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1 Abbreviations 

AUC   Area Under the Curve 

CBS   Circular Binary Segmentation 

CGH   Comparative Genome Hybridization 

CNAT   Copy Number Analysis Tool 

CN   Copy number  

CNP   Copy number Polymorphism 

CNV   Copy Number Variation 

CT   Cancer-Testis genes 

EBV   Epstein-Barr virus 

FISH   Fluorescence in situ hybridization 

HMM   Hidden Markov Model 

LOESS   Local Weighted Polynomial Regression 

FPR   False Positive Rate 

PBL   Peripheral Blood Leukocyte 

PCA   Principal Component Analysis 

PCR   Polymerase Chain Reaction 

QC   Quality Control 

ROC   Receiver Operating Characteristics 

SNP   Single Nucleotide Polyphormism 

TPR   True Positive Rate 
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2 Introduction 

Genetic variation in the human genome takes many forms ranging from large chromosome 

anomalies to single nucleotide polymorphisms (SNPs). Deletion, insertion and duplication events 

giving rise to copy number variations (CNVs) have been found genome-wide in the humans ([1-8]) 

and other mammals ([9-12]). These genomic variants can impact on both somatic and germline 

genetics. The link between CNVs and inherited diseases has been previously established ([13-15]). 

Copy number plasticity is typical of cancer cells ([16]). Such genomic aberrations were identified 

already more than a decade ago using array-based comparative hybridization ([17], see also [18]). It 

has been demonstrated that CNVs near oncogenes or tumour suppressor genes can affect gene 

expression levels or result on the expression of chimeric fusion genes ([18, 19]). CNVs can affect 

gene expression in apparently healthy individuals ([20]) and initial evidence has also been provided 

that CNVs could shape tissue transcriptomes on a global scale ([12]).  

2.1 Method for CNV detection 

CNV detection can be made using different experimental techniques. Classical methods in 

cytogenetic such as karyotype were used to detect whole-chromosome aneuploidy but did not allow 

identification of CNVs, which were beyond their detection capacities. FISH and PCR-based 

approaches are reliable techniques to identify CNVs on small loci. Although these techniques are 

routinely used for CNV validation, they lack the throughput required for genome-wide analysis.  

Tremendous progress has been made with the advent of micro-arrays ([21], [17]) that now enable to 

interrogate with up to several millions of probes the genome for copy number change. One can 

notably differentiate between array comparative genome hybridization (CGH) and Single Nucleotide 

Polymorphism (SNP) arrays.  

A CGH experiment consists in hybridizing in competition two genomes: a test and a reference. Each 

genome is labelled with a different dye (red or green), subsequently to hybridization on the array, a 

ratio green versus red is computed. Significant shift from the baseline (unit ratio or zero log ratio) 

reflects copy number changes. CGH is now a well-established technique for CNV analysis and is 

used routinely for clinical diagnosis.  

With SNP arrays, DNA usually corresponding to a single genome is hybridized and allele-specific 

intensities are quantified. By combining the intensities of the two probes for a given SNP and 

comparing to the same SNP from other arrays, it is possible to obtain also information on the copy 

number state. It is important to emphasize that most SNP arrays used so far for genotyping clinical 



Armand Valsesia   5 
Mid-thesis report 

cohorts were not designed for CNV (dosage) detection, but only to call the three possible genotypes 

of SNPs. CNV analysis from SNP arrays is challenging for several reasons: Firstly, when analysing 

very large datasets, it is very likely that experiments were conducted at different times and/or by 

different laboratories, which often introduces severe batch effects for the raw intensities. Thus the 

first challenge in CNV calling is to ensure proper normalization of the raw data. Secondly, due to the 

large noise in the SNP intensities in these arrays (even after batch effects have been corrected for) 

the estimates of copy numbers for a given locus (SNP) are not very robust. So more reliable 

prediction can only be made by integration of intensities from several neighbouring loci. Indeed this 

strategy is employed by many different CNV detection methods ([22-27]). However, this approach 

makes CNV detection difficult (and sometimes completely fails) in regions with low SNP density. 

Thirdly, while some methods take advantage of the signals from a single or a group of SNPs across 

the population to predict CNV regions for each individual ([28-30]), there are very few methods to 

merge individual CNV predictions into regions at the population level: Redon et al. ([3]) merged 

CNVs based on the extent of their overlap, whereas Itsara et al. ([31]) manually annotated complex 

regions. 

2.2 Association between CNV and clinical phenotypes  

Recently numerous SNP-based genome wide association studies have provided new insights to 

complex and metabolic diseases [32-36]. Nevertheless, even in a very large cohort, one can usually 

explain only a small fraction of the genetic variance (i.e. 12%) for quantitative trait such as height 

[35]. Copy number variation (CNV) is the most frequent structural variation in the human genome 

and encompasses more nucleotides than SNPs. But to date, there are very few published results 

regarding their association to diseases [37]. There are many reasons; Firstly, as explained previously, 

methods for CNV detection are not as robust as methods for SNP genotyping and the resolution on 

SNP arrays (such as Affymetrix 500K and Illumina 550K) provides a low coverage for complex 

genomic regions, which challenges the analysis. Second, the methodology to associate CNVs to 

phenotype is still a topic under active research. And last, analysing rare CNVs is a challenging task, 

as their number can be very large and it is hard to distinguish them from false positives.  
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2.3 Research outline 

2.3.1 Detection, integration and validation of CNVs from a very large clinical cohort 

In collaboration with the Lausanne hospital (CHUV), we have access to a large clinical cohort 

(CoLaus). The aim of this study has two main goals: First we provide an extensive survey of 

candidate CNVs which can serve as a resource for other studies elucidating human structural 

variants, and for future association studies of CNVs with the clinical phenotypes measured in this 

cohort. Second, -since the methods for detecting individual CNV profiles and merging those into 

consensus regions have not yet been well established-, we also developed new algorithms for these 

goals, and devised novel techniques to evaluate and compare them with existing methods. 

2.3.2 CNV profiling of metastatic melanoma 

In collaboration between the Ludwig Institute for Cancer Research, Universities of Lausanne and 

Geneva, the Swiss Institute of Bioinformatics and the CHUV, we are performing a comprehensive 

genomic profiling of metastatic melanoma. More specifically we are interested in recurrent copy 

number aberrations and how these relate with gene expression of affected genes. We have analysed a 

collection of seven metastatic melanomas with matched control cell lines from the same patients. All 

samples were analysed with karyotyping, CGH and SNP arrays. To date, the transcriptome of two 

melanomas has been sequenced with ultra-high throughput technology (Roche 454). More samples 

will be sequenced, including a melanocyte that will provide a baseline of transcript levels in normal 

cells. Also we plan to do methylation analysis and exome sequencing (using sequence capture arrays 

and Solexa sequencing). 

