Robust inference of gene regulatory networks
using bootstrapping

Supervisor: Daniel Marbach
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Strategies for reconstructing gene networks
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Expression-based gene network inference

Target Gene expression data
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e Hundreds of methods have been proposed

 Are they any good?
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DREAM network inference challenge

Develop
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No single b

35 inference methods

(maSigPro): (2) Naive Baves.

ID | Synopsis Reference
ON: TFs are selected by TG specific (1) sparse linear regression and combined by (2) stability selectlo .
. (1) Lasso; (2) the regularization parameter is chosen so that 5 TFs are selected per TG in each bootstrap 39°
sample.
. (1) Steady state and time series data are combinw/\ootstrapping 40°
. Combination of lasso (TESLA tog ression models learned from 41°
RJMCMC simulatio
@ | (1) Lasso; (2) boots‘ ess‘o ‘ ‘ \ 42
® | (1) Lasso; (2) area u\ Regr ) 42
. Application of the Lai rameters 43
. Lasso, regression mo\‘l/_muvme maximum regularization parameter value selecting a 420°
given edge for the firsttime.
@ | Linear regression determines the contribution of a TF to the expression of the TG. 44>°
. CLR, for a given TFX-TG edge an Ml re-scoring scheme reflects TG, and TF, in the distribution of all g®
TGs an
® | Miisco 45*°
L
@ | ARACN M . ssing o
al Information
. Topolo ON- 46°
PC)/Bayesian local CausaTarseovery orsey:
. Topology is estimated by Ml and Pearson’s correlation. The direction of edges is determined by HITON- 46°
PC/BLCD.
@ | Absolute value g . 45
@ | signed value of O rre a I O n 45"
@ | signed value of 45*°
BAYESIAN NETWORKS optimize posterior probabilities by different heuristic searches.
1 | Simulated annealing (catnet R package), aggregation of three runs/'\ 47
2 | Simulated annealing (catnet \ 47
3 | Max-Min Pa . tW O rkS | 48
4) | Markov blan a eS‘a‘ ‘ ' le l 49
5 | Markov bou = 50
6 | Models TF K Series by dynamic Bayesian networks (Infer.NET toolbox). 512
OTHER APPROACHES: Network inference by heterogeneous and novel methods.
Genie3: A random forest is trained to predict TG expression. Putative TFs are selected as tree nodes if a
1 . N 28
they consistently reduce the variance of the TG.
TF-TG co-dependencies are detected by the non-linear correlation coefficient n° (two-way ANOVA). TF a
2 L : 29
KO/OE data receive increased weights.
TFs are selected maximizing the conditional entropy fo g ‘presented as Boolean a
3 N . . . o 52
vectors with probabilities, avoiding discreti
4 Putative TFs are preselected fr er Fs are then tested by 53
iterative Bayesian M O
5 A Gaussian n0|s US ges significantly in TF 54
KO/OE measure r\o
After scaling, TGs Ton. A neural network was trained (genetic a
6 . 55
algorithm) and par: gatlon)
7 Data were discretiz Sian mixture models and clustering (Ckmeans); Detects interactions by 56°
generalized logical network modeling (% test).
The y° test was applied to evaluate the probability of a simultaneous shift in TF and TG expression in TF a
8 - 56
KO/OE experiments.
META PREDICTORS combine (1) several approaches by calculating (2) aggregate scores.
1 (1) Calculates z-scores for TG il |n TF KO data applies time-lagged CLR for time series, and linear ODE 57°
models constrain ol
2 | (1) Pearson’s cori 58
(1) Calculates TG o-deviation a
3 i p 59
analysis; (2) wei ' C O r
4 (1) CLR filtered b es, and TF 60
KO/OE data; (2) combination by Z-Stores:
5 (1) Pearson’s correlation, differential expression (limma, Gauss tail), and time series 61°
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Complementary strengths & weaknesses

Similarity of predictions Network motif biases
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= Can we integrate methods to form more accurate predictions?
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Wisdom of crowds
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The aims of this project

 Understand different network inference approaches at a
high level

e Are methods robust to variations in the data?

- Top 5 inference methods available on web platform
(dream.broadinstitute.org)

- Evaluate performance robustness on subsets of the expression
compendia (data subsampling)

e Can robustness be improved using bootstrapping?
- Run methods on subsets of the data and combine predictions

- Do you obtain a new best-performing method in this way?



