
disappearance of the module upon iteration.
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Fig. 2. Statistical properties of transcription modules. (a) The recurrence (Rec.) of a module denotes the fraction of input sets that converged
to that module. This measure is strongly correlated with the change in module expression over the full dataset. For each gene in a particular
module, the standard deviation of its expression values over all conditions in the dataset was measured. Plotted here is the mean of this
value over all genes in the module, for all modules identified at threshold tG = 2.1. The correlations become weaker at higher thresholds.
(b,c) Distribution of overlaps between transcriptional modules, according to their condition (b) or gene (c) content. Shown are the maximum
overlaps between each module and all the other modules of the same resolution. (d–f) Properties of modules identified at different thresholds.
Shown are the number of modules (d), their average size (e) and the total (closed circles) or accumulative (open circles) number of genes
assigned to at least one module (f). (g–i) The fractions of non-essential genes, genes of known function and that are part of complexes were
calculated for each module. The respective distributions (solid bars) are significantly different from those expected for random assignments
(open bars). Annotations are according to the YPD database (Costanzo et al., 2001). Complex data was taken from Gavin et al. (2002).

Transcription modules of S.cerevisiae
expression data
We applied the iterative signature algorithm to a large data-
set of over 1000 genome-wide expression profiles of the
yeast S.cerevisiae, including practically all publicly available
expression measurements (see accompanying web site for full
list of references). Modules were identified for 23 threshold
values ranging from tG = 1.8 to 4.0 (in units of expected SDs,
see Methods and algorithm section). At each threshold, we
obtained a collection of fixed-points by iterating from 20 000
initial gene sets of various sizes that were chosen at random
from the whole dataset. All input sets converged to only a
limited number of fixed-points. Highly similar fixed-points
were fused into a representative transcription module (see
Methods and algorithm section). Although the same numbers
of initial gene sets were used at each threshold, the number
of distinct modules that were identified differed greatly. At
the lowest resolution (tG = 1.8) all input sets converged to
one of just five modules. Biologically, these modules corres-
pond to the central functions of yeast (protein synthesis, stress,
cell cycle, mating and amino acid biosynthesis). Their gene
content (between ∼100 and ∼300 genes in each module) is
highly consistent with their associated functions [according to
annotations taken from the YPD (Costanzo et al., 2001) and
SGD (Issel-Tarver et al., 2002) databases]. Together, these
five modules capture the most significant features of the
expression profiles. About 90% of the input sets converged
either to the stress or protein synthesis module, reflecting the
activation of those modules under numerous conditions in the

dataset. As tG is increased, the number of modules initially
rises and their average size decreases, reflecting the finer res-
olution at which the data is viewed (Fig. 2d and e). At the inter-
mediate resolution tG = 3.1, the number of modules reaches a
maximum. As the threshold is increased further, modules are
lost since the required stringency exceeds the actual strength of
co-regulation in the dataset. The total number of co-regulated
genes identified at each threshold does not depend strongly
on tG, however at each threshold, different genes are iden-
tified (Fig. 2f). A total of 2956 genes and all conditions are
associated with at least one transcription module.

The fraction of initial sets that converged into a
given module provides a measure of the relative importance of
this module in the expression data. We denote this fraction as
the module recurrence. Modules that consist of a large number
of tightly co-regulated genes and many regulating conditions
are identified repeatedly and receive high recurrence values.
Genes assigned to modules with high recurrence tend to
exhibit greater changes in their expression values (Fig. 2a). In
contrast, convergence toward small and weakly co-regulated
modules is rare and associated with low recurrence.

Since each module is evaluated individually, genes and
conditions can be assigned to several, overlapping modules.
Indeed, most experimental conditions were associated with
several modules, resulting in a significant overlap between
module conditions (Fig. 2b). In contrast, overlap between the
module genes is moderate, with most modules sharing no or
only a few genes (Fig. 2c) Because of the symmetry of our
algorithm with respect to genes and conditions, it is likely
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Fig. 3. Self-consistency of clusters produced by various algorithms. (a) The self-consistency for a cluster A consisting of NA genes, was
measured as follows: Each gene in the genome was scored by applying the signature algorithm to the cluster A (without gene threshold, and
starting with unit gene scores for all genes). The degree of self- consistency was then quantified by the fraction of the NA top-scoring genes
that were also part of the original cluster A. By definition, this fraction is unity when the procedure is applied to transcription modules, where
the top-scoring genes correspond exactly to the module genes. (b) The histograms of self-consistency measures are shown for the different
clustering methods. Each line corresponds to a different clustering method, according to the color-coding specified in the legend. Most of the
clusters obtained using the pair-wise average-linkage hierarchical clustering (Eisen et al., 1998) are self-consistent.

that the low extent of overlap between module genes reflects
a true tendency of the yeast transcription program to avoid
overlapping regulation, rather than being an artifact of the
algorithm.

