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Standard clustering methods can classify genes successfully when applied to relatively small data sets, but have

limited use in the analysis of large-scale expression data, mainly owing to their assignment of a gene to a single

cluster. Here we propose an alternative method for the global analysis of genome-wide expression data. Our

approach assigns genes to context-dependent and potentially overlapping ‘transcription modules’, thus overcom-

ing the main limitations of traditional clustering methods. We use our method to elucidate regulatory properties

of cellular pathways and to characterize cis-regulatory elements. By applying our algorithm systematically to all

of the available expression data on Saccharomyces cerevisiae, we identify a comprehensive set of overlapping

transcriptional modules. Our results provide functional predictions for numerous genes, identify relations

between modules and present a global view on the transcriptional network.

Departments of Molecular Genetics and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel. Correspondence should be
addressed to N.B. (e-mail: naama.barkai@weizmann.ac.il).

Introduction
With the advent of the DNA microarray technology, it is now pos-
sible to study the transcriptional response of a complete genome
to different experimental conditions. Gene classification is an
essential task in studying the global structure of the transcrip-
tional network. But although standard clustering methods classify
genes successfully when applied to relatively small data sets, their
use in the analysis of large-scale expression data is limited by two
well-recognized drawbacks1–3. First, commonly used algorithms
assign each gene to a single cluster, whereas in fact genes may par-
ticipate in several functions and should thus be included in sev-
eral clusters4–6. Second, these algorithms classify genes on the
basis of their expression under all experimental conditions,
whereas cellular processes are generally affected only by a small
subset of these conditions. In the analysis of a particular cellular
process, therefore, most conditions do not contribute informa-
tion but instead increase the amount of background noise.

To study transcriptional regulation, both the co-regulated genes
and the experimental conditions that trigger this co-regulation
must be identified. We refer to such a combined group of genes
and conditions as a ‘transcription module’. The naive approach
of searching for such modules by considering all possible sub-
sets of genes and conditions is computationally infeasible even
for a moderately sized data set. Therefore, more sophisticated
methods2,3 are required.

We have devised a method for identifying transcription modules.
Our approach relies on the observation that a set of randomly
selected genes is unlikely to be identical to the genes of any tran-
scription module, because the number of such modules is limited.
Yet many such sets do have some overlap (that is, a fraction of com-
mon genes) with a specific transcription module. In particular, sets
of genes that are compiled according to existing knowledge of their
functional or (regulatory) sequence similarity may have a signifi-

cant overlap with a transcription module. Our method is based on
an algorithm that receives a gene set that partially overlaps a tran-
scription module and then provides the complete module as out-
put. We refer to this algorithm as the ‘signature algorithm’.

Here we present the details of the signature algorithm and
establish a reliability measure for its output. We have applied
our method to a large data set of over 1,000 expression profiles
in the yeast S. cerevisiae to characterize the genes and experi-
mental conditions associated with cellular pathways, to identify
cis-regulatory elements and to carry out a global analysis of the
yeast transcriptional network. We used computer-generated
expression data to assess the classification capabilities of our
method in a controlled setting. In addition, our analysis gener-
ated functional links for almost 1,000 genes of unknown func-
tion. We verified experimentally the computational predictions
for two of these genes, confirming their involvement in the pro-
cessing of precursor rRNA.

Results
The signature algorithm
The algorithm receives a set of genes as input and proceeds in two
stages (Fig. 1a). In the first stage, we identify the experimental con-
ditions under which the input genes are co-regulated most tightly.
To this end, we calculate the average change in the expression of the
input genes for each condition. We refer to these average values as
the ‘condition scores’. Only conditions with a large (absolute) score
are selected. In the second stage, the algorithm selects from the
whole genome those genes that show a significant and consistent
change in expression under the conditions selected in the first stage.
For each gene, we calculate the weighted average change in expres-
sion over these conditions, using the condition scores as weights.
We refer to these average values as the ‘gene scores’. Only genes with
a large score are selected (Methods).
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To evaluate the performance of the signature algorithm, we car-
ried out the following numerical experiment. First, we applied the
algorithm to a set of Ncore genes that were known to be co-regu-
lated. Second, we applied the algorithm to a set that included both
those co-regulated genes and Nrand randomly selected genes. The
addition of many random genes leaves the output of the signature
algorithm essentially unchanged (Fig. 2). For example, up to
1,000random genes can be added to 73 co-regulated ribosomal
genes without significantly altering the output of the signature
algorithm. In general, the proper identification of the transcrip-
tion module is achieved as long as Nrand is below a critical number
Nrand

crit
.This number is proportional to the square of the number of

co-regulated genes (that is, Nrand
crit ∼ N

2
core). An analytical explana-

tion and further numerical confirmation of this scaling law are
given, respectively, in Web Note A and Web Fig. A online.