2.3.3 Studying the CN polymorphism of Cancer-Testis genes 

Cancer-testis (CT) genes are expressed only in cells of the germ line in normal individuals, but re-

expressed in a number of cancers, where some of them are thought to contribute to the malignant 

phenotype. Spontaneous immune responses to CT gene products are commonly found in cancer 

patients, and CT-derived peptides are increasingly being used in cancer immunotherapy. More than 

half of all CT genes are located on the human X chromosome, mostly in segmentally duplicated 

regions, and appear to be under strong diversifying evolutionary pressure. Because of their 

association with segmental duplications, very little is known about their genetic diversity in human 

populations. We have designed a custom CGH array that will be of use to derive the copy number 

status of cancer-testis in our collection of metastatic melanoma. 
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3 First part: Detection, integration and validation of CNVs from a very 
large clinical cohort 

CoLaus is a population-based health survey to study the genetics of hypertension and cardiovascular 

disease [38]. More than 6000 individuals (35-75 years old) from the Lausanne area participate in the 

study. Over 150 phenotypic measurements (e.g.. blood pressure, lipid levels, metabolic traits …) 

have been collected at the CHUV; in addition, genotyping has been carried out on Affymetrix 500K 

SNP chips ([39]).  

A number of SNP-based genome-wide association studies that employed the CoLaus data have 

already been reported ([32-36, 40-42] ). Although so far there is no evidence for common CNVs 

contributing significantly to the kind of clinical phenotypes measured in CoLaus phenotypes ([43]), 

the number of rare CNVs and their contribution to clinical phenotype remains unclear. We aim at 

identifying both common and rare CNVs in the CoLaus population and subsequently investigate the 

association with the CoLaus phenotypes. 

Although there has been tremendous development of new methods for CNV analysis, there is no 

gold standard, especially for Affymetrix 500K arrays. At the beginning of this project, there were 

few publicly available algorithms for analysing SNP arrays. Most of the methods have been 

developed and trained for CGH data, which are much more reliable than SNP arrays for CNV 

detection. Among the SNP dedicated software (e.g. dChip [44], CNAG [25], GEMCA [27]), only 

available for Windows operating system, none could scale for the analysis of a very large dataset. 

Only CNAT ([26]) was available as UNIX binaries thus the computation could be distributed on 

nodes from the local high-performance computing center (Vital-IT), but there were few papers 

evaluating its performance. In this context, we developed our own method, that is based on a 

Gaussian Mixture Model and we compared it to three existing CNV detection methods. We also 

developed two merging strategies, which were applied to create a map of CNV regions. In this 

report, we study how CNVs predicted by the various algorithms coincide with previously reported 

variants. We also investigate the concordance in predicting CNVs in a sub-sample of individuals that 

were also genotyped on the Illumina platform. Finally we compare the sensitivity and specificity of 

the different approaches using related individuals. 
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3.1 Material and methods 

3.1.1 Detection of Copy Number Variants 

Affymetrix Copy Number Analysis Tool 

We used the Affymetrix Copy Number Analysis Tool (CNAT [26]) to attribute a copy number status 

to each SNP of each CoLaus individuals. CNAT uses intensities, as normalized by GTYPE ([39]), 

performs additional array normalization (such as PCR bias correction), combines intensities in a 

copy number ratio (see below) then uses an Hidden-Markov Model (HMM) to predict a copy 

number state at each SNP. CNAT has two HMM implementations (CNAT.total and CNAT.allelic). 

CNAT.total computes the CNratio as the log of the allele signal sum, whereas CNAT.allelic approach 

uses the sum of the log allelic signal.   

)(log)( 2
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BA

RR

SS
totalCNratio




    )(log)(log)( 22
B

B

A
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S

R

S
allelicCNratio   

In the equations, S and R refer to the test sample (individual) and a reference panel respectively; A 

and B refer to the SNP alleles. According to the GTYPE manual, CNAT.total is optimized for noise 

reduction but allelic subtle changes like hemizygous deletion (CN=1) or single copy gain (CN=3) 

will be harder to detect.  

Correction of batch effects 

By doing a Principal Component Analysis on the CN status of SNPs (as predicted by CNAT.allelic) 

across CoLaus individuals, we found that individuals clustered into 4 distinct groups, which 

corresponded to four independent genotyping centers (see Annexes for details). To correct this batch 

effect, we performed normalization within each center and used, as references, 280 randomly chosen 

samples (with equal proportion of males and females).  

Aroma normalization 

In parallel to CNAT, we normalized the CoLaus data with the Aroma.affymetrix framework [45]. 

Normalization was done within each genotyping center and with at least 336 individuals. 

Normalization steps included Allelic Cross-talk calibration [46, 47] to correct for differences 

between SNP alleles; intensity summarization using Robust Median Average and correction for any 

PCR amplification bias inherent to the Affymetrix SNP platform. To estimate the CN ratios for a 
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given sample at a given SNP, we computed the log2 ratio of the normalized intensity of this probe 

divided by the median across all the samples from the same batch.  

Circular Binary Segmentation 

Circular Binary Segmentation (CBS) is a state-of-art segmentation algorithm ([22, 23]); it identifies 

change points using a maximal T-statistics and assesses segment significance with permutations. We 

applied CBS on the CN ratios as normalized by the Affymetrix.Aroma framework. CBS only 

segments the ratios and does not perform CNV classification into deletion, duplication or diploid 

events. After inspection of the distribution of log2 ratios, we decided to classify into gains regions 

having a log2 ratio greater than 0.25 and into losses regions with log2 ratios lower than -0.25. 

Gaussian Mixture Model 

Raw copy number ratios were smoothed along physical position using Loess filtering with a 41-

probe window size. Next, four component Gaussian mixture model (one component for each of the 

following copy number states: deletion, copy-neutral, 1 and 2 additional copy) was fitted to the 

smoothed copy number ratios with a constraint on the difference between the mixture means. Then, 

for a given individual we determined the probabilities for each copy number state. The copy number 

was finally determined as the expected copy number (dosage). I.e. a SNP with probabilities: 1% for 

CN=1, 9% for CN=2, 85% for CN=3 and 5% for CN=4, would have a dosage value equal to 2.94 

(1*0.01 + 2*0.09 + 3*0.85 + 4*0.05).  

3.1.2 Integrating CNVs from CoLaus individuals into Copy Number Polymorphism 

Simple merge 

The data can be represented as a matrix of individuals by SNPs, where each element is the Copy 

Number status. The “simple merge procedure” consists of combining adjacent SNPs that share the 

same CN prediction profile across the whole population. This is equivalent to merging strictly 

identical SNP columns. To avoid creating CNV regions that would encompass long genomic regions 

with low SNP density, we applied the requirement that two SNPs in a same CNV region should not 

be further away than 500kb from each other. This rule did not apply to regions where all SNPs were 

copy neutral.  
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PCA merge 

The PCA merge is a novel merging algorithm we developed. It first partitions the genome into 

smaller regions, whose boundaries are a long stretch of SNPs in the diploid state. Then for each of 

these regions, it performs a principal component analysis of SNP data across individuals (Figure 1). 

Only components that explain most of the variance (e.g. 90%) are used to train a self-organizing map 

(SOM) to cluster SNPs with similar variance. Strictly adjacent SNPs within a same cluster are then 

merged into CNV regions. 