Out of the 2956 genes that have been assigned to a transcrip-
tion module, 1112 correspond to ORFs of uncharacterized
function. While this number is in agreement with the overall
fraction of uncharacterized yeast ORFs (40%), the fraction of
known genes within most individual modules in fact deviates
significantly from what would be expected from a random
assignment of genes to modules of the same size (Fig. 2g).
Thus, most modules are either enriched with annotated genes,
indicating their involvement in a well-studied function, or con-
tain primarily genes of unknown function, possibly pointing
to a new function of S.cerevisiae about which there is little
information. Similarly, in most individual modules, the frac-
tion of genes that are part of a larger complex, and the fraction
of essential genes, significantly deviate from what is expec-
ted from random gene assignment (Fig. 2h–i). This bias can
be explained by the fact that several modules consist mainly
of complex-associated genes (such as rRNA processing or
proteasome), while the majority of modules do not. Simi-
larly, a significant number of modules is associated with a
central function of the organism (e.g. protein synthesis) and
therefore enriched with essential genes. Most modules, how-
ever, are associated with specific responses, such as mating,
sporulation or various stress responses and contain primarily
non-essential genes.

The extent of self-consistency of clusters identified
by common algorithms
By definition, all transcription modules identified by the
iterative signature algorithms are self-consistent. We asked
if also clusters generated by common methods satisfy the

self-consistency criterion. To this end we applied available
methods to the same dataset. Methods that were tested
include hierarchical clustering (pair-wise average-linkage
(Eisen et al., 1998)), deterministic annealing (Alon et al.,
1999), K-means (Tavazoie et al., 1999), SOM (Tamayo
et al., 1999), SVD (Alter et al., 2000) and two bi-clustering
methods (Cheng and Church, 2000; Getz et al., 2000). The
resulting clusters were analyzed and compared with the mod-
ules obtained by our method. We find that most of the
clusters identified by the pairwise linkage hierarchical clus-
tering (Eisen et al., 1998) are approximately self-consistent
and comply to large extent with our definition of transcription
modules (Fig. 3a and b). In contrast, most clusters identi-
fied by the other algorithms do not obey the self-consistency
requirement.

Biological merit of transcriptional modules
Since the underlying structure of the yeast transcription net-
work is unknown, quantifying the biological significance of
the results from different clustering methods is difficult. We
devised a measure for the biological merit of each module that
is based on the conservation of putative cis-regulatory ele-
ments between four related yeast species (Kellis et al., 2003)
(Methods and algorithm section). The approach is illustrated
in Figure 5a. First, we identify a hexamer that is overrepre-
sented in the promoter sequence of the genes in the module.
Such an overrepresented sequence is generally found also in
the promoter regions of numerous genes outside the module.
We therefore next examine the conservation of the motif in
the promoter regions of homologous genes in three related
yeast species. Regulatory motifs are mostly distinguished by
an increased conservation between related species. This con-
servation of overrepresented motifs can thus serve as a more
reliable measure for the biological coherence of the module.
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Fig. 4. Biological figure of merit. (a) The BFM for each cluster was defined based on conservation of an overrepresented motif within four
related yeast species. The scheme illustrates how the enrichment p-values Pcer and Pall were calculated. The precise procedure is described
in the Methods and algorithm section. (b) The distribution of BFMs for the clusters produced by various clustering algorithms. The height of
each bar at position x represents the fraction of clusters whose associated BFM fall into the interval x ≤ BFM ≤ (x +10). For each clustering
algorithm, the distribution in the regime of low BFM is shown on the left and for higher BFM on the right. Color-coding is as in Figure 3. (c)
Shown is the mean BFM for each algorithm tested.

The precise definition of the BFM is given in the Methods and
algorithm section.

We measured the BFMs of all modules identified by our
analysis and of clusters identified by other commonly used
clustering methods (Fig. 4b and c). Considerable fractions
of the clusters identified by the iterative signature algorithm,
the pairwise average-linkage (Eisen et al., 1998) and CTWC
(Getz et al., 2000) methods were found to have highly sig-
nificant BFMs (Fig. 4b). The iterative signature algorithm
was successful in identifying the clusters with the highest
BMFs (Fig. 4b), as well as yielding the highest overall
average.