Recurrence as a measure of reliability
A general issue for any classification algorithm is how to evalu-
ate the reliability of its output. For example, applying the signa-
ture algorithm to an input set that does not contain a subset of
co-regulated genes usually yields an output set, even though this
output does not correspond to any transcription module. To distin-
guish a transcription module from meaningless output, we exploit
the ability of the algorithm to filter out non-relevant genes. Specifi-
cally, for a given set of genes, we create a new set that contains both
genes of this set and genes randomly selected from the whole
genome. The signature algorithm is then applied to both the origi-
nal set and the one derived from it. If the original set includes a sub-
set of co-regulated genes, then the set derived from it also contains
those genes. Consequently, the two outputs essentially coincide and
are likely to represent a transcription module. By contrast, very dif-
ferent outputs are obtained when the original set is composed of
randomly chosen genes that are not co-regulated (Fig. 2b).

We thus established the following measure of reliability: a
transcription module is considered to be reliable if it is obtained
from several distinct input sets (Fig. 1b). This recurrence prop-
erty vanishes completely when randomized expression data,
obtained by shuffling the components of the gene expression
matrix, are used (see Web Fig. B online). The recurrence measure
is defined mathematically in Methods.

Pathway analysis
Although many cellular pathways are known, only in a few cases
have all of the participating genes and their regulatory relation-
ships been characterized. The signature algorithm can be used to
extend and refine partial knowledge about a pathway using the
available expression data. Specifically, by applying the signature
algorithm to a given set of genes that are thought to participate
in a particular cellular function, it is possible to (i) reject genes
that are mistakenly included, (ii) retrieve additional genes that
are also likely to be involved in the pathway and (iii) identify
the experimental conditions under which these genes are co-
regulated. Notably, a reliability measure for these results is given
by the recurrence property.

To verify the efficiency of this approach, we considered the well-
studied tricarboxylic acid (TCA) cycle in S. cerevisiae. We applied
our algorithm to a set of 37 yeast genes that are homologous to the
known genes of the TCA cycle in Escherichia coli. The resulting
transcription module included most of the genes that are known
to be involved in this pathway (Fig. 3a). In particular, all misclas-
sified genes in the input set did not appear in the output module.
The yeast SDH4 gene, which was not identified by homology but
functions in the TCA cycle, was identified correctly. In addition,
using different combinations of the TCA cycle genes as input sets,
we identified two subparts of the cycle that are autonomously co-
regulated in different cellular contexts (Fig. 3b,c).
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Fig. 1 The recurrence signature method. a, The signature algorithm. b, Recurrence as a reliability measure. The signature algorithm is applied to distinct input
sets containing different subsets of the postulated transcription module. If the different input sets give rise to the same module, it is considered reliable. c, Gen-
eral application of the recurrent signature method.
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Fig. 2 The recurrence criteria. a, A ref-
erence set of Ncore co-regulated genes
was composed of genes encoding
either ribosomal proteins (dashed
lines) or proteins involved in amino-
acid biosynthesis (dashed/dotted
line). (Other groups of co-regulated
genes yielded similar results.) The
recurrent signature method was
applied to this set as follows. First, a
collection of input sets was derived by
randomly adding genes to the refer-
ence set. Second, the signature algo-
rithm was applied to the reference set
and to the derived sets; this generates
a reference signature and a collection
of perturbed signatures, respectively.
Last, the overlaps between the refer-
ence signature and the perturbed sig-
natures were calculated. Shown is the average overlap as a function of the number of genes added to the reference set. The different lines correspond to
different choices of Ncore, shown in parentheses. b, The recurrent signature method was applied to three sequence-related references sets. These sets include all
of the genes that contain the binding sequences CGGN11CCG (for Gal4), TGACTC (for Gcn4) or TTN9GGAAA (for Mcm1) in a region of 600 bp upstream. Shown is
the fraction of perturbed signatures whose overlap with the reference signature is greater than some threshold, as a function of this threshold. Note the large
number of highly overlapping outputs for all three references sets. By contrast, the profile corresponding to a random sequence is distinctly different, with no
large overlaps. Thus, the ‘recurrence profile’ gives a clear indication of whether a given sequence functions as a regulatory control element.

