Chapter 3

EPIDEMICS

Tn this chapter mathematical models will be studied that describe the spread of
epidemics in a population. Although great mathematicians such as Euler and
D. Bernonlli have already tried to describe the dynamics of epidemics by math-
ematical methods, the modern mathematical theory probably received impetus
when papers by Kermack and McKendrick (1927, 1932, 1933) were published.
Such models, even the most primitive ones, may help to find those points where
one may most successfully fight an epidernic or forecast how it will pass. We
deal first with the classical and simplest, the so-called SIR {Susceptibles, In-
fectives, Removed) model, then we consider the case of sexually transmitted
diseases and so-called SIS {Susceptibles, Infectives, Susceptibles) models. For
sexually transmitted diseases we treat the problem of pair formation in the hu-
man population. Finally, the spread of epidemics through space will be studied.
Important references in the field are Murray (1989) and Capasso (1993).

3.1 The Spread of Diseases and Suscepti-
bles/Infectives/Removed Models

These models are simple but still may yield some insight into the dynamics of
a contagious illness in a densely populated city, an army barrack, or a student
dormitory. Basic assumptions for such a model are: .

(i) the total population is constant; the epidemic does not have a recognizable
influence on population’ﬂumbers;

(ii) the population is “well stirred,” meaning that every individual has an
equal chance to meet any other member of the population; and

(iil) any person in the population who caught the disease either obtained
immunity or died (from the point of view of the individual this difference is far
from being irrelevant but for the model, horribile dictu, the effect is the same).

We denote the number of susceptibles, infectives and those who obtained
imrmunity (or died) called removed at time ¢ by S (t),1(t) and R(¢) , respec-
tively. We assume that susceptibles move into the group of infectives through




intection and a decrease in their number in unit iime is proportional to the
number of encounters of a susceptible and an infective individual and this, in
turn, is proportional to their respective numbers. Denoting the infection rate
by r > G, the differential equation governing the variations in the number of
susceptibles is then S = —rSJ1. The class of infectives is recruited from the sus-
ceptibles by incorporating those who leave the latter class, and it is decreased
by recovery from the disease {or death). Denoting the recovery rate by a > 0,
the differential equation for the infectives is I = #5T — al; finally, the recovered
follow the equation R = al. Thus, we have arrived at a 3D systemn of differential
equations

§ = —rSI, [=r8I—al, R=al. (3.1.1)

This system satisfies requirement (i}, where the total population has constant
size because by adding the three equations we get (S+ I+ R) =0, that is, the
sum of the sizes of the three classes N := S+ I+ R is constant. It is to be noted
that in this model there is no latent period for the illness; a susceptible person
who has contracted the disease becomes infective immediately. If incubation is
short this abstraction may be accepted. The initial conditions attached to the
system are Sp = 5 (0) > 0,Jo =1 (0) > 0,0 = R(0) with Sy + Iy = N. Usually,
one may assurme that the disease starts with a small number of infectives, that is,
Iy is small with respect to Sy. The basic problem is whether or not the namber
of infectives will increase at the beginning. We say that we have an epidemic on
hand if at the outset the number of infectives is increasing, which means that
people get infected faster than they recover. It is easy to give a condition for
that because from the second equation

I(0) = Io (rSs — @) > respectively <0,

according to

So > respectively < a/r.

From the first of Egs. {3.1.1) it is clear that S is always negative, so that S (t)
< Sp for t > 0. Thus, if Sy < a/r then I (£} = I (t) (rS () — a) < I (£) {rSp — a)
< 0 for ¢ > 0; this means that if at the very beginning the number of infectives
was decreasing this will remain. On the other hand, if the condition for an
epidemic holds at the beginning then the number of infectives will increase for
at least some time. The threshold parameter a/» is called the relative recovery
rate, which is the percentage of those recovered in unit time divided by the per-
centage of those infected by a single infective in unit time. We shall give here an
intuitive interpretation of the condition of the outbreak of an epidemic. First
it is to be noted that the reciprocal 1/a of the recovery rate can be interpreted
as the average infectious period of an infective or the average time needed for
recovery. This can be seen from the third equation-if we have just one infective