 

 

Figure 1 Merging SNPs into CNV regions using principal component analysis  

Top plot shows a principal component analysis (PCA) on a local SNP window (chromosome3:74.5-76.5Mb) across CoLaus 
individual. The main components are on Y axis and adjacent SNPs are on X axis. The bottom plot shows in red regions 
obtained from simple merge and in blue, regions from the PCA merge. The Y axis represents CNV frequency in the CoLaus 
population (n≈5600)  
 
Replication on Illumina arrays 

A subset of CoLaus individuals were analysed on the Illumina arrays (550K version 1 & 3, 1M 

[48]). Intensities were normalized within BeadStudio using 120 Hapmap samples as references. Only 

SNPs that could be remapped to the 550K version 3 array (genome assembly build36) were used for 

subsequent analysis. Only 239 samples with a genotyping call rate greater than 99.9% and whose 

QC metrics satisfied standard Illumina recommendations were used. To do the CNV calling, we 

applied our mixture Gaussian model (including the Loess filtering), then merged CNVs with the 

PCA approach and excluded any unique regions.  
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3.2 Results 

3.2.1 Identification of Copy Number Variant in CoLaus  

To detect CNVs in the Cohorte Lausanne, we applied four different CNV detection algorithms to the 

5600 Affymetrix 500k SNP array profiles: the two CNAT, CBS  and our own algorithm based on a 

Gaussian Mixture Model. We restricted our analysis to autosomes allowing us to use a mixture of 

males and females as reference panel. Since we used copy number ratios as normalized by the 

Affymetrix.Aroma framework prior to applying CBS and our mixture model, we refer to latter 

methods as, respectively, AROMA.CBS and AROMA.mix.  

In a second step we attempt to reduce the complexity of these CNV profiles by merging adjacent 

SNPs that contain highly redundant information into CNV regions. The first method (called “simple 

merge”) joins neighbouring SNPs that take identical copy number values across all CoLaus 

participants. This simple approach already reduced significantly the number of SNPs by combining 

them into regions (i.e. by about 10 fold for CNAT.allelic, 20 fold for CNAT.total), irrespectively of 

whether these regions are CNVs or copy neutral. Nevertheless this approach is extremely stringent 

and many of such CNV regions are fragments of single CNVs with noisy boundaries. Thus we 

devised a second method that employs a principal component analysis (PCA) of such regions and 

only merges such fragments into segments that explain a significant amount of the variation (i.e. 

90%) at the population level (see Methods for details).  

Subsequently, we excluded any CNV regions found in fewer than five individuals. We distinguish 

between Copy Number Polymorphisms (CNPs, CNVs with a frequency greater than 1% in the 

population) and Copy Number Variant Regions (CNVRs, CNVs with population frequency below 

1%). The numbers of CNPs and CNVRs by the four different methods and the two merging methods 

are shown in Figure 2. CNAT.total and AROMA.CBS are conservative methods that generate 

significantly less regions than CNAT.allelic and AROMA.mix. The simple merging procedure 

produces lots of small regions (<1kb or single SNPs) which are commonly integrated into much 

fewer regions with the PCA-based method. The PCA-based method is able to reduce the total 

number of regions by 35%, 70%, 67% and 53% for AROMA.mix, AROMA.CBS, CNAT.allelic and 

CNAT.total, respectively. 
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Figure 2: counts of CNVs identified with different methods 

Copy number variants (CNVs) were detected with four different algorithms (see legend) using data generated by Affymetrix 
500K SNP arrays for the Cohorte Lausanne (n≈5600). Adjacent SNPs with similar Copy Number profiles were merged into 
CNV regions using two different approaches: one based on principal component analysis (PCA, bottom panel) and a more 
simple approach that only merges SNPs with identical profiles (top panel). Copy number polymorphisms (CNPs, i.e. CNVs 
with population frequency above 1%) are shown on the left. Copy number variant regions (CNVRs, i.e. CNVs with 
population frequency below 1% but seen for at least five individuals) are shown on the right. In each plot, CNV counts are 
segregated according to their size.  

The fraction of the genome effectively covered by regions, as obtained from the PCA-merge, is 

reported in Table 1. Although AROMA.mix has much more CNPs than the other methods, they only 

cover about 2.4% of the autosomes. CNAT.allelic predictions for CNPs cover for 12.4% of the 

autosomes, AROMA.CBS and CNAT.total for 1.5 and 0.7% respectively. We also checked the 

coverage with rare variants (CNVRs), AROMA.mix had the lowest autosomal coverage only 9.8% 

whereas AROMA.CBS had the highest with 42.4%. 
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 CNPs CNVRs 

AROMA.mix 2.4 9.86 

AROMA.CBS 1.54 42.43 

CNAT.allelic 12.4 30.88 

CNAT.total 0.73 12.71 

                         
Table 1: genome coverage of CNVs identified by different methods and merged using the PCA-based approach 
CNV detection methods are shown as rows, the merging approach as columns. Distinction is made between CNPs (i.e. CNVs 
with population frequency above 1%) and CNVRs (i.e. CNVs with population frequency below 1% but seen for at least five 
individuals). The coverage is expressed as the % of the autosomes (there are no predictions for sex chromosomes). 

3.2.2 Comparison with known CNVs 

The Database of Genomic Variants (DGV [1]) is a curated catalogue of structural variation in the 

human genome. We downloaded its content (release 7, March 2009) and only kept CNVs discovered 

from SNP or CGH arrays (BAC and ROMA arrays were excluded). We added to this dataset  CNVs 

from individuals of European ancestry that were reported by Itsara et al. ([31]) This combined 

dataset of “known” CNVs included 17804 autosomal CNVs, whose size ranged from 1kb to 3Mb. 

We then computed the overlap between CNVs generated by each prediction methods and this 

reference dataset (Figure 3). We report this overlap as the Jacquard coefficient, which is the ratio 

between the intersection and the union of two CNVs. A ratio close to one implies that the two CNVs 

have very similar boundaries; a ratio equal to zero indicates no overlap and intermediate values 

correspond to partial overlap (including the case where a small CNV is encompassed by a larger 

one). Since DGV contains CNVs from much less individuals than the CoLaus dataset, it was 

important to compare the distribution of overlaps with the CNV generated by the different methods 

in a controlled setting. Therefore we computed for each method the expected overlap using 

reshuffled data (from n=1000 permutations). Estimated p-values for observing more or less CNVs 

with a given overlap are shown in Figure 3 (see Table 2 for the corresponding t-statistics). We 

observed that all prediction methods were enriched (with respect to the controls) for known CNVs 

(see all Jacquard coefficient bins above 25%) and depleted for novel CNVs (Jacquard coefficient bin 

0%). 
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Figure 3 Overlap between CNVs identified from CoLaus and published CNVs  

Counts of CNVs with different methods (see legend) are segregated according to their overlap with CNVs published in the 
Database of Genomic Variants. Overlap is measured by the Jacquard coefficient, i.e. the ratio between the intersect and the 
union of two CNVs. Expected counts from reshuffled data (n=1000) are shown in gray (extending over one standard 
deviation). Estimated p-values are indicated for significant enrichment (red) or depletion (blue), with respect to these 
controls. Non significant p-values (at α=1%) are shown in black.  
 

 AROMA.mix AROMA.CBS CNAT.allelic CNAT.total 

0 -19.16 -10.78 -3.60 -9.69 

]0-25] 16.62 6.15 -0.61 5.50 

]25-50] 11.42 7.09 3.12 7.56 

]50-75] 7.33 7.52 5.61 4.49 

]75-100] 6.43 8.11 6.94 9.54 

 

Table 2 t-statistic values for overlap between CNVs identified from CoLaus and published CNVs 

The t-statistic is computed from the difference between observed overlap and expected counts normalized by the standard 
deviation of expected counts. Expected counts are inferred from the overlap between reshuffled data (n=1000) and published 
CNVs. T statistics greater than 2.58 are significant at α=1%. Positive (negative) T statistics indicates enrichment (depletion) 
with respect to the expected counts.  
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3.2.3 Validation with Illumina arrays 

Using Affymetrix CNVs that included at least one individual probed on the Illumina arrays, we 

checked the fraction that could be replicated (Figure 4). 