Identification of cis-regulatory elements
Although many cis-regulatory elements have been characterized,
a motif sequence by itself is not sufficient to identify the genes
that are regulated by the motif. In fact, most motif sequences that
are found in the upstream region of genes have no regulatory
function. The signature algorithm can be used to single out those
genes that are co-regulated by the transcription factor associated
with a particular regulatory motif.

For this task, we create an input set by collecting all of the
genes that contain the relevant sequence in their upstream region
and apply the algorithm to this set. The output of our algorithm
provides both the co-regulated genes and the experimental con-
ditions that induce this co-regulation. The reliability of this out-
put is determined by the recurrence criterion described above
(Fig. 2b). High recurrence indicates that the output genes are
regulated by the corresponding transcription factor and that this
factor is activated under the output conditions. In fact, this

method can be applied not only to determine the exact regula-
tory context of known cis-regulatory elements, but also to assess
whether any given DNA sequence is a cis-regulatory element.

We tested this approach by applying it to the known Gal4, Gcn4
and Mcm1 transcription-factor binding sites in S. cerevisiae.
Specifically, we first composed three input sets from genes whose
promoter regions contain the associated motifs (CGGN11CCG,
TGACTC and TTN9GGAAA, respectively). A control set of genes
corresponding to a random sequence was also assembled. We
then applied the recurrent signature method to each of the four
sets. The recurrence measure clearly distinguished the three
known regulatory motifs from the random sequence (Fig. 2b).
The transcription modules associated with the three sequences
were biologically meaningful. For example, although the binding
site for Gal4 appears in the upstream region of 213 genes, most of
which are not connected to galactose use, only 15 genes were
assigned to the associated transcription module. The top-scoring
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Fig. 3 Co-regulation of TCA cycle genes. a, A standard BLAST search was carried out to find yeast homologs of the E. coli genes of the TCA cycle. Applying the recur-
rent signature method to the input set comprising these homologs yields only genes that are involved in the yeast TCA cycle. The TCA cycle genes are shown; those
that are assigned to the modules are highlighted (dark background). b,c, Two subsets of the TCA cycle are found to be independently co-regulated. b, Genes
upstream of α-ketoglutarate (α-KG), a primary precursor of glutamate, are found to be co-regulated under experimental conditions of deletion of RTG1 and dele-
tions of genes that affect mitochondrial function, YMR293c, AEP1, YER050c and RNR1 (ref. 12). In fact, it has been reported that the expression of these genes
becomes Rtg1 dependent when mitochondrial respiration capacity is compensated13. c, Under a different set of conditions, the genes upstream of α-KG are co-
expressed with genes whose expression is dependent on the transcriptional activator Cat8, which suggests that they are involved in gluconeogenesis14.
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genes included the known targets GAL10, GAL1, GAL7, GAL3,
GAL2, GAL80 and GCY1 and a few newly described targets. The
shift of yeast cells from use of glucose to galactose and related
changes in sugar metabolism were the top-scoring experimental
conditions assigned to this module. Notably, several experimental
conditions related to the cell cycle were found to belong this mod-
ule, which suggests that it also has a regulatory association.

The above two applications of our approach to extend previ-
ous biological knowledge are available on our website, where re-
searchers can submit their own candidate groups of genes, as well
as sequences suspected to function as regulatory elements.

Global study of the yeast transcription modules
The capability of the signature algorithm to retrieve a transcrip-
tion module from any set of genes that shares a sufficiently large
number of genes with this module allows us to use this method
in the global decomposition of the yeast genome into transcrip-
tion modules (Methods). We therefore applied the signature
algorithm to a diverse collection of input sets derived in three dif-
ferent ways. First, sequence-related input sets were assembled
from all of the genes that contain a particular sequence in their
upstream region. All possible combinations of six, seven and
eight nucleotides were considered, resulting in a total of 46 + 47 +
48 ≈ 86,000 input sets. Second, function-related input sets were
defined according to the classification in the Munich Informa-
tion Center for Protein Sequences (MIPS) database7. Third,
cluster-related input sets were constructed from the output of a
hierarchical cluster algorithm (which clusters the full expression
data)5. The signature algorithm was applied to all of these input
sets. Only the recurrent output sets were used to identify the
transcription modules (Fig. 1c).