Examples of BFMs assigned to the transcription modules
and the overrepresented motifs are summarized in the supple-
mentary information. The majority of the motifs correspond
to experimentally verified cis-regulatory elements, known to

be involved in the regulation of the associated genes. Several
putative motifs were identified, providing predictions for
future analysis. A complete list of BFMs and consensus motifs
for all transcription modules can be found on our web site.

From simple to complex modular description
By gradually varying the threshold parameter that controls
the degree of co-regulation within the module, we pro-
duced a sequence of modular decompositions ranging from
simple to highly differential. We developed two complement-
ary representations for convenient visualization of the data.
The layered representation (Fig. 5a) reflects the properties of
modules identified at a given resolution, while the module
tree summarizes the entire modular structure over all resol-
utions. Within the layered representation, modules identified
at a specific threshold are arranged in a plane based on the
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Fig. 5. Modular decomposition of the yeast expression data. (a) Layered presentation of yeast modules identified at three different resolutions.
Modules are represented by colored circles positioned in a plane according to the correlation between their condition scores. Correlated modules
are close to each other, while inversely-correlated modules are separated. High-resolution modules are colored according to the module to
which they converge when iterated at lower resolution. The module recurrence (see text) is presented by pie charts using the same color
scheme. (b) Module tree summarizing the modules obtained at different resolutions. Branches represent modules (rectangles) that remain
fixed-points over a range of thresholds. Fixed-points that emerge at high threshold converge into an existing module when iterated at a lower
level (thin transversal lines), and are colored accordingly. For clarity, only a subtree is shown. (c,d) Modules can be thought of as local minima
of some energy function whose shape depends on tG. New modules at higher thresholds correspond to new local minima of this energy
function. (c) New minima can appear by the splitting of an existing minima. The two minima move gradually away from each other as the
threshold is increased, reflecting the separation of a module into two subparts. In the example shown, the protein synthesis (PrSynt) module
splits into two modules associated with ribosomal protein (RP) and rRNA processing. Shown is the asymmetric overlap between the protein
synthesis module and the modules corresponding to rRNA (red) and RPs (blue). The black line represents the symmetric overlap between the
two modules after the splitting (see Methods and algorithm section for definition of overlaps). (d) Alternatively, new local minima can appear
in a distant region such that the new module is disjoint from the module to which it converges at low resolution. This type of transition may
reflect the activation of two different processes under similar conditions. The module of oxidative phosphorylation converges at low threshold
to the stress, but does not share any genes with this module. Shown are the directional overlap between the stress module, and the modules
corresponding to stress (Str, blue) and oxidative phosphorylation (OxP, red). The black line shows the overlap between the two modules after
the splitting.

correlation between their condition scores, which captures the
experimental context regulating the module genes. Correlated
modules are placed close to each other, while modules that are
inversely correlated are separated.

While the modular representation at the lowest resolution is
concise and simple, it becomes significantly more complex for

the larger number of modules identified at higher thresholds
(Fig. 5a). However, if the modules of higher thresholds are
iterated at a lower threshold, they converge into one of the
low-resolution modules. This association reveals the relation-
ships between the module structures of different resolutions.
For example, most modules involved in carbon metabolism
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are related to the stress module, with the exception of gly-
colysis which is in fact associated with protein synthesis,
reflecting the rapid growth of yeast cells in the presence of
glucose.

The module tree captures these relationships and provides
an overview of the entire modular structure at all resolu-
tions (Fig. 5b). Sequences of related modules that are self-
consistent over a range of thresholds are represented by lines.
For example, the five modules of the lowest resolution remain
stable for all thresholds with gradual changes in their content.
The module tree preserves the intuitive representation offered
by a dendrogram used in hierarchical clustering algorithms.
However, in contrast to the usual hierarchical representation,
here distinct branches may include common genes (Fig. 2f).
Specifically, new branches can appear by the splitting of exist-
ing modules, reflecting the separation of a module into two
subparts (Fig. 5c). Alternatively, the modules of the new
branch may not share any genes with the module to which
they converge at low resolution. This type of relationship may
reflect the activation of two different processes under similar
conditions (Fig. 5d).

DISCUSSION
We have presented a novel method for the analysis of large-
scale gene expression data. The main conceptual novelty of
our approach is to focus on the desired property of the indi-
vidual co-regulated unit that we wish to extract from the
expression data. According to our definition such a trans-
cription module consists of all genes that are similar when
compared over the conditions of the module, and all condi-
tions that are similar when compared over the module genes.
We refer to this property as self-consistency. Importantly,
this approach allows for an independent identification of each
module. This is unlike commonly used clustering algorithms,
which optimize the global data partition.