Figure 4 Overlap between CNVs identified from Affymetrix and Illumina data  

Counts of CNVs identified with different methods (see legend) from Affymetrix data are segregated according to their 
overlap with CNVs identified from Illumina data. The Illumina panel includes a subset of 239 CoLaus individuals. 
Affymetrix-based CNVs, which did not include at least one individual from the Illumina panel, were excluded from the 
analysis. Overlap is measured by the Jacquard coefficient, i.e. the ratio between the intersect and the union of two CNVs. 
Expected counts from reshuffled data (n=1000) are shown in gray (extending over one standard deviation). Estimated 
p-values are indicated for significant enrichment (red) or depletion (blue), with respect to these controls. Non significant 
p-values (at α=1%) are shown in black.  

CNAT.allelic was significantly enriched for CNVs that were not called on the Illumina platform and 

generated as many CNVs with an overlap of greater than 25% as would have been expected by 

chance (according to the controls using reshuffled data). This indicates that CNAT.allelic is too 

permissive and that the vast majority of its predictions are likely to be false positives. In contrast, 

CNAT.total identified less CNVs that were not seen using the Illumina data indicating much better 

specificity. However, not a single region with an overlap greater than 75% was generated pointing to 

poor sensitivity. Both AROMA.CBS and AROMA.mix performed well (showing depletion of CNVs 

unique to the Affymetrix data and enrichment of confirmed CNVs). Interestingly, AROMA.mix 

predicted many more CNVs than AROMA.CBS and the difference with respect to predictions from 

reshuffled data was much stronger than for all the other methods (Table 3). We also performed the 

above analyses independently for CNPs and CNVRs (data not shown) arriving at the same results. 
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 AROMA.mix AROMA.CBS CNAT.allelic CNAT.total 

0 -21.30 -13.68 3.60 -7.56 

]0-25] 16.01 10.18 -4.20 5.46 

]25-50] 13.34 11.80 -0.49 5.21 

]50-75] 6.45 5.96 1.00 6.17 

]75-100] 17.53 6.15 1.61 1.35 

Table 3 t-statistic values for overlap between CNVs identified from Affymetrix and Illumina data   

The t-statistic is computed from the difference between observed overlap and expected counts normalized by the standard 
deviation of expected counts. Expected counts are inferred from the overlap between reshuffled data (n=1000) and CNVs 
identified on Illumina. T statistics greater than 2.58 are significant with α=1%. Positive (negative) T statistics indicates 
enrichment (depletion) with respect to the expected counts. 

3.2.4 Predicting relatedness between individuals based on their CNV profile 

Analysis of the CoLaus SNP-profiles revealed that five individuals had been genotyped twice and it 

also included 157 pairs of first-degree relatives (either sibling or parent-offspring relationships). 

Using this information, we investigated whether predicting relationship between these individuals 

would be feasible using exclusively their inferred CNV profiles. To this end we computed the 

Euclidean distance between all 162 pairs of related and between a sub-sample of 2000 unrelated 

pairs. Knowing the true relationship status, we computed ROC curves for each CNV prediction 

methods and each merging approach (figure 5). To evaluate the robustness of the ROC curves we 

reiterated the analysis 100 times choosing randomly the pairs of unrelated individuals. 
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Figure 5 Performance for predicting relatedness based on CNV profiles generated by different methods    

Each plot shows the Receiver Operator Characteristic (ROC) curve for predicting relatedness between individuals based on 
the similarity of their CNV profiles generated by different methods (CNV detection algorithms are indicated on top and 
merging procedure by colour, see legend). The analysis employed 162 pairs of individuals known to be related and 2000 
pairs of unrelated individuals. Curves correspond to the mean (solid lines) +/- two standard deviation (light blue or light red 
surfaces) from n=100 permutations. The Area Under the Curve (AUC) values are shown in the legends, value above (below) 
0.5 indicates a better (worse) performance than a random predictor.  

All the prediction methods had significant prediction power with Area Under the Curve (AUC) 

values >0.6. The less conservative CNV detection methods CNAT.allelic and AROMA.mix did not 

show a significant difference between the PCA-based and the simple merging approach. However, 

for the more conservative methods CNAT.total and AROMA.CBS there was a clear advantage in 

performance of the PCA-based over the simple merging methods. We checked whether filtering for 

rare CNVs and excluding small regions (<1kb) would improve the performance (Figure 6). For all 

methods, there was no significant difference when excluding or keeping such small regions. For 

CNAT.allelic, there was some small improvement when filtering for rare CNVs. For AROMA.mix 

filtering rare CNVs (with frequency < 1%) significantly improved the AUC. This improvement is 

particularly strong in combination with the PCA merge (giving AUC up to 0.725, which is the best 

value we obtained across all methods).  
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Figure 6 Performance for predicting relatedness based on CNV profiles generated by different methods 

Each plot shows the Area Under the Curve (AUC) (Y axis) for predicting relatedness between individuals as a function of 
CNV frequency (X axis). CNV detection algorithms are indicated on top and merging procedure by colours. Predictions 
made with all CNV regions irrespective of their length are shown as straight lines and predictions using only CNV regions 
with length greater than 1kb are represented with dashed line (both solid and dash lines overlap each other). Curves were 
made with the mean from n=100 permutations, +/- one standard deviation around the mean is shown by the thickness of the 
square points. The analysis employed 162 pairs of individuals known to be related and 2000 pairs of unrelated individuals.  
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3.3 Discussion and perspectives  

3.3.1 Properties of the PCA merging technique 

The simple merging approach, a naïve technique, is able to concatenate about half a million SNPs 

into about 40k genomic regions for AROMA.CBS and 8k for CNAT.total. However this approach 

leaves CNV edges fragmented into regions as small as single SNPs. Therefore we have developed a 

novel merging technique, which is purely data driven: only (orthogonal) components which explain 

most of the variance are used to define CNV regions. By contrast to overlap-based approach that is 

often used to merge predictions into CNV regions, there is no need for ad-hoc thresholds. This PCA-

based method provides a significant improvement over the simple approach. For conservative CNV 

detection methods (i.e. AROMA.CBS), it reduces the number of regions by 56% and for relaxed 

methods like AROMA.mix, the reduction was 35%. The PCA merge was able to significantly reduce 

the number of single SNPs by re-attributing them to existing regions. Similarly, small regions (<1kb) 

were extended either by incorporating single SNPs or by merging them with other small regions. 

3.3.2 Comparison of the different CNV prediction methods 

We demonstrated that CNAT.allelic predicted by far the most CNVs, but that a relatively small 

fraction of these could be replicated and therefore most of the predicted CNVs are likely to be false 

positives. This is also supported by the fact that CNV profiles generated by CNAT.allelic performed 

worse in predicting kinship. In contrast CNAT.total appeared to be overly conservative and is likely 

to miss subtle, but real CNV events. CBS is a very efficient segmentation algorithm, as confirmed by 

the good replication of its predictions. Our Gaussian Mixture Model, AROMA.mix, is also 

performing much better, both for sensitivity and specificity, than the two CNAT implementations. 