A comprehensive description of the transcription modules that
we obtained is given in Web Table A online and on our website, and
we highlight only a few of the results of our global analysis here. We
identified 86 overlapping transcription modules, comprising a total
of 2,241 genes. The function of 927 of these genes is unknown,
according to the Yeast Proteome Database (YPD)8,9. We found that
the genes of most modules participate in a module-specific cellular
process (Fig. 4). Thus, functional links can be assigned reliably to
the genes of unknown function in each module.

Experimental validation of functional assignment
To examine the predictive power of our results, we checked
experimentally the involvement of two genes, SDA1 and LTV1, in
rRNA processing. Both genes were assigned to module 10, which
includes 48 genes. Although the functions of most genes in this
module are unknown, many observations indicate that it
includes genes involved in rRNA processing (Fig. 4a). First, most
of the functionally annotated genes are involved in rRNA pro-
cessing. Second, all of the genes with known cellular localization
are found in the nucleus, with most located in the nucleolus.
Third, most of the genes are necessary for viability.

We examined SDA1 and LTV1 because of the availability of
temperature-sensitive phenotypes. Temperature-sensitive mutants
of SDA1 (sda1-2) show severe actin depolymerization and cell-
cycle arrest10,11, and a strain lacking LTV1 (ltv1) shows lethality at
low temperatures (see YPD8,9). Before our study, neither of these
genes had been associated with rRNA processing. We carried out
northern-blot analysis to detect various pre-rRNA intermediates
(Fig. 5). Several pre-rRNA intermediates accumulated on transfer
of either mutant strain to the restrictive temperature, indicating
that LTV1 and SDA1 are involved in rRNA processing.

Fig. 4 Functional consistency of transcription modules. Each row represents a module; boxes refer to the genes, ordered from left to right according to score. The
gene properties are color coded using information in the YPD and other sources. a, Viability, function and localization of the genes in module 10. Characteriza-
tion (if known) is consistent, except for a few genes. We verified experimentally the involvement of the first gene (SDA1, annotated here as unrelated) in pre-
rRNA processing (Fig. 5). The involvement of three other genes in rRNA processing (YGR103w, YOR206w and YLR002c, annotated here as unknown) has been
shown15,16. b, Functional consistency for a selection of modules. Similar consistency was also observed for most of the other modules.
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Higher-order relations in the transcription program
In addition to the co-regulated genes, each transcription module
also includes the experimental conditions that regulate those
genes. This ‘experimental signature’ provides valuable informa-
tion about the function of the module. In addition, it can be used
to reveal higher-order relations between different modules (Fig. 6;
an annotated version is available on our website). For example,
the experimental signatures of module 10 (which is associated
with rRNA processing) and module 20 (which is related to stress
response) are composed essentially of the same experiments,
albeit with experimental scores that have opposite signs.

This strong inverse correlation indicates that rRNA processing
is repressed under most stress conditions. Similarly, most condi-
tions that induce the mating genes (module 6) repress the genes
that are involved in the G1/S transition during the cell cycle
(module 13), reflecting the G1 arrest that accompanies the mat-
ing response. By contrast, the genes associated with the mito-
chondrial ribosomal proteins (module 12) are not affected by
most conditions that regulate the ribosomal proteins (module 1).

In silico evaluation of the signature algorithm
Because the transcriptional networks that underlie measured
expression data are not known, it is difficult to compare the results
of our analyses systematically with those obtained by other meth-
ods. We therefore used computer-generated expression data for this
task. The important aspect of the in silico generation of the expres-
sion data was the modeling of overlapping transcription modules.
We therefore assigned a regulatory logic to each gene in the genome
that determines which combination of the transcription factors
regulates its expression. We generated the expression data by col-
lecting the ‘response’ of all of the genes for many different combina-
tions of the active transcription factors under different
experimental conditions. In this controlled setup, each transcrip-
tion module corresponds to a single transcription factor and
includes the genes that are regulated by this factor and the condi-

tions in which this factor is active. The number of transcription fac-
tors that regulate each gene determines the degree of overlap
between the modules (Methods).

We applied our recurrent signature algorithm to the computer-
generated expression matrix that resulted from the above model.
Using a sufficiently diverse collection of random input sets, essen-
tially all of the transcription modules could be successfully identi-
fied, even in the case of highly overlapping modules. By contrast,
applying hierarchical clustering algorithms to the same expres-
sion matrix captured only small, incomplete fractions of these
modules, owing to the fact that these methods do not allow the
multiple assignment of a gene to different modules (Fig. 7).