at tume ¢, that 18, 1 (I) = | then Aurng tne ime muerval 1/ 4 Lie BUuiver oL re-
covered will change by R{t+ 1/a)~ R(t) & R(t)1/a = I (t) = 1, meaning that
the single infective recovers. From the first equation during the tlme interval
1/a the number of those getting the infection is 5 (¢ + 1/a) — v S{t)1/a
= —{rfa) §(t). If this number is < —1, one infective passes on the disease
during his infectious period to more than one person, thus if (r/a} S (f) > 1,
implying that

S()?‘/(Z> 1, : (312)

then more persons get ill in unit time than recover; thus an epidemic breaks out.
The ratio r/a, called the contact rate, is the infection rate multiplied by the aver-
age infectious period. The contact rate multiplied by the number of susceptibles
gives the number of those infected by one infective during the infectious period
of the latter. We determine now the projections of the trajectories of system
(3.1.1) on the S, I plane. For this we divide the second equation by the first one
to obtain the differential equation of the trajectories, df/dS = ~1+a/{(rS) . It
is easy to integrate vielding, as the equation of the trajectories,

I=In(54")~ S+ec (3.1.3)

where ¢ = Iy + Sp — (a/7) InSp. It is easy to see that for all these trajectories
maxI (3) = I{a/r), provided-that a/r is < Sy (see Fig. 3.1.1 produced by
MAPLE).

Thus, we see that if the number of susceptibles is greater than this threshold
value at the start then the number of infectives will rise at the beginning until
the number of susceptibles decreases enough to reach this value. If the number
of susceptibles is less than the threshold value at the beginning, then the number
of infectives is going down right away. By dividing the first equation by the third
one, it is easy to obtain S as a function of R; expressing I in the third equation
by S and R and substituting S(R} = Sp exp( - Ra/r) obtains a first-order scalar
differential equation for R. Solving the latter by MAPLE, we obtain the number
of removed as a function of time (Fig. 3.1.2, thick line). Finally, the number of
removed per unit time {tl:m mortality in case of a lethal disease), that is, the
derivative of R with respect to time is shown in Fig. 3.1.2 (dotted line).

As the figures show even this simple model is able to help us in forecasting
the number of all those who will catch the disease during the epidemic, the time
when the number of infectives will be maximal, the time when the mortality
will be maximal, and the time when the epidemic may be considered to be over
etc., provided that we know the infection and recovery rates and the initial data.
Naturally, refinements can be made in several directions-to take info consider-
ation the incubation period, count the “carriers” who are not ill themselves but
spread the disease, and consider the age structure etc.
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Figure 3.1.1: The spread of disease using the SIR model (3.1.1} with total
population 1, infection rate r = 2, recovery rate a = 1, and relative recovery
rate a/r = 0.5; the number of infectives versus the number of susceptibles in
the first 10 time units of the outbreak (MAPLE).
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Figure 3.1.2: Thick line is the number of removed in the first 10 units of time
and the dotted line is the mortality (in case of a lethal disease} in the first 10
units of time I{0) = 0.05 (MAPLE).

Sexually Transmitted Diseases 67

3.2 Sexually Transmitted Diseases

Venereal diseases differ from other epidemics prevalent in the human population
in that the population is divided into two groups, males and females, and the
disease is normally transmitted only from a member of one of the groups to a
member of the other group, that is, males transmit the disease to fermales and
vice versa. Further, because no immunity is conferred by going through the
disease, if a person passes from the susceptible group to the infective one then
following recovery from the disease he/she becomes susceptible again. Models
without immunity are called SIS models. Naturally, if one considers AIDS
lethal then it does not fall into this category. The model we handle in this
Section considers a disease such as gonorrhea. Many mathematical models of
this particular illness were presented by Hethcote and Yorke (1984). We present
the simplest one.

We assume that the total population of sexually active males and females is
constant. The number of susceptible males and females at time ¢ 1s denoted by
Sy (t) and S, (£), respectively, and the number of infective males and females by
I (t) and I (t) . By assumption 51 () + Iy (t) = Ny, Sy (t)+ Iz (t) = Ny, where
Ny and N, are constants. The number of susceptible males decreases in unit
time by those who get infected by infective females and vice versa, the number
of males getting the infection in unit time is supposed to be proportional to the
number of susceptibles and to the number of infective fermnales. The number of
susceptible males/females increases by those who recover from the disease~the
number of those recovered in unit time is proportional to the number of infective
males/females. The number of infectives increases in unit time by those who
get the infection and decreases by those who recover. This way we arrive at the
following four-dimensional (4D} system of differential equations:

5"1 = —py S +aidy, S"g = —pgSaly + asly (321)

L = mSh-ahl, Ly=rSh—ab,

where 11, a1 and 79, ap are the infection and recovery rates of males, and females,
respectively (cf. system (3.1.1}). Takinginto account that the sum of susceptible
and infective males/femaleés is constant, this system can be reduced to a 21 one:

}:1 = T}(.Nl - fl)fz - a;.& p jg = Tz(Ng - IQ}I]_ - agfg . (322)

This system is such that if 7y = 0 then I, is positive and, similarly, if I = 0
then I, is positive. This means that the positive guadrant of the I, I plane is
positively invariant-no trajectory may leave the positive quadrant. The system
has two equilibria: (0,0) and °

(1, I2) = (N1 N2 — a1az/ (rir2)) [ (Na + an/71)
(N1 Ny — ara/ {r1r2)) / (N1 + az/r2))

with the last one in the positive quadrant iff N1 Ny — a1 [ (ryr2) > 0, or

(Nlnfag) (Ng’!’g/a.l} >1. (323}
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The last inequality has a clear intuitive meaning. The first factor on the left-
hand side is the number of males multiplied by the contact rate with respect to
males, that is the infection rate of males multiplied by the infectious period of
an infective female. Thus, it gives the number of males infected by an infective
fernale during her infective period. (To be sure, here Ny ought to be replaced by
the number of susceptible males but if the disease is not too widely spread the
difference is slight.) The second factor has an analogous meaning for females.
Hence, we see that the condition for the existence of an endemic equilibrium
(11,12) in the positive gquadrant is that on the average one infective shall infect
more than one person during his/her infective period. Naturally, the main
question is whether the epidemic free state (0,0) or the endemic state (1, Ip) is
stable. In order to be able to tell this we linearize the system at the two equilibria
and apply the Routh-Hurwitz criterion (see Theorem A1.1.2). At (0, 0) we leave
this to the reader as an exercise. It turns out by an easy calculation that if (3.2.3)
is reversed then the epidemic free state is asymptotically stable, if (3.2.3) holds
then it is unstable (as a matier of fact, a saddle point). The calculation for
the endemic state is more tiresome. From now on {3.2.3) is assumed. The
characteristic polynomial is

gy - py Maommsaflrars) (N; _ N2N2”5102[§7'17'2))

Nitaz/ra Noteifr
_ MNiNg—ayag f{rirs) NiNs—ayas/(rirs)
2 (N2 Nitasfrs a3 T3 Natar/ry —A

= M4 (al taz+n Nl — aras/ (rara) P Mo — araz/ (Tl?"g))

Ny +as/ry ? Ny+a1/m
_}_(NlNz —aras/ (rire)) (airaNy + agriNo + rira N1 No + aqas)
(N2 +a1/r1) (N1 + ag/rs) '

By (3.2.3) both the coefficient of A and the “constant term” are positive, hence
with Theorem Al1.1.2 the endemic equilibrium (if it exists in the interior of the
positive gquadrant) is asymptotically stable.

Conditior (3.2.3) of an asymptotically stable endemic equilibrium shows
clearly how the decrease of the average infectious period 1/a; and 1/aa, re-
spectively, and/or the infection rate 7y and r, respectively, may destabilize
the endemic state and lead to a disease-free state. If, for instance, we assume
that the average infectious period of a male is 1.5 months and of a female is 3.5
months, respectively, the respective infection rates are r; = 1.4-10~® per month
and r9 = 3.8-1078 per month, and both the total sexually active male and female
population are equal to 20 - 10%, then the left-hand side of (3.2.3) is 1.127 > 1
and the stable endemic equilibrium is ([, fs) = (0.515-10°,1.27-10°%). If the
average infectious period of women could be brought down to 2.5 months then
the lefi-hand side of (3.2.3) would become 0.805 < 1, the endemic equilibrinm
would disappear, and the disease-free state would become stable.

Fair Formation v

3.3 A Model of Pair Formation

Farly models on the dynamics of sexually transmitted diseases including the
one treated in the previous Section have the disadvantage of being based on the
assuraption of “well stirredness” of the population, that is, it s assumed that
each member of the population has an equal chance to meet any other member
and mating is completely random. This assumption is clearly false for the
human population, although there might be small highly promiscuous subgroups
in which this assumption may be a not completely incorrect approximation of
prevailing behavior. To better approximate reality one has to study how pairs
are formed, how a sexnal partnership emerges and how it ceases to exist. If a
fermnale and a male form a pair and they do not carry the disease then they can
be considered imymune until one of them does not have contact with another
partner. The duration of these partnerships and the time interval between two
partnerships of a given person are to be taken into account: If the problem of pa:ir
formation has been settled then one may build a model based on it to describe
the spread of a sexually transmitted disease. Several models of pair formation
can be found in the literature, with some of them dividing up the population to
several less or highly promiscuous subgroups in which pair formation is governed
by different laws. We present here a fairly simple one due to Dietz and Hadeler
(1988) (see also the references therein} which is highly instructive, and then we
shall describe how an epidemic model can be built upon it.

Denote the density of single females and males by z and g, respectively,
suppose that their densities are increasing by constant rates « and sy, respec-
tively, due to the aging of younger generations into a sexually active population
(we do not consider here dependence of the birth rate on the deunsity of the
population) and that these densities decrease due to deaths proportional to the
numbers with mortalities u, and py, respectively. Denote the density of pairs
formed by a female and a male by p. At this point we must decide what we
consider a pair-how we define a pair. If we want to use the model for describing
the spread of sexually trafismitted diseases then the social or religious aspects
of pair formation have to be disregarded. We say that a pair is formed when
a female and a male have sexual contact with each other the first time and
this pair ceases to exist the first time one of the members has sexual contact
outside the pair. Denote the divorce rate (considered to be a positive constant)
by o. The number of single females and males increases by one when a pailr
separates, and the number of single males and females, respectively, increases
by one when the female or male member of a pair dies. Pairs are recruited from
the single population. The rate of pair formation is a function of z and y; it
is sometimes called the marriage function and will be denoted by ¢ {z,y}. 1t
has to satisfy certain natural conditions: (i) it is defined for nonnegative values
of z and y and must be zero when either the females or the males are absent,
p(0,y) = @ (2,0) = 0; (ii) it is increasing {or, rather, not decreasing) if the
number of single females or males is increasing, ¢y, @y > 0 ; (iii} if the densities
of both single fernales and males are increasing « > 0 times the rate of pair for-
mation also increases « times; this means that the function ¢ is homogeneous of
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degree one: ¢ (az, ay) = ap (2, y); and {iv) ¢ is symmetric, ¢ (z,y) = ¢ (v, 2).
With these assumptions and notations we arrive at the following system of dif-
ferential equations: :

T o= K- gt (py+o)p—e(2,y)
v = Ky —pyy+ (st o)p~e(z,y)
po= —(petpyto)ptelzy) . (3.3.1)

Here we have also facitly assumed that the mortality of singles is equal to the
mortality of those in pairs, even though sociological data suggest that people in
permanent partnership live longer than singles. There are several possible ways
to choose a marriage function that satisfies conditions {i)-(iv); here we suppose
that the rate of pair formation depends linearly on the density of that sex that
15 in minority. The choice representing this assumption is

. _fopx, i (zy) € Ky
wle,y) = pmin(z,y) = { o i (e.y) € Ky (3.3.2)
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Figure 3.3.1: The marriage function “minimum” {MAPLE).

where Ky = {{z,y):0<2 <y}, Ke = {{z,7): 0 <y <z}, and p is a posi-
tive constant. The graph of this function, which looks like the part of 2 roof,
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can be seen in Fig. 3.3.1 (produced by MAPLE). It is made up by two planes
intersecting over the line y = z of the plane =, v.

In most socteties the number of females is increasing faster than the number
of males and the mortality of women is lower than that of the men. Therefore
we assume In the sequel that

Ky > Ky and py < ply . 7 {3.3.3)

This way we arrive at the so-called male dominance model. Under condition
{3.3.3) the set K, representing female majority is positively invariant, that is,
no trajectory may leave K, because on the boundary = = y we have

(F—y) = Ko Ky~ @+ pyy + (ly — po)p
> gy — pg (2 — )+ (py — pa)p
Kz = Ky + (y — piz}p 2 0,

il

and thus, if the number of females was greater than the number of males, this
stays so, and on the boundary y = 0 we have from the second equation of system
(3.3.1): ¥ = &y + {pa + o) p > 0 . In this case we may replace the function ¢
by py in the system over K, and we have to deal with the linear system

& = ke — P — py -t (py HO)p
g = sy—(py+py+{pt+o)p
P o= py—(us+pmy+o)p, (3.3.4)

(z,y) € Kz, p> 0. This model can be explicitly calculated. It has a unique
equilibrium:

(Z,4,5)
_ (’f_xmﬂ_y P Ky pocbpy +0 Ky p )
B fy pe iy T+ P py fle iy 0+ pry po Fpy o Fp

It is easy to see that because of (3.3.3) (£,§) € K. We note that in equi-
librium the number of females and the number of malesis f = Z + 5 = xo /pte
and M = §+ P = ky/py < f , respectively. A simple calculation yields the
characteristic pelynomial of the coefficient matrix of system (3.3.4), it is

A% 4 A (pg 4 2y + 0+ p)
A (pe (pe + 2ty + 0+ p) + pty (e + py + 0+ )
ottty (pa + gty + 0+ p)

All the coefficients are positive and one may check easily that condition
(A1.1.1) is also satisfied, so that the equilibrium (Z, 7, 5) is globally asymptoti-
cally stable in K; x Ry.

From the point of view of the spread of disease the average length of a part-
nership or the mean number of partners during a lifetime is crucial. In order
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to estimate this we determine first the mean lifetime of a female and a male.
In complete analogy to how the average infectious period has been shown to be
the reciprocal of the recovery rate (Section 3.1 preceding (3.1.2)) from system
(8.3.1) we obtain that the mean active lifetire of a female and a maleis 1/p, and
1/ sy, Tespectively. For instance, if there are no pairs, males are not recruited,
and at time ¢ there is just 1 male present, then at time  + 1/pt, the number of
males present will be y (1 + 1/ My () + 9 (8) (/) = 1 —py -1 (L/py) = 0.
Similarly, the average duration of a partnership is 1/ (pe + py + o) . If no pairs
are present at time £, and there is just 1 male, then from the third equation of
system (3.3.4) p(t+1/p) —p(&) = pt+1/p) m P () (1/p) = p-1-(1/p) = 1,
and thus, the average time needed for the formation of a pair { for finding
a partner) is 1/p. As a consequence, the time consumed by the search for a
partner plus the time spent in this partnership is 1/p + 1/ (ge + sy + o) =
(ps + py -+ 0 + 9} / (p (g + sty + o)) . The product of this duration and the av-
erage number of partners of a male during lifetime N, must be equal to the
mean active lifstime of a male:

Ny(pe+py+o+p)/(plpe+puy+0))=1/pty .
“Hence, the average number of partners of a male during lifetime is

P Pethpyro

VT py e iyt otp]

Tt is reasonable to suppose that the ratio of the average number of partners
of a fernale and that of a male is equal to the ratio of their respective lifetimes
divided by the ratio of their numbers in equilibrium:

Ny Vpy f Ry =

by (3.3.3).
Dietz and Hadeler (1988) set up the model of pair formation and then built
a model for the spread of the disease. Due to lack of space we can not present
this model in detail here but we shall describe its main features. The population
is divided into 8 groups: noninfected and infected females and males and pairs
in which both partners are noninfected, both are infected, only the male or only
the fernale, respectively, is infected. This way a system of eight dimensions
is constructed in a fairly straightforward way. If there is no infection in the
population the system reduces to system (3.3.1) or (3.3.4). A condition can
be given for the stability of the disease-free equilibrium of the latter system
given in the preceeding from the point of view of the eight-dimensional (8D)
system. If one assumes that the rates of increase, death, infection, recovery
ete. do not depend on the sex one obtains a simpler five-dimensional (5D)
system of differential equations. Even in this lower dimensional model one may
get explicit results by analytical methods only if recovery is excluded (which is

the case now if one tries to apply the results to HIV). Under this assumption
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a threshold condition can be given that implies the existence of an endemic
equifibriam. With the data assumed by the authors 4 years of average duration
of partnership is the threshold below which the endemic equilibrium persists.
Four years of duration corresponds to an average of 12 partners per 50 years of
active ifetime.

3.4 The Spread of Epidemics in Space

In the classical models of epidemics the “well stirredness” assumption made at
the beginning of Section 3.1 plays a crucial role. In the previous Section, as
long as sexually transmitted diseases were involved, we got xid of the “random
mating” part of it by taking into account the dynamies of pair formation in the
human population. Up to this point, however, the population was considered
to be concentrated in one point and it was not taken into account that, in
fact, the population has a spatial distribution on a continent, in a country, or
even in a large town. In previous centuries diseases such as plagne, cholera,
or influenza swept over continents like a wave spreading from one place to the
neighboring one and so on. To be sure, in the twenty-first century, distances
probably are nof as important as they were because a few passengers on a plane
from, for example, Hong Kong who are carrying influenza may bring it into
an American or European capital before it even reaches Shanghai, However, it
remains undeniable that some diseases spread from place to place and people
who live far away from a disease source may have a better chance of avoiding
epidemics than those who live near the nucleus. Therefore, in this Section a
model will be treated in which the spatial distribution of the population will
be taken into account. This model was used by Murray (1989} to describe the
“Black Death,” the bubonic plague that swept through Europe from 1347 to
1850 and killed about one-quarter of the population (see Langer, 1964). We
treat the model somewhat differently here but recommend reading of the vivid
description of the case in the literature quoted.

We dencte the areal density of susceptibles and infectives at time 7 and
at place = by S (¢,%) and I (¢,z), respectively, and the infection rate and the
mortality of infectives by » > 0 and a > 0, respectively. A SIR model is to
be built but the equation for the removed is not written out and it is assumed
that susceptibles and infectives move around, following Fick’s diffusion law (see
Appendix 3.2) with a diffusion rate D > 0. The following system of partial
differential equations describes the dynamiecs:

o3 = —rSI+ DAS, o = pST —al + DAT, (3.4.1)
at ot

where A is the Laplace delta-if the space is 2D {the surface of a part of the earth
considered to be a plane) and z and y are Cartesian orthogonal coordinates
82/82* + 6%/8y*, and if the space is 1D (straight line in a certain direction)
just the second derivative with respect to the spatial variable 82 /8z%. If there
is no diffusion, P = 0 then we get back system (3.1.1) without the equation
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for the removed. Although the problem could be treated in the realistic two
spatial dimension setting, in order to simplify the mathematics we are to ireat
it by assuming a 1D space. This is surely an abstraction but it still may give an
ingight into the dynamics of the propagation of disease if we suppose that the
epidemic propagates from the nuclens uniformly in every direction. Further,
we suppose that the domain where the disease propagates Is infinite without
boundary. Although the problem could be treated also by assuming, say, no
flux boundary conditions, the complications at the boundary would increase the
mathematical difficulties without much gain. It is assumed that the diffusion
rates of the susceptibles and the infectives are the same. One may say that
this is not too realistic because the sick do not move around. However, during
the incubation period there is no difference in behavior among those who carry
the disease and those who do not. During large plague epidemics in Europe
there was massive emigration from the large towns, which served to accelerate
propagation {the most famous literary evidence of this is, perhaps, the setting
of Boccaccio’s Decameron, in which a company of gentlemen and ladies who
fled the plague for a country house tell each other spicy stories). The plague
was carried also by rats, and no one knows now what was the diffusion rate of
healthy and sick rats. In model (3.4.1) the susceptible population is considered
to be constant if infectives are not present and on a far away boundary there is
no in- and outflow of people, that is, no birth and death process apart from the
epidemics is taken into account. We suppose that those who get the disease die;
in case of the plague, indeed, 80-90% of those who fell il did not recover. Under
all these conditions we are to treat system (3.4.1) in one spatial dimension,

as ? o1 27

5 = —rSI + D% , 5= rSI —al —i—D% . (3.4.2)
We may simplify the equations by changing the scales introducing the new
variables

S I S\ P

h=— V= “S“g, T= ‘i"Set, Yy = <—BE> x, (343}
where Sp is the initial value of susceptible density. A simple calculation yields
the system in the new coordinates:

8h &h Bv &

= —hy + =hv—b

wém;: prvecs H —8? s 5{“— 1 + W y (3v44}

where b = a/(rSp), its reciprocal rSy/a is the contact rate multiplied by the
density of susceptibles, giving the density of those infected by a unit density of
infectives {cf. Section 3.1 and especially the discussion on condition {3.1.2)).
The equilibria of system (3.4.4) are (h,v) = (ho,0) with arbitrary ke > 0;
however, (k,v) = (1,0) corresponds to the initial value (S, I} == (S, 0}. Rather
than treating system (3.4.4} in a general way, we try to find only those solutions
that describe the spread of the disease in the form of a wave, that is troveling
wave solutions. These are the solutions that depend on + and y only through
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the expression z = y ~ ¢7 with some constant ¢ > 0. In the “space-time” plane
y, T along the straight lines y — ¢7 = 7z with a constant z the state of the system
is the same and the values of h,v are constant. If we pick two points on one
of these straight lines (y1,71) and (y2, ), that is, y1 —em1 = 2 = ys — em
and 1 < 79, for example, then this means that if the system was in a certain
state at moment 7y at place y; then it will be in the same state at moment 1 at
place y5. This obviously means that the state of the system is propagating along
these parallel lines with wvelocity ¢ = (y2 —w1) / (ra — 7). If we are ingerested
in solutions of the form A (z) = h{y —¢7), v{z) = v(y — ¢7) then the system
reduces to the system of ordinary differential equations:

d*h dh d*v dv

F‘FCg—h’UIO, E%Ca%‘(h—b)’uzo (345)
The equilibria of this system are also (hy, 0); in particular, (1,0} interests us.
The question is, what are the solutions doing as z tends to infinity and to minus
infinity? If place y is fixed then as time T tends to infinity the variable z tends
to minus mfinity and vice versa and as T tends to minus infinity z tends to plus
infinity. System (3.4.5} will be linearized at (1,0} and the eigenvalues will be
determined. First we put the system into Cauchy normal form introducing the
new phase variables,

= h, ©y = h, Zz = v, ra=1.
The derivative with respect to z is dencted with an overdot and we obtain

)] = g, Iy = —cZy + E1%3,

2z = 14, ty= —cza+ (b—2z1) 23 .
Linearizing at {1,0) the characteristic polynomial turns out to be

pA) =X(e+ N (MNP +eA+1-08) .

The eigenvalues are 0, —, (1/2) (~¢/c?+4(b— 1) ). That one of the eigen-

values is zero is no wonder because the equilibria fill in the axis h, which is the
center manifold of dimension one of each (see Appendix 2.3). The third and
fourth eigenvalues have negative real parts iff a number < ¢? stands below the
square root, that is, if & < 1. Assuming this we must also suppose that the
expression below the square root is nonnegative, that is, ¢ > 2+/1 — b . Other-
wise the solutions of the linearized system and with themn the solutions of the
original nonlinear system would oscillate around (1,0) with z; and z3 assuming
negative values that have no meaning. Under these assumptions the solutions
tend towards the equilibria on the axis h as z tends to infinity, that is, time
tends to minus infinity. This means that if the system is perturbed out of the
equilibrium (1,0} by a small positive initial value of infectives v then the solu-
tions tend away from the equilibrium and a traveling wave of epidemics starts to
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propagate as time is increasing. Summing up what has been established already
here, a traveling wave of epidemics sweeps through a region if a/ (rSp) < lor

ESO >1, (3.4.6)

that is, if the density of those infected by a unit density of infectives during
their infectious lifetime is greater than one. The minimal velocity of the wave
sweeping through the population in the region is ¢ = 2+/1 — b in the transformed
coordinates, or as ¢/t = (TSDD)I/Z y/T,

Craal — 2\1 TS(}D - G,D (3-4-?}

in the original spatial and time scale.

We try to fit this model to the “Black Death” epidemic of 1347-1350 that
swept through Europe, starting from the port of Genoa (Genova earlier), on
the western coast of Italy and reaching Russia, the Baltic, and Sweden in only
3 years. Most of the data used here are taken from Murray (1989). Eighty
to 90% of those who contracted the plague died on average within 12 days,
so that the infectious period including the incubation is 1/a = 12 days =
0.033 years, meaning that a = 30 year~'. The infection rate is estimated
at r = 0.4 mile?/year. The population density of Europe was at that time
estimated to be 50/mile?; however, because not only men but also rats carry
the fleas that carry the disease one has to increase this number considerably,
s0 that we double this figure to Sy = 100/mile®. This yields b = 0.75. From
these data we obtain for the minimal transformed velocity of the epidemic wave
¢ = 1. By Langer (1964) the average real velocity was crea = 400 miles/year.
From Eq. (3.4.7) we may calculate the diffusion rate as D = 4000 mile? [year.

We have solved system (3.4.5) by PHASER using these data with two sets
of initial values near {(h,v} = (1,0) and small initial derivative values. The
result is shown in Fig. 3.4.1. In plane h, v the projection of the trajectory shows
how the density of susceptibles falls from 1.05 or 0.96, respectively, to 0.75 and
0.65, respectively, as the epidemic sweeps over the land. This corresponds to
the estimate mentioned at the beginning of this Section that /s 25% of the
population died in the epidemic. Then we show the graph of the susceptibles
and infectives as functions of z. The horizontal axis z directed to the right is
at the same time the axis y of the spatial coordinate at a fixed moment ¢; far
to the right-hand side the population is not yet affected and is at iis original
level and far to the left-hand side the epidemic had already swept through and
the population declined. The horizontal axis directed to the left corresponds
$0 the time axis 7 at a fixed place y; far to the right, there was no epidemic
yet and so population density remained at the original level; over time, that is,
toward the left, the effect of the epidemic began to be felt and the pepulation
began to decrease. One may look similarly at the graph of the infectives. At the
height of the epidemic the maximal density of infectives was 0.034, and 0.022,
respectively, meaning that &~ 3% of the population was infected at the same
time.
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Figure 3.4.1: The traveling wave of an epidemic: system (3.4.5) ¢ = 1,b == 0.75.
{(A) The trajectories in the plane h, v of susceptibles and infectives starting near
{1.05,0) or (0.96,0) and ending at (0.75,0) or (0.65,0), respectively. (B} the
graphs of the functions h(z) of the two solutions; and (C) the graphs of the
functions v{z) of the two solutions; z ~ y ~ —r (PHASER).