Our approach offers several advantages. First, any set of
genes can be tested for compliance with our definition, or
used for revealing a closely related module. Second, since
modules are identified individually, genes and conditions
can be assigned to several, overlapping modules. Third, our
approach avoids the full partitioning of the data, such that
only genes that are indeed co-regulated are associated. Finally,
our method is computationally efficient and suitable for large
datasets.

To assess if clusters identified by commonly used methods
are self-consistent according to our definition we applied sev-
eral algorithms to the full dataset of yeast expression profiles.
We found that most algorithms do not produce self-consistent
clusters, with the exception of the pairwise linkage hierarchi-
cal algorithm. Within the pairwise linkage procedure, clusters
are assembled sequentially, such that at each step, genes or
clusters that are most similar to each other are fused. Due to the
continual requirement of maximum similarity, this procedure

largely produces self-consistent clusters. However, clusters
are not built-up individually; at each step, every cluster (or
gene) can be associated with only one of the existing clusters.
In systems with combinatorial regulation, this may eventually
compromise the self-consistency criterion (Bergmann et al.,
2003). In the dataset of S.cerevisiae analyzed here, we found
a very low level of overlap between the genes of different
modules, and accordingly the results produced by the pair-
wise linkage method are largely self-consistent. The set of
clusters contains most transcriptional modules identified in
the ISA scheme and vice versa (data not shown). The differ-
ences in the performance of the two algorithms is likely to
be larger in organisms with a higher degree of combinatorial
regulation.

We proposed to identify modules by iteratively refining
random input gene sets, using the signature algorithm intro-
duced previously (Ihmels et al., 2002). By definition, self-
consistent transcription modules emerge as fixed-points of
this algorithm. The stringency of co-regulation between the
genes is determined by a threshold parameter. To obtain a
modular decomposition at different resolutions, we scanned
over different values for this parameter. In a complement-
ary publication (Bergmann et al., 2003), we argue that the
ISA scheme is in fact a generalization of SVD (Alter et al.,
2000) and demonstrate analytically the central role of the
threshold in distinguishing co-regulated genes in the presence
of noise.

To evaluate the capacity of our method to extract biological
information for actual expression data, we compared its per-
formance with that of publicly available clustering methods.
We define a BFM for each cluster, based on the conservation of
putative cis-regulatory motifs between four related yeast spe-
cies. We find that our method and agglomerative hierarchical
clustering (Eisen et al., 1998) (both producing transcription
modules by our definition) and the CTWC method (Getz et al.,
2000) on average yield the highest figures of merit. In addition
to the assessment of the output of novel clustering methods,
this approach can be used for optimizing clustering parameters
on a particular experimental dataset.

We developed two complementary presentation schemes
to visualize the large-scale modular structure and provide
detailed information of the genes and conditions assigned to
each module. The ‘layered presentation’ focuses on the rela-
tions between the modules at a specific threshold, while the
‘module tree’ summarizes the full modular structure at all
resolutions. Both representations are available on the accom-
panying web site providing a detailed description of all the
modules identified in our analysis.

The application of our method is computationally efficient,
since the computation time scales linearly with the number
of genes and conditions. Calculation of correlation matrices,
which poses a serious problem for large datasets, is not
required. The ISA can easily be run on an average desktop
computer. The transcription modules presented in this work

2001



J.Ihmels et al.

were computed in a run time of less than one day, while less
comprehensive results with lower resolution can be obtained
within minutes.

The approach described in this paper complements the
recurrent signature method we proposed recently (Ihmels
et al., 2002), which provides an intuitive way for integ-
rating external biological information, such as sequence
information, functional annotation or protein–protein inter-
actions. In both approaches, modules contain the set of
regulating conditions in addition to co-regulated genes.
This regulatory context provides important biological insight
into the module function. Correlation and dependen-
cies between the conditions assigned to different mod-
ules reflect higher-order organization in the expression
data and may be used to elucidate system-level prop-
erties of the transcription programs (see Supplementary
information).

In this work, we analyzed expression data of the model
organism S.cerevisiae. Since our approach can identify
overlapping clusters, it is well-suited for the analysis of
data in higher eukaryotes (Bergmann et al., 2004), where
combinatorial regulation is likely to play a more promin-
ent role. Exploration of the rapidly accumulating expres-
sion data with our methods should provide interesting
insights into the common design features of transcriptional
regulation.
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