Discussion
Although the potential of the information contained in large and
diverse databases of genome-wide expression profiles is well rec-
ognized, the extraction of meaningful biological knowledge from
such data remains a challenging task. Our recurrent signature
approach described here offers several advantages over com-
monly used methods of gene classification.

First, genes are classified on the basis of co-regulation under a
subset of the experimental conditions, rather than on the basis of
co-regulation under all the experimental condition. Thus, each
transcription module specifies not only the co-regulated genes
but also their regulatory context. Second, genes may be assigned
to several overlapping modules—a property that is essential for
capturing the biologically relevant combinatorial regulation.
Third, our method provides a simple and intuitive means of inte-
grating additional biological information, such as functional
annotation or sequence information, with the analysis of gene
expression data. Last, the computation time of our algorithm
depends linearly on the size of the data set (S.B., J.I. and N.B.,
unpublished data). This computational efficiency will be crucial
to our ability to deal with rapidly growing data sets and to extend
the analysis to higher eukaryotes.

Fig. 5 Experimental verification of the involvement of Sda1 and Ltv1 in rRNA processing. a, Structure and processing sites of the 35S pre-rRNA, which contains
sequences for the mature 18S, 5.8S and 25S rRNAs separated by two internal transcribed spacers (ITS1 and ITS2) and flanked by the two external transcribed spacers
(5′ ETS and 3′ ETS). Oligonucleotide probes were chosen according to ref. 15, and their position is indicated. b–c, Northern-blot analysis of pre-rRNA. Cultures of ltv1,
sda1-2 and the associated wild-type strains were grown to early log phase and either maintained at the permissive temperature or shifted to restrictive tempera-
tures, 15 °C (ltv1) or 37 °C (sda1-2). Total RNA was isolated 3, 6 and 9 h after the temperature shift. The positions of the mature rRNAs and pre-rRNAs are indicated on
the left, and the oligonucleotides used are on the right. b, Transfer of the sda1-2 strain to the restrictive temperature leads to an accumulation of 35S pre-rRNA, the
appearance of 23S pre-rRNA, and a marked reduction in 20S pre-rRNA, which indicates a delay in cleavage at sites A0, A1 and A2. Accumulation of 7S pre-rRNA and a
parallel reduction in the 5.8S rRNA are also seen. c, Transfer of the ltv1 strain to the restrictive temperature leads to the accumulation of 20S pre-rRNA. An additional
RNA intermediate, which to our knowledge has not been reported previously, seems to result from improper cleavage of the 20S pre-rRNA. d, The position of the
new cleavage product is shown relative to that of known intermediates. The oligonucleotides used are indicated on the top.
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The recurrent signature method can be used to advance two com-
plementary aspects of genetic research. First, for studying specific
cellular functions, we offer practical applications for the refinement
and extension of existing knowledge about cellular pathways and for
the identification of cis-regulatory elements. Although we have veri-
fied both applications by focusing on well-studied examples, our
website allows them to be used for any problem of interest. Those
applications provide researchers with a simple way to use our com-
pilation of almost all of the available genome-wide yeast expression
data, which includes more than 1,000 experimental conditions.

The second complementary application is for studying the
global structure of the transcription program. By systematically
integrating genomic sequence information and functional anno-
tation with the available yeast expression data, we identified
many modules and characterized their relationships. The assign-
ment of functionally annotated genes to these modules is highly
consistent. Thus, the database that summarizes our results pro-
vides functional links to almost 1,000 yeast genes of unknown
function. Notably, most of the identified modules are associated
with known cis-regulatory elements—a fact that reflects the large
amount of knowledge for the model organism S. cerevisiae and
underlines the efficiency of our method.

We evaluated our approach systematically in a controlled
in silico setting. In such a setting, the desired output of the
analysis is known, and thus we could rigorously evaluate the
performance of different methods. Using artificially created
expression data, we verified that our algorithm is well suited
for identifying overlapping groups of co-regulated genes and
clearly outperforms standard clustering. Further support for
our method was provided by experiments that confirmed our
functional prediction for two previously uncharacterized
genes.