AROMA.mix also has an increased sensitivity with respect to AROMA.CBS, it was able to find 50% 

more CNPs, covering 2.4% of the autosomes, whereas CNPs detected with AROMA.CBS only 

covered 1.5%. 

Yet, it is an open question whether these latter methods are indeed more sensitive to capture smaller 

CNVs. This is very difficult to evaluate from both Affymetrix 500K arrays and Illumina 550K 

arrays, because the SNP density is not sufficient to assess whether a CNV composed by few SNPs 

(i.e. smaller than 5 SNPs), is indeed a true positive. However with newer and higher-density arrays 

(Affymetrix 6.0 or Illumina 1M), identifying smaller CNVs is indeed easier. Finding extremely rare 

and/or small CNVs is definitely the next challenge for finding causal variant to diseases. The High 

Resolution CNV discovery project ([43]) recently published important results on this matter. In this 
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survey, 40 individuals have been analysed on Nimblegen arrays with more than 42M probes and it 

was estimated that about 95% of the common CNVs (with frequency greater than 5%) could be 

discovered, with a size down to 500bp. More than 12000 CNV regions were identified, but only 30 

candidate loci that could influence disease susceptibility. The authors conclude that, for complex 

traits, the variance missed by SNP genome wide association studies, will not be accounted by 

common CNVs. Therefore this leaves open the identification of either common CNVs with very 

small effect size or rare/small CNVs with stronger clinical impact. 

3.3.3 Improving our Gaussian Mixture Model 

AROMA.mix makes prediction at each SNP without considering predictions previously made at 

neighbouring SNPs from a same individual; so with noisier dataset, it will be much more affected 

with outliers. In contrast CNAT smooth the input ratios before analysing them and predictions are 

made using a Hidden Markov Model. Therefore CNAT takes into account the CN state of adjacent 

SNPs which protects from local fluctuations in the data. CBS also smoothens the ratios, and change 

points are robustly identified using permutations. One way to improve predictions from our Gaussian 

Mixture Model would be 1) for higher density arrays, to increase the window size used by the loess, 

prior to CNV calling; or 2) using a sliding window approach to either remove outliers or replace 

their values with the median ratios in the window.  

Our model can shift the separation between the Gaussian components using an optimization 

algorithm. Such optimization is bounded to a maximal number of fits and number of iterations per 

fit, increasing these limits will lead to more accuracy but this will increase the run time significantly.   

Currently our model only considers deletion, copy neutral, single copy or multiple copies. Since very 

few homozygote deletions were observed with other applied algorithms, we did not incorporate such 

dedicated component in our analysis. Nevertheless, our Gaussian Mixture Model implementation 

allows such extension. 

3.3.4 Validation of CNVs in a large clinical cohort 

Validation is an essential part of any CNV discovery project. PCR, Southern and many other 

targeted techniques are useful to predict accurately the copy number at a given locus, but the 

throughput is a severe limitation when large numbers of CNVs need to be validated. The Database of 

Genomic Variant is a valuable resource to reduce the fraction of CNVs to be further validated. 

Nevertheless for a very large cohort, there will still remain a consequent fraction of novel CNVs. 

Therefore replicating a number of individuals (i.e. a few hundreds) on an independent array platform 
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is needed. With the recent reduction in the cost of microarrays, such replication now becomes 

affordable to any large cohort analysis.  Yet it is still an interesting and open question, whether 

replicating a number of individuals on a higher-resolution array is a better strategy than replicating 

even more individuals on either a similar resolution or on a targeted array.  

As a complement to replication experiments, one can take advantage of the relatedness between 

individuals. Deciphering relatedness (if not already known) can easily be achieved by clustering the 

SNP genotypes. Here we showed that assessing how well the relatedness can be predicted based on 

the CNV profiles is a powerful technique to gauge the quality of a CNV calling and merging 

method. 

3.3.5 Conclusion and Perspectives  

Our Gaussian Mixture model and our PCA merging algorithm are useful techniques to detect and 

merge CNVs. They have been successfully applied to a large clinical cohort. These techniques are 

not bound to SNP arrays, they only require an input matrix of hybridization ratios (for the former) or 

copy number values (the latter). Thus they can be applied to other platforms such as CGH arrays. 

Based on the analysis of a 6000 individual strong cohort, we have comprehensively documented the 

genome for both CNPs and rare CNV regions. This CNV resource is already being use in a clinical 

context. To date, many clinical diagnosis laboratories rely on the content of DGV, however this 

database is regularly updating its content to remove newly discovered pathogenic CNVs (and despite 

the fact that individuals in DGV are reported to be healthy, there is no certainty based on neither 

clinical examinations nor family history). The CoLaus survey integrates numerous clinical 

parameters which permits a distinction between “healthy” and “apparently healthy” individuals. 

Therefore it brings an added value and when a variant is found in any disease cohort (i.e. diabetes, 

obesity and narcolepsy), investigations can be carried out to check the CNV frequency of a given 

variant in a healthy cohort, thus helping both clinicians and scientists to decide about the need for 

further follow up. 

Moreover, CoLaus provides more than 150 clinical phenotypes, such as metabolic measurements 

(triglyceride, HDL, LDL...), blood pressure related measurements, physical characteristic (weight, 

height, sex...) along with many other diverse phenotype (education levels, smoking status, treatment 

taken...). Our CNV map will be useful for investigations of these phenotypes and we hope to bring 

more clarification regarding the link between CNVs and complex disease, in particular about cardio-

vascular diseases. 
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4 Second part: CNV profiling of metastatic melanoma 

Melanoma are malignant tumours arising from pigmentation skin cells (melanocytes); they can lead 

to regional and distant metastases. Melanoma are responsible for more than 48000 deaths per year in 

US. Many mutations in tumour suppressor genes have been identified in melanoma [49, 50]. As part 

of collaboration between the Ludwig Institute for Cancer Research, Universities of Lausanne and 

Geneva and the CHUV, we are performing a comprehensive genomic profiling of melanoma. This 

project includes 1) karyotype, CGH and SNP arrays to study genomic rearrangements; 2) to study 

methylation pattern using oligonucleotide arrays; 3) to search mutations in protein-coding genes by 

sequence capture and sequencing and 4) to identify aberrant splicing by transcriptomic profiling 

using ultra-high throughput sequencing. 

4.1 Material and methods 

4.1.1 Metastatic melanoma 

Our dataset includes six metastatic melanomas, of which two were taken from the same patient 

before and after treatment. In addition, a replicate was made with a few passages away from its 

derived melanoma. For all melanoma, either control EBV or PBL cells are available. Melanoma 

were selected based on experimental evidence for either low or moderate Cancer-Testis genes 

expression. We complemented our dataset with two melanocytes cell lines. Approval to use these 

samples for our project was given by the CHUV ethical committee for clinical research. 

4.1.2 CGH computational analysis 

All melanoma were analysed on Agilent 244k arrays. Experiments were conducted at the Service of 

Medical Genetics at the Lausanne Hospital (CHUV).  Melanoma were hybridized in competition 

with their control PBL cells (derived from the same patient). Raw intensities were corrected for 

background intensities  ([51]); within-array normalization and dye bias correction were done using  a 

local weighted polynomial regression, Loess ([52]); and hybridization log2 ratios were segmented 

using the CBS algorithm [22, 23]). Other normalization scheme were tested and included the 

popLowess method  ([53]) and a normalization scheme based on a ridge regression ([54]).  
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4.1.3 Illumina SNP array analysis 

CNV analysis 

We used the methodology, named OverUnder, developed by Attiyeh et al ([55]), which corrects 

hybridization ratios for aneuploidy and uses a classification table based on both corrected 

hybridization ratios and ratios of allelic intensities to predict continuous Copy Number values at 

each SNP.  

Defining a map of recurrent rearrangements 

From the CN predictions with SNP arrays, we defined regions of recurrent rearrangements as follow: 

1) Only consider SNPs which have been observed as amplified in at least 6 out of 7 melanomas; 2) 

Merge adjacent SNPs into regions and exclude any regions < 50Kb in size and 3) Repeat steps one 

and two for deletions. 

4.1.4 Transcriptomic analysis 

Two melanoma transcriptomes have been sequenced on the Roche 454 sequencing technology. 

Reads were aligned and mapped to known transcripts in our group (Ludwig Institute for Cancer 

Research) by Dr. Christian Iseli. 
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4.2 Results  

4.2.1 Comparative Genome Hybridization analysis 

Karyotype analysis revealed the genome-wide amplification status. An example is given in Figure 7, 

where this melanoma has 91 chromosomes.  

 
Figure 7 Karyotype for the most amplified melanoma (Me275)  

From our CGH analyses, we observed that the hybridization ratios (Figure 8) did not reflect the 

aneuploidy reported from karyotype analyses (Figure 7). We rationalized that the normalization 

([52]), well-established to study diploid genome, was probably not adequate for cancer genome. 

Thus we applied different normalization scheme developed for aneuploid genome [53, 54]. 

Nevertheless none of these different normalizations, although they were significantly improving the 

signal to noise ratio, allowed deciphering the true copy number baseline. We could only infer 

aberrant amplifications (e.g. >10 copies) that were significantly higher than the already amplified 

chromosome (e.g. ~6 copies). In the CGH experimental protocol, equimolar DNA concentration for 

both test and reference genome are used. Thus, we hypothesize that it artificially equalizes an 

aneuploid genome (i.e. a melanoma) with the reference diploid genome (the matched EBV cell line). 

As a consequence, the melanoma chromosomal baseline is erroneously observed as diploid and so 

only local amplification or deletion can be detected. 
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Figure 8 CGH profile for a metastatic melanoma 

Gray dots correspond to CGH probe plotted along their physical position on chromosome 1(x axis) and their 
hybridization log2 ratios (y axis). Each plot corresponds to a different normalization of the log2 ratios. Red segments 
correspond to significant change-points in the ratios. From 18 karyotyping analyses, we observed that median number of 
copies of 1p and 1q were respectively 3 and 3.5 (with a range 1-4 and 2-6). 

4.2.2 High-resolution SNP array analysis 

Although SNP arrays are single-channel experiments (only one genome is hybridized), we observed 

similar limitation than with the CGH, when analyzing CNV based on the hybridization profile only. 

However SNP arrays provide information about allele-specific hybridization therefore allelic 

imbalance, which reflects CNVs, can be detected and used to refine the CNV predictions. Figure 9A 

illustrates a hemizygous deletion on 19q found in a melanoma but not in its control EBV. Figure 9B, 

shows locus 7q31-34 known as frequently amplified in melanoma. It is important to note, that in 

figure 9B, a prediction based only on hybridization log ratios would not have detected such 

amplification. However from the B Allele Frequency pattern, the OverUnder algorithm was able to 

detect this event which ranges between 3 and 6 copies. 
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Figure 9 CNV analyses from SNP arrays 

Top panel show hybridization log2 ratios, middle panel the B Allele Frequency (BAF), which is the ratios of allele-specific 
intensities; and the bottom plot is the copy number values inferred by the OverUnder algorithm (with blue for copy neutral 
SNP, red for deletion and green amplification). The algorithm searches for aberrant BAF, such as loss of heterozygosity 
supported by lower hybridization ratios due to large hemizygous deletion (as in A) or intermediate BAF values (i.e. 0.3 or 
0.6) which reflect allelic copy number imbalances (as in B). 

OverUnder was optimized using the replicated melanoma and comparison between EBV and PBL 

cell lines from the same patient. Optimal results were obtained using a genomic window of 101 

SNPs (Figure 10A). Figure 10B illustrates the strong correlation (>0.97) between CNV profiles from 

the two replicates of a melanoma.  

  
Figure 10 OverUnder parameter optimization and quality control 
A) Concordance in CNV prediction as a function of genomic window size. Concordance is computed as the fraction of 
SNPs having the same copy number values in both samples. Pairwise comparison included the same melanoma 
replicated twice (dark blue); EBV and PBL cell lines from the same patient (orange and yellow), melanoma and EBV 
from the same patient (cyan and blue). B) Correlation between the two replicates of Melanoma Me280. Each point is a 
SNP with its CN value as predicted in both samples. The plot includes more than 1.1M data points, predictions were 
made using OverUnder with a window size of 101 SNPs. 
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Replication on another SNP platform 

The most amplified melanoma (Me275) was also analysed on the Affymetrix platform. Using the 

PICNIC algorithm ([56]) dedicated to Affymetrix 6.0 arrays, we predicted the copy number at each 

SNP and compared these results to the ones from the Illumina array (Figure 11). We found an 

overall good correlation (Pearson correlation >0.77) between CNV profiles as predicted with the two 

SNP platforms. 

 
Figure 11 CN profile on Illumina and Affymetrix SNP arrays 

Top plot, CN values at each SNP, as predicted on Illumina 1M array with the OverUnder algorithm. Bottom plot, CN 
values predicted on Affymetrix 6.0 array using the PICNIC algorithm. Dashed lines indicate CN=2 (diploid state). Red 
segments correspond to genome regions with similar CN values. 
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4.2.3 Correlation between CNVs and Transcriptome data 

We investigated whether there was any correlation between CNVs and transcriptome levels. We first 

computed the median CN at each Refseq gene that was successfully mapped during transcriptome 

analysis. Then we discretized these CN values into the following bins: deletion (CN<2), diploid 

(CN=2), duplication (CN≥3 and < 5), amplification (CN≥5 and < 10) and very high amplification 

(CN≥10). Next, we checked for any significant difference between discretized CNV bins and 

transcript levels (tag count). We found significant differences between transcript levels of diploid 

regions and (highly) amplified regions (Figure 12), implying that highly amplified genes where also 

highly expressed. With the most amplified melanoma (Me275), significant differences were found 

for amplifications greater than 10 copies, whereas for the second most amplified sample (Me235), 

significant differences were already detected from 3 copies. 

 
 

Figure 12 ANOVA analyse between transcript levels and genes discretized CN values 

The two plots correspond to a distinct melanoma (name is indicated in the title). Both samples correspond to the two 
most aneuploid melanomas. Gene CN values were discretized into bins (Y axis) and compared to their transcript tag 
count (X axis). Blue dots represent the mean tag count at a given CNV bin, the blue bars indicates the mean 95% 
confidence interval and the numbers indicates the number of data points in each group. Two groups are significantly 
different when their confidence intervals are strictly non-overlapping. 
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4.2.4 Recurrent re-arrangements in melanoma samples 

Using SNP-based predictions, we derived a map of recurrent rearrangements. (Figure 13). 

 

Figure 13 Recurrent rearrangements found in metastatic melanoma 

Deletions are indicated in red and amplification in green. Each region was found in at least 6 out of 7 melanomas and 
region length is greater than 50kb. 

This genome-wide map includes 44 recurrent deletions and 96 recurrent amplifications. We then 

manually compared these regions with the CGH profiles. All telomeric deletions (except the ones on 

chromosome 10) could not be detected from CGH hybridization ratios. The large amplifications on 

chromosomes 6, 7, 15, 17, 19, 20 and 22 were confirmed on Agilent, although some were found at a 

lower frequency. We also checked 56 amplifications (from chromosome 1 to 7) and 23 deletions 

(chromosome 1 to 11), see table 4. 

Regions validated Found with lower 

frequency 

Miscall* neutral total 

Amplifications 38 (62.3%) 6 (9.8%) 4 (6.6%) 13 (21.3%) 61 (100%) 

Deletions 7 (33.3%) 9 (42.9%) 4 (19%) 1 (4.8%) 21 (100%) 

Table 4 Number of SNP-based recurrent re-arrangements found in Agilent CGH results 

* miscall means discrepancies between the copy number prediction, i.e. the same sample would be found as deleted in a 
platform and amplified in the other platform 
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The OverUnder is a highly sensitive algorithm: more than 60% of the amplifications were validated, but 

only 33% of the deletions were confirmed. Also a significant number of events were found neutral or at 

a lower frequency (i.e. a CNV found in only two samples from CGH arrays as opposed to at least six 

samples with SNP arrays). Our fine-tuning was done using a replicated melanoma whose genome is 

mostly deleted (39 chromosomes in average, of which 6 chromosomes had only one arm). Samples with 

large deletions tend to be easier to analyse compared to samples having higher aneuploidies, which have 

a significant higher noise. We are currently replicating Me275 on both SNP and CGH arrays, which will 

enable to fine-tune our analysis pipelines and will greatly benefit to the results. 

1027 and 85 genes were overlapping, respectively, the recurrent amplifications and deletions. We 

downloaded 125 Refseq genes, from the Atlas of Genetics and Cytogenetics in Oncology and 

Haematology ([57]), that were associated with melanoma. This list included all genes from the Wnt and 

MAPK pathways. Only 7 of the 1027 recurrently amplified genes were present in this list, and none for 

the deletions. However all 125 genes were found amplified in at least 2 melanomas (see table 5) and 48 

were found deleted in a single melanoma. 8 genes were found amplified in 6 melanomas, one of them 

was in a region with size lower than 50Kb, and thus was not included in our map of recurrent 

amplifications. All these demonstrate that our criteria for defining recurrent re-arrangements are very 

conservative. These criteria were established stringent on purpose, to detect only the most frequent (and 

largest) amplified or deleted regions. After pipeline optimization using the Me275 replication 

experiments, we should be able to relax these criteria. 

 Count of genes found amplified or deleted in melanoma 

Number of melanoma 0 1 2 3 4 5 6 7 

Number of amplified genes 0 0 3 13 34 67 8 0 

Number of deleted genes 76 49 0 0 0 0 0 0 

Table 5 Count of Melanoma associated genes found amplified or deleted in our samples 
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4.3 Conclusion and perspectives 

4.3.1 Limitations and challenges in analysing highly amplified genomes 

Our analysis of metastatic melanoma revealed the limitations of karyotype, CGH and SNP analysis. 

The karyotype gives a global estimation of the aneuploidy of each chromosome. Such technique is 

work intensive because of the sample heterogeneity, many replicates are needed. Also not every 

marker can be attributed with certainty to its corresponding chromosome. As a result, the karyotype 

under-estimates the aneuploidy. Nevertheless, this technique is crucial to reveal whole-chromosome 

aneuploidy when both CGH and SNP arrays fail. We observed that CGH ratios can be accurately 

segmented into regions which reflect different copy number events. However in the presence of 

complete chromosomal amplification, the hybridization ratios are aberrantly centered on zeros and, 

so far, we did not find a reliable method to estimate the underlying copy numbers. Using information 

about allelic imbalances, SNP arrays overcome the limitation of the hybridization ratios and enable 

copy number estimation.  

4.3.2 Replication design 

To improve our CNV detection pipelines, we are analysing two replicates of Me275 on both CGH and 

SNP arrays. These experiments will enable to fine-tune our detection algorithms and to better compare 

across platforms.  

4.3.3 Ultra-high throughput sequencing data 

With the two sequenced melanoma transcriptomes, we already established the correlation between 

high transcript levels and genomic amplification. Melanocyte cell lines are being sequenced then 

will be used as a baseline of gene expression and will help to detect genes specifically expressed in 

cancer. We plan to investigate the copy number status of such genes and check whether these have a 

common function, map to a same pathway or Gene Ontology category. Sequence capture and exome 

sequencing will also be performed in the coming months. Such data will complement our CNV 

analysis and provide valuable information regarding somatic point mutations. 
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5 Third part: Characterization of the CN polymorphisms of cancer-

testis genes 

CT genes are normally expressed in testis, brain and placenta; but also are aberrantly expressed in 

many tumour types. Although the function of these genes remains unclear, experimental data 

indicate that some are involved in the meiotic process ([58]). CTs are mostly located on chromosome 

X, in highly dynamic regions such as low-complexity regions and segmental duplications. As a 

consequence the probe coverage as provided by different vendors is low. Thus we developed a 

pipeline to design probes with reliable hybridization properties, which was used to create the first CT 

custom chip (an Agilent 4*44K array). 

5.1 Material and methods 

5.1.1 Location of CT genes 

We aligned all known transcript sequences (from EMBL) to the Human genome (build 36) and 

created clusters of transcripts mapping to a same genomic region. Using unique CT names, as 

downloaded from Hoffmann et al. ([59]) and complemented with the latest CT candidates (AKAP4, 

OTOA, RHOXF2, NXF3, IL13RA2 and PRAME), we extracted the relevant transcript clusters and 

determined their genomic locations. Extending such CT clusters by 1.5Kb upstream and downstream 

and merging all overlapping ones, produced a final list of 152 CT regions with a total length of 

~3.9Mb. 

