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Expression-based gene network inference

• Hundreds of methods have been proposed

• Are they any good?
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ID Synopsis Reference 

  
 REGRESSION: TFs are selected by TG specific (1) sparse linear regression and combined by (2) stability selection. 

 
(1) Lasso; (2) the regularization parameter is chosen so that 5 TFs are selected per TG in each bootstrap 
sample. 39a 

 (1) Steady state and time series data are combined by group lasso; (2) bootstrapping. 40a 

 
Combination of lasso (TESLA toolbox) and Bayesian piecewise linear regression models learned from 
RJMCMC simulations. 41a 

 (1) Lasso; (2) bootstrapping.  42 

 (1) Lasso; (2) area under the stability selection curve. 42 

 Application of the Lasso toolbox GENLAB using standard parameters.  43 

 
Lasso, regression models are combined by the maximum regularization parameter value selecting a 
given edge for the first time. 42a 

 Linear regression determines the contribution of a TF to the expression of the TG. 44a,b 
  
 MUTUAL INFORMATION: Interactions are ranked based on variants of mutual information (MI). 

 
CLR, for a given TFx-TGy edge, an MI re-scoring scheme reflects TGy and TFx in the distribution of all 
TGs and all TFs, respectively.  8a,b 

 MI is computed from discretized expression values.  45a,b 

 
ARACNE: Augments MI by a kernel estimator to avoid discretization and by the data processing 
inequality to distinguish interaction direction. 6a,b 

 
Topology is estimated by MI. The direction of edges is determined by Markov-blanket (HITON-
PC)/Bayesian local causal discovery (BLCD). 46a 

 
Topology is estimated by MI and Pearson’s correlation. The direction of edges is determined by HITON-
PC/BLCD. 46a 

  
 CORRELATION: Interactions are ranked based on variants of correlation. 

 Absolute value of Pearson’s correlation coefficient. 45 

 Signed value of Pearson’s correlation coefficient. 45a,b 

 Signed value of Spearman’s correlation coefficient. 45a,b 
  
 BAYESIAN NETWORKS optimize posterior probabilities by different heuristic searches. 

 Simulated annealing (catnet R package), aggregation of three runs. 47 

 Simulated annealing (catnet R package). 47 

 Max-Min Parent and Children algorithm (MMPC), bootstrapped datasets. 48 

 Markov blanket algorithm (HITON-PC), bootstrapped data sets. 49 

 Markov boundary induction algorithm (TIE*), bootstrapped data sets. 50 

 Models TF KO/OE data and time series by dynamic Bayesian networks (Infer.NET toolbox). 51a 
  
OTHER APPROACHES: Network inference by heterogeneous and novel methods.  

 
Genie3: A random forest is trained to predict TG expression. Putative TFs are selected as tree nodes if 
they consistently reduce the variance of the TG. 28a 

 
TF-TG co-dependencies are detected by the non-linear correlation coefficient 2 (two-way ANOVA). TF 
KO/OE data receive increased weights. 29a 

 
TFs are selected maximizing the conditional entropy for a given TG. TGs are represented as Boolean 
vectors with probabilities, avoiding discretization. 52a 

 
Putative TFs are preselected from TF KO/OE data or by Pearson’s correlation. TFs are then tested by 
iterative Bayesian Model Averaging (BMA).  53 

 
A Gaussian noise model was used to estimate if the expression of a TG changes significantly in TF 
KO/OE measurements. 54 

 
After scaling, TGs are clustered by Pearson’s correlation. A neural network was trained (genetic 
algorithm) and parameterized (back-propagation). 55a 

 
Data were discretized by Gaussian mixture models and clustering (Ckmeans); Detects interactions by 
generalized logical network modeling ( 2 test). 56a 

 
The 2 test was applied to evaluate the probability of a simultaneous shift in TF and TG expression in TF 
KO/OE experiments. 56a 

  
META PREDICTORS combine (1) several approaches by calculating (2) aggregate scores.  

 
(1) Calculates z-scores for TG in TF KO data, applies time-lagged CLR for time series, and linear ODE 
models constrained by Lasso; (2) resampling. 57a 

 (1) Pearson’s correlation, mutual information, and CLR; (2) rank average. 58 

 
(1) Calculates TG responses in TF KO data, applies full-order, partial correlation and TF-TG co-deviation 
analysis; (2) weighted average with weights trained on simulated data  59a 

 
(1) CLR filtered by negative Pearson’s correlation, least angle regression (LARS) of time series, and TF 
KO/OE data; (2) combination by z-scores. 60 

 
(1) Pearson’s correlation, differential expression (limma, Gauss tail), and time series analysis 
(maSigPro); (2) Naïve Bayes. 61a 
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Complementary strengths & weaknesses

Similarity of predictions Network motif biases
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Wisdom of crowds

Community outperforms individual methods
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The aims of this project

• Understand different network inference approaches at a 
high level

• Are methods robust to variations in the data?

- Top 5 inference methods available on web platform 
(dream.broadinstitute.org)

- Evaluate performance robustness on subsets of the expression 
compendia (data subsampling)

• Can robustness be improved using bootstrapping?

- Run methods on subsets of the data and combine predictions

- Do you obtain a new best-performing method in this way? 