Finally, an alternative strategy to reveal the modular structure
is to assemble a large number of random gene sets and to apply
the signature algorithm iteratively, by using the output gene sig-
natures as new input sets. This approach requires no existing
information. Therefore, it is particularly applicable in the
absence of good annotation, as is generally the case for higher
eukaryotes. Preliminary investigations show that such an itera-
tive procedure converges on most of the yeast modules identified
by the global analysis presented here. Further exploration of the
relationship between the fixed points of this iterative scheme
should provide insight into the modular structure of the gene
expression data and will be pursued elsewhere.
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ule 13 is associated with the G1/S transition during the cell cycle. c, Global visualization of the correlation between many modules. The individual experiments
can be viewed on our website.

a
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Methods
The signature algorithm. The element Egc of the gene expression matrix
contains the log-expression change of gene g ∈ G = {1, ..., NG} at the exper-
imental condition c ∈ C = {1, ..., NC}, where NG and NC denote the total
number of genes and conditions, respectively. We introduce two normal-
ized expression matrices EG

gc
and EC

gc , which have zero mean and unit vari-
ance with respect to genes and conditions, respectively: 

and

where 〈 ...〉x denotes the average with respect to x. The input set consists of
NI genes:

In the first step of the signature algorithm, we score each experimental
condition by the average expression change over the genes of the input set.
The condition score is 

The experiment signature SC contains those conditions whose absolute
score is statistically significant:

In our analysis, we used tC = 2.0 as the condition threshold level and the
standard deviation expected for random fluctuations of

In the second step, we score all genes by the weighted average change in the
expression within the experimental signature. The gene score is

The gene signature SG contains those genes whose score is statistically sig-
nificant:

We used tG = 3.0 as gene threshold and the measured standard deviation
σG.

Fusion of signatures in the analysis of pathways and sequence elements.
We apply the signature algorithm to a reference input set GI

ref and to a set of
input sets {GI

(i)} that are obtained from GI
ref. Each set contains a fraction of

the genes in GI
(i) and some unrelated genes that were selected at random.

The result is a reference signature Sref and a collection of modified signa-
tures {Si}. The overlap between any of these signatures and the reference
signature is defined as

where …  refers to the size of a set and ∩ denotes intersection. All signa-
tures Si whose overlap with the reference signature exceeds a certain
threshold are included in the set of recurrent signatures

The threshold tR must be chosen to be large enough to discriminate against
random fluctuations, but small enough to include a significant fraction of
signatures. In general, we used tR = 70%, but our results have been robust
with respect to the exact value chosen. Finally, a module is obtained by
selecting only those genes that appear in at least 80% of all signatures in R.
All genes within a module are assigned a score according to the average of
their gene scores in all the signatures in R. The module conditions are
defined correspondingly.

Fusion of signatures in the global analysis. The procedure that we used to
generate modules from recurrent signatures resembles agglomerative clus-
tering, albeit for signatures rather than genes. We considered pairs of
recurrent signatures {Si, Sj} obtained from the three classes of input sets
used in the global analysis. For sequence-related signatures, we searched
for pairs of overlapping signatures that were associated with sequences dif-
fering by a single nucleotide or that were the inverse complements of each
other. Because the two input sets associated with each of those pairs are
essentially distinct, a large overlap between the corresponding signatures
indicates that both sequences bind to the same transcription factor. This
overlap requirement is important to distinguish sequences involved in the
regulation of a module from those that are merely overrepresented. We
also searched for coinciding pairs of function-related or cluster-related sig-
natures. Here we considered all the pairs and selected those with the high-
est overlap.

The pairs of recurrent signatures were fused into transcription modules
as follows. For each pair, we computed the intersect Pij = Si ∩ Sj of genes
appearing in both signatures as well as the overlap

OL
ij
 = |Pij |/   |Si

 |•|Sj|
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 : OL

i
   > t
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|S
i 
∩ S

ref 
|

|S
i 
| • |S

ref 
|

,

S
G
 = {g ∈ G : S

g
 – 〈 S

g 
〉  

g ∈ G
 > t

G
σ

G
}

s
g
 = 〈 s

c
E

C 
〉

c ∈ Sc

gc

σ
C
 = 1 ⁄   N

I 

S
C
 = {c ∈ C :|s

c
 – 〈 s

c 
〉

c ∈ C
| > t

C 
σ 

C
}

s
c
 = 〈E   〉

g∈ G1

gc
G

G
I
 = {g

1
,…,g

N1
} ⊂ G

〈 (E   ) 〉       = 1,〈E   〉       = 0,gc
C

gc
Cc∈ C c∈ C

2

〈E   〉       = 0, gc
G

gc
Gg∈ G g∈ G

〈 (E   ) 〉       = 1,
2

1 2 3 4 5 6
10

20

30

40

50

60

70

80

90

100

transcription factors per gene

pe
rc

en
ta

ge
 o

f c
or

re
ct

ly
 id

en
tif

ie
d 

ge
ne

s 
pe

r 
m

od
ul

e

signature approach: identified genes/module
signature approach: fraction of identified modules
clustering: identified genes/module
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signature algorithm 

