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Preamble 
 

The PhD subject, as proposed by Pr. Victor Jongeneel, is centered on the analysis of 
the copy number polymorphisms of cancer testis genes and their association with cancer. 
Cancer Testis (CT) genes are mainly expressed in the germ line and in various types of 
tumors. To date, 70 CT families have been identified. The biological function for most CT 
genes remains unclear, although experimental data indicate that some are involved in the 
meiotic process. 
 

Improving our understanding of CT genes is crucial as they are targets of choice for 
cancer immunotherapy and for the development of cancer vaccines. We propose to study the 
polymorphisms of CT genes and to investigate the relationship between CT variation and the 
development of cancer. The first step would be to identify copy number polymorphism in 
known CT genes, the second to derive the status of CT genes in normal and cancerous 
patients then to investigate the link between CT polymorphism and oncogenesis.  

 
Since little is known about the copy number polymorphism of CT genes, the first step 

is to constitute a polymorphism dataset. Through a collaboration with both the CHUV and 
GlaxoSmithKline; and supervised by Pr. Sven Bergmann (thesis co-director) and by Pr. 
Jacques Beckmann; I have access to the CoLaus dataset, a population based health survey 
of about 6000 individuals from the Lausanne area. In this report, I am presenting my work on 
cataloguing rare and common copy number variants in the Swiss population. 
 
 

Background 
 
 Genetic variation in the human genome takes many forms ranging from large 
chromosome anomalies to single nucleotide changes (SNPs). Deletion, insertion and 
duplication, termed copy number variations (CNVs) have been found genome wide in the 
human genome [1-6] and in other genomes such as primates [7, 8].  
 A CNV is commonly defined as a DNA segment longer than 1Kb that is present at 
variable copy number compared to a reference genome [9, 10]. The link between CNVs and 
disease has been previously established [11]. Copy number plasticity is typical of cancer 
cells [12]. Such genomic aberrations were identified decades ago using array-based 
comparative hybridization [13]. It has been demonstrated that CNVs near oncogenes or 
tumor suppressor genes can affect the gene expression level or result on the expression of 
chimeric fusion genes [14, 15]. Cataloguing CNVs involved with clinical outcome is part of the 
international effort DECIPHER [17]. However the number of CNVs and positions in the 
human genome are still underestimated and their contribution to complex diseases such as 
heart disease is unclear. 
 
 CoLaus (Cohorte Lausannoise) is a population based health examination survey 
started in 2003 to study the genetics of hypertension and cardiovascular disease [18]. More 
than 6000 individuals (35-75 years old) from the Lausanne area participated in the study.  
Over 159 phenotypic measurements have been collected by the CHUV; in addition, 
genotyping has been carried out on Affymetrix 500K SNP chips [19].  
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 One of our primary interests in analysing CoLaus is to establish a comprehensive 
CNV map in order to carry out association studies to determine their impact on the etiology of 
common disorders. The CNV research community agrees that many CNVs are to be 
discovered and their frequency in different population to be estimated. We take the 
opportunity with our large population dataset to estimate the fraction of the genome that is 
effectively variant, to look at both rare and common CNVs and compare them to each other. 
We also investigate how to estimate CNV boundaries with unsupervised approaches.  
 

Results 

CNV analysis pipeline 
 

A complete bioinformatics pipeline has been set up to perform the CNV analysis of the 
Affymetrix 500K platform. This pipeline can be decomposed into three major steps: 
 
1. Normalizing and summarizing the probe hybridization intensities with the Affymetrix 

GeneChip® Genotyping Analysis Software [20] software. 
2. CNV calling using the Copy Number Analysis Tool (CNAT) [21]. This tool includes 

additional normalization and smoothing procedures before applies an Hidden Markov 
Model (HMM) segmentation algorithm that categorizes each SNPs of a given 
individual as being either deletion (homozygous or hemizygous), copy neutral (non 
variant) or gain (simple gain or multiple gain). 

3. Combining the CNV profile of all individuals into a map of common and rare variants at 
the population level.  

 
Considering the amount of individuals to be analysed, considerable effort has been put to 
parallelize as much as much possible the heavy computational steps (steps 1 and 2) on the 
high performance computing cluster Vital-IT [22]. Provided there is enough storage (which 
can be a limitation), analysis of the complete cohort can be done in less than a week. The 
pipeline also permits to do genotype calling (using either the DM or the BRLMM algorithms 
[21]). Step 3 has been implemented in the Matlab programming language [23] is extremely 
fast to run (less than 1 hour). 
 

Improving the normalization  
 

A CNV in a test individual is relative to a reference genome, when doing CNV analysis 
of tumours the reference can be from a normal cell from the same individual. Using a pool 
reference makes sense when analysing healthy individuals. Affymetrix recommendations are 
to use 25 individuals as references. Therefore we initially carried out the analysis with 30 
unrelated CEU references[23]; gender matched with the test individuals. We demonstrated 
that such sample size is too small and leads to strong biases (figure 1).  Another technical 
problem was that CoLaus individuals have been genotyped in four different centres.  

By randomly selecting equal proportion of CoLaus males and females for each 
genotyping centre, we accounted for the bias due to technical differences between centres 
and corrected completely for the gender differences. But this implied we could no longer 
predict CNVs on chromosome X due to the gender mixed reference panel. After testing, we 
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found that using 280 references was producing significantly better results than the initial 30 
references (figure 2). 
 

Combining CNV from individuals at the population level 
 
 A recurrent problem for CNV discovery is in combining information from individual 
level CNVs into a population consensus. So far researchers have been using ad-hoc 
methods such as when two CNVs overlap each other by a minimal threshold then they are 
merged together into a CNV region. But in a large population, one should only consider 
highly confident CNVs and have some prior knowledge about the population in order to set 
the appropriate threshold and avoid over-estimating the CNV regions.  
 A solution is to split CNVs into consensus segments and to retain the frequency 
information for each segment. Such merging procedure (figure 3) reduced the data 
complexity from 500k SNPs to about 21k and 39k regions for the CNAT total and allelic 
approaches, respectively (Figure 4). These regions can be stratified by variation frequency 
(by counting the number of distinct individuals that have a copy number state different from 
the diploid case). 
 Based on the variation frequency, we were able to stratify regions. The spectrum of 
variation frequency indicated that rare variant regions (less than 1% frequency) were more 
numerous than common regions (>1%).  Interestingly the rare fraction was comparable 
between the two CNAT approaches. However CNAT allelic was able to detect more common 
variant regions (covering 7.7% of the genome as opposed to less than 1% with CNAT total). 

We observed that long variants tend be rare (figure 4). The average size of rare CNVs 
is 42 and 36kb for CNAT allelic and total respectively, whereas common CNVs are 27kb and 
12kb long. Such observations can be explained by the fact that long CNVs will more likely 
affect the phenotype, by affecting gene regulatory elements or disrupting a gene. Therefore 
those long CNVs are more likely to undergo strong purifying selection pressure.  

Testing CNV algorithms  
 
 To test CNV discovery algorithm, we developed a powerful test that uses relatedness 
between individuals. Given that family-related individuals are available in the cohort, one can 
check whether significant distinction on the CNV profile is made between pairs of related 
individuals compared to random pairs. CNAT implements two methods to call CNVs, the total 
and the allelic approach. Total is optimized to reduce the noise but is biased toward the copy 
neutral state whereas allelic is optimized for this bias but at the cost an increase in the false 
positives rate. 
We observed that allelic made significant distinction between related and unrelated pairs 
whereas total was not able to distinguish at all between these two distributions (figure 5).  
This demonstrates that allelic produces CNV calls that better reflect the relatedness of the 
sampled individuals and therefore is likely to produce more reliable results than CNAT total 
approach.  
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Conclusion 
 
 We have catalogued a high resolution map of CNV in the Swiss population. We found 
8436 and 356 common regions (regions > 1% frequency) with CNAT allelic and total, 
respectively (total being a subset of allelic). We found that rare regions (frequency <1% and 
present in more than 2 individuals) are more numerous than common regions (22710 and 
12595 regions for CNAT allelic and total respectively).  
Moreover rare regions tend to be longer than common regions. Depending on which 
functional genomic elements (gene promoters, enhancers, transcription factors…) are 
contained within rare regions. These might undergo strong selection pressure. Regions that 
either confer selective advantage or remain neutral may be fixed in the population. A 
population genetics study using different ethnicity and comparative genomics will give more 
power to explain the history of common variations and possibly to date when the variation 
was “fixed” in the population. 
 
 Our merging procedure produces conservative CNV regions and reduces greatly the 
data complexity. It does not require using any ad-hoc thresholds and is platform-independent 
thus can be applied to any other SNP arrays. We are now developing a more sophisticated 
approach whose preliminary results indicate a significant improvement for complex and 
common regions.  
 
 In the absence of proper technical replicates, identifying related individuals based on 
their CNVs provides a powerful and innovative test to assess CNV discovery algorithms.  
Base on this approach, we demonstrated that the CNAT allelic performs better than CNAT 
total. This is important because only the CNAT total approach is implemented on the 
Windows CNAT GUI. In contrast CNAT allelic is available via UNIX command line.  
 
 Since both chip platforms and methods evolve rapidly, benchmark reviews become 
very rapidly obsolete. It is therefore important that we continue our efforts to develop 
validation tests and filtering procedures. Also in the context of very large cohort, analysing 
and validating rare CNVs is definitely not a trivial task. Very likely, it may be necessary to 
process them differently from the common CNVs. We will investigate applying more stringent 
criteria such as keeping the intersection of total and allelic rare CNVs. 
 
 Taking into account the common regions, we found that more than 7% of the genome 
is variant. This alone demonstrates that there are a lot of common CNVs to be discovered. 
Recent studies are also converging to the same conclusion and higher resolution platforms 
such as Affymetrix 6.0 are being developed to interrogate the genome even more 
comprehensively.  Since CNVs encompass more nucleotides than SNPs and SNPs explain 
so far but a small fraction of the phenotypic variation, one can investigate though genome 
wide association studies the impact of CNVs on disease. Once we completed a high-quality 
CNV map, we plan to perform GWA studies on the Colaus phenotypes and clarify the link 
between CNVs and cardiovascular diseases. 
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Perspectives and future work 
 
 

Extending the Copy Number Polymorphism catalog 
 
 In addition to the CoLaus project, CNV analysis is in progress on the EuroCHAVI 
cohort, an HIV-infected cohort composed with about 1200 individuals genotyped on the 
Illumina 550K platform. Also in collaboration with Pr. Mehdi Tafti, we are mining for CNVs in 
a case and control study including 500 narcoleptic patients and about 250 controls. Such 
studies will greatly complement the copy number polymorphism list from the CoLaus study 
and be of use to study CT genes, in particular the ones located on the autosomes.  
 

A custom chip covering CT genes for CNV and transcriptomic analyses 
 
 Because SNP coverage on chromosome X is poor on the current arrays, we have little 
power to detect CNVs on X.  Since many CT genes are present on this chromosome, we are 
designing a custom oligonucleotide chip to perform CNV analysis. The aim is to cover all 
known CT genes at high resolution with 60 mer probes.  
This work is done in collaboration with Dr. Brian Stevenson and Dr. Christian Iseli. Such chip 
will be very useful to analyse both normal and cancer cell lines available within the Ludwig 
Institute. Then comparing the polymorphisms of normal and cancerous cell lines will help to 
find variants that might be correlated with oncogenesis.  
By covering different gene transcripts, it will be possible to quantify the amount of transcripts 
(reversed to cDNA) that hybridize to the chip and thus to study the transcriptomic profile of 
CTs. Combining CNV and transcriptomic profiles of CTs will help to derive their status in 
healthy and cancerous patients.  
 

Comprehensive genomic profiling of melanomas 
 
 As part of a big collaboration, headed by Dr. Christian Iseli, between the Ludwig 
Institute, CHUV, Universities of Lausanne and Geneva; we plan to perform a comprehensive 
genomic profiling of melanomas.  
This project includes edge cutting genomic methodologies such as 1) array CGH, SNP 
arrays and karyotyping to study genomic rearrangement; 2) to study methylation pattern 
using oligonucleotide arrays; 3) to search for mutations in protein-coding genes by sequence 
capture and 4) to identify aberrant splicing by transcriptomic profiling using ultra high-
throughput sequencing.  
My contribution in this ambitious project will be on analysing micro-arrays (both CGH and 
SNP arrays) and data from sequencing for structural variations. We expect that this 
integrated analysis will identify novel genetic alterations associated with melanoma and 
potentially provides new insight for molecular therapies. 
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Annexes 
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Figure 1: principal component analysis on the CNV profile of the CoLaus 
individuals. 
Using normalization with 30 unrelated CEU individuals leads to differences 
between CoLaus males and females. Also differences between individuals 
genotyped in different centers are observed (the blue and green dots clearly 
separate from the red and black dots). 
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Figure 2: Normalization using different number of references (from 30 references to 280 with equal proportion 
of males and females) from a single genotyping centre (centre1 where 615 CoLaus individuals have been 
analysed). The box plots represent the distribution of Euclidean distances between pairs of the same 
individuals normalized with two independent reference panels having the same number of references 
(“Replicates” group) and distance between random pairs of individuals (“Random” group). 
To compare the 30,120 and 200 reference panels, the distance has been calculated from 10 iterations using 55 
individuals. The distance distribution for the 280 reference panel has been calculated from 55 individuals only 
once (no other iteration was possible). This explains why the variance is bigger in this panel. 

Random 
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Figure 3: Workflow to merge SNP CN prediction from individuals into regions of variation  
Regions composed only by SNPs in copy neutral states are designed as monomorphic regions. 
The variation frequency is expressed as the percentage of individuals having non-copy neutral SNPs in a 
given region divided by the total number of individuals. 
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Figure 4: number of regions (stratified by their population frequency) found by the CNAT 
approaches total and allelic. The percentage next to the bars correspond to the fraction of the 
genome covered by the “common”, “rare”, “very rare” and “monomorphic” regions. 
The table gives the mean region length in Kb for each strata of frequency 
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Figure 5: distinguishing between related and unrelated using the CNV profile 
 
A, B: pairwise distance between pairs of individuals defined as Euclidean distance using the copy number state 
at each SNP. Pairwise distances have been computed for the 5 pairs of replicated individuals (also called twins) 
and for 100 pairs of unrelated individuals. 
Based on a T test between these two distributions, allelic demonstrates significant distinction between related 
and unrelated individuals (-log10 P value =2.958) whereas total is not able to distinguish (-log10 P value = 1.38). 
C, D: in blue, empirical distribution of –log10 P value from T test between 5 values selected randomly versus the 
remaining 100 values. The raw P value indicates how robust the observed P value (in red) is. This raw P value is 
equal to the number empirical P values (from the blue histograms) that are better than the observed P value, 
divided by the number of tests. The allelic raw P value is 0.0004 and confirms observation made in A is robust. 
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