5.1.2 Custom CT-chip design 

We queried the Agilent probe database (at this time, it contained more than 24.5M probes), 25759 

probes were available for 110 or our CT regions (42 CT regions did not have any coverage). We 

created all possible 25mers combinations, excluded any of those having more than 21 hits on the 

genome. Then we derived 60 mers probes, by using remaining adjacent 25mers probes. Finally, we 

kept a total of 53467 probes matching our CT regions. Using all Agilent “best” (aka “Similarity 

Filter”) probes for chromosome X (totalizing more than 836000 probes), we derived reference 

distribution for GC content, melting temperature, enthalpy and entropy, and hairpin structures.  It has 

been demonstrated decades ago, with primer design, that GC content and melting temperature are 

essential parameters. One may also consider enthalpy and entropy which reflect the affinity and 

stability of the complex DNA-DNA during hybridization ([60]). Hairpin structures, which occur in 

palindrome sequences and leads to the formation of a loop, need to be accounted as they will affect 
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the hybridization. We excluded any of our designed probes containing at least a single hairpin 

structure and selected only probes that were within 1.5 standard deviation from the distribution of 

Agilent probes for all other metrics (Figure 14). In total 30916 out of 53467 probes passed all the 

QC steps. 
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Figure 14 Comparison of Agilent chromosome X probes with all our in-silico designed probes (only controlled for 
genome match) 
A) density distribution of GC content (expressed in %) for Agilent chromosome X best probes (red) and our designed 
probes (blue), B) melting temperature, C) enthalpy and D) entropy values for probe-DNA hybridization in standard 
conditions ( Sodium concentration 1mol/L , oligo concentration ~0.1mol/L) E) histogram of hairpin structures predicted 
in probe sequences 

Finally we created a 4*44K array design, where we placed the 25759 Agilent “best” probes for CT 

regions and 17343 of our designed probes (out of the 30916 “good” probes). We selected probes first 

for regions with lower probe coverage until a minimal probe density was fulfilled (or that no more 

probes were available for such region) before moving to regions with higher probe density. And we 

ensured that selected probes were equally spaced thus avoiding having all probes to be located either 

at the 3’ or the 5’ end of the region of interest.  
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All our designed probes were 60 mers, as well as most of Agilent probes (figure 15A and B). Only 

10 CT regions were covered with only one probe (Figure 15C) and three CT regions did not have 

any coverage, as opposed to 42 uncovered regions using only Agilent probes. After investigation, 

these three regions corresponded to duplicated CT regions containing only pseudo genes; and their 

respective copy, with annotated Refseq gene, were covered by our custom probes. 
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Figure 15 A and B Histogram of probe length, respectively, for selected Agilent probes and our designed probes; C: 

Histogram of probe density per CT regions 

5.1.3 CNV analysis 

As done for the melanoma sequencing project, we corrected background intensities with the 

normexp ([51]) method, normalized the hybridization ratios using popLowess ([53]), then segmented 

the signal using CBS [22, 23]). Analysis parameters were optimized using a replicated melanoma. 

5.2 Results 

Using our custom CT chip, we analysed the same seven melanomas from our sequencing project 

(see part two) with respect to their matched control cell lines. Figure 16 illustrates CGH results for 

two melanomas at the GAGE (G antigen) cluster. The locus contains a genomic gap between 49.12 

and 49.17Mb. Red regions correspond to significant change-points in copy number. Although the 

GAGE genes 12C,12D,12E,12F (after 49.15Mb) seem to be present in similar copy numbers, the 

pattern of variation is much more complex for GAGE12J, 13, 2E, 2D…(before 49.1Mb). 

Interestingly, the two melanomas have a similar variation pattern. 

A C 

B 
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Figure 16 CGH profile for the GAGE cluster in two metastatic melanoma 
The top and middle plots show the normalized hybridization ratios from two CGH experiments (two distinct melanomas 
hybridized with respect to their matched control cell line). Each gray dot is a probe on the array; red regions correspond 
to the segmentation of the probe-level signal. Bottom plot displays members of the GAGE cluster. 
 

5.3 Conclusion and perspectives 

CT analysis is challenging because these genes are located in complex genomic regions (low 

complexity regions, segmental duplications, near genomic gaps…) and because the samples to 

analyse are highly amplified which bring array platforms to their limitations. The resolution on 

micro-arrays was not sufficient for CNV analysis so we designed the first custom CT chip.  

Based on knowledge and methods applied to the Melanoma Sequencing Project (Part 2), deriving 

copy number from the segmented signal on our custom CT array will follow. Moreover since our 

melanoma samples are being characterized with other techniques (i.e. RNA and exome sequencing), 

we will be able to complement our analysis and better characterize CT genes. 

We initially budgeted for five chips and used only two as a pilot study. So once analysis pipelines 

are fully optimized, we will be able to extend our study to more tumour samples that are available 

within the Ludwig Institute for Cancer Research. 



Armand Valsesia   36 
Mid-thesis report 

6 Future directions 

CNV-based genome wide association studies 

We have successfully developed methods to normalize, detect copy number variation and combine 

individual CNV profile into polymorphisms. We have established a catalogue of both common and 

rare CNVs in a control population. Such resource is of particular interest for follow-up of clinical 

CNVs in healthy population. Currently our results are used as control for morbid obesity and 

narcolepsy. Moreover our database of CNVs will be used for genome-wide association with the 

CoLaus clinical phenotypes, in particular with metabolic measurements and blood pressure related 

phenotypes. 

Melanoma CNV profiling 

Data for this project are still being generated. Notably replication experiments will be crucial to fine-

tune CNV detection algorithms on both CGH and SNP arrays and to compare the performance from 

both platforms. Transcriptome sequencing is still in progress, in particular the sequencing of 

melanocytes, will provides us with a baseline of gene expression in normal cells. Sequence capture 

and exome sequencing are in progress. Methylation analysis is being performed at the University of 

Geneva, in Pr. Stylianos Antonarakis lab. We also plan to perform FISH experiments to validate the 

CNV status of candidate genes. By the end of this project, we anticipate to have a comprehensive 

profiling at the genomic, transcriptomic and epigenetic levels in melanoma. Regions of interest 

would be investigated in a larger melanoma dataset, available at the Ludwig Institute for Cancer 

Research. 

Cancer-testis analysis 

The custom-chip provides us with coverage to investigate the CNV status of CT genes, which, 

currently, was not possible with any other array platform. The methodology developed and the 

knowledge gained with the melanoma project, will be very helpful to infer the copy number from 

hybridization ratios. Sequence analysis from the Melanoma CNV profiling project, will also be 

useful to validate CNV prediction from our custom CGH arrays. We anticipate being able to clarify 

the copy number status of CT genes in tumour genomes. Such results may trigger interest from other 

groups at the Ludwig Institute for Cancer Research.  
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We will also investigate the CT status in healthy population using our custom array. DNA is already 

available at the Ludwig Institute for Cancer Research and with a collaboration involving Dr. Carlo 

Rivolta at the Department of Medical Genetics from the University of Lausanne. In addition, we 

plan to retrieve data from whole genome sequencing trace archives and to detect CNVs in CT genes 

from the coverage depth. 
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9 Annexes 

9.1 Detection and correction of batch effects in CoLaus 

We used the Affymetrix GeneChip Genotyping Analysis Software [39] to extract, normalize and 

summarize intensities for both alleles of each SNP. We normalized our data using a sketch-quantile 

distribution of 50K PM Probes and summarized the intensities using the plier method in RMA mode. 

(Detailed information can be found in the GTYPE manual [39]). We first normalized the CoLaus 

individuals versus 30 unrelated CEU Hapmap ( [61, 62]) individuals.  

By doing a Principal Component Analysis on the CN status of SNPs (as predicted by CNAT.allelic, 

details are below) across CoLaus individuals, we found that individuals clustered into 4 distinct 

groups, which corresponded to four independent genotyping centers (see Figure I). To correct this 

batch effect, we performed normalization within each center and used an increasing number of 

randomly chosen samples (with equal proportion of males and females).  
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Figure I: principal component analysis on the CNV profile of the CoLaus individuals. 
Using normalization with 30 unrelated CEU individuals leads to differences between CoLaus 
males and females. Also differences between individuals genotyped in different