Fig. 7 Comparison between the signature approach and clustering using in sil-
ico expression data (Methods). The expression level of 1,050 genes was regu-
lated by 25 transcription factors. On average, 20% of the transcription factors
was active at each of the 1,000 conditions. The graph shows the average frac-
tion of correctly identified genes per module for the signature approach (cir-
cles) and per cluster for hierarchical clustering (squares) as a function of the
number of transcription factors regulating each gene. The number of clusters
was fixed to the number of modules (25). Note that the percentage of modules
correctly identified by the signature algorithm (indicated by asterisks) was less
than 100% only for high combinatorial regulation (five or more transcription
factors regulating each gene). This fraction depends on the number of input
sets as well as the number of experimental conditions.
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We selected the pair signature Pref with the largest associated overlap
OLref as the ‘seed’ of a new module. We then assigned all pair signatures Pij
whose overlap with Pref exceeded a certain fraction tR of OLref to the set of
recurrent signatures R—that is,

The gene content and scores of the associated module were obtained from R
as described above. Subsequently, we removed the pairs that had been assigned
to R from the total ‘pool’ of pair signatures {Pij}. To avoid the identification of
more, less-coherent realizations of the same module, we also removed those
pairs from {Pij} that would have been assigned to R for a somewhat lower value
of the threshold tR, unless they had a significant (∼ 75%) overlap with any other
pair signature. This process was iterated until all sets were assigned.

Analysis of computer-generated expression data. We generated the in silico
expression data as follows. The regulation of each gene was encoded by a ‘pro-
moter matrix’ whose elements Ptg ∈ {0,1} specify whether the transcription
factor t ∈ {1, ..., NT} activates (1) or does not affect (0) gene g ∈ {1, ..., NG}. In
our analysis, we considered a total of NG = 1,050 genes regulated by NT = 25
transcription factors. The log expression of gene g at condition c was defined as

where Atc ∈ {0,1} specifies the activity of transcription factor t at condition c.
Five randomly chosen transcription factors were active at each condition,
on average, and we considered an expression matrix generated from 1,000
conditions. The recurrent signature algorithm was applied to 2,000 initial
random input sets. The resulting output sets were reused as input sets and
this procedure was repeated three times (details of this iterative scheme will
be published elsewhere). The fusion of the resulting signatures to transcrip-
tion modules was carried out precisely, as in the global analysis of the yeast
expression data described above. We used tC = 1.5 and tG = 1.0, …, 2.5 as
condition and gene thresholds, respectively. Modules were considered reli-
able if they were recovered at least three times with an overlap of 80%. A
gene was assigned to the final module if it appeared in at least two of such
overlapping modules. For the hierarchical clustering, we used the standard
Matlab clustering functions and a previously described algorithm5.

Strains and microbiological techniques. Standard techniques were used
to grow and handle the yeast strains. We used the following strains: ZZ28-a
(sda1-2) and its parental strain dk186-a (lue2-3,112, trp1-1, his3-11, ura3-
52, ade2-1, can1-100, GAL+, ∆bar1), which were provided by D.R. Kellogg;
and BY4742-ltv1∆-α (ltv1∆) and its parental strain BY4742-α (lue2-∆0,
his3-∆1, ura3-∆0), which were purchased from EUROSCARF.

Northern-blot analysis. Equal amounts of total RNA were separated by
agarose gel electrophoresis, blotted and hybridized with labeled oligonu-
cleotide probes complementary to different regions of the pre-rRNA tran-
script. The oligonucleotides were chosen according to ref. 15 (sequences
available on request).

URLs. More details of our results and the applications of our method,
together with the list of all expression profiles used, can be found on our
website (http://www.weizmann.ac.il/home/barkai).

Note: Supplementary information is available on the Nature
Genetics website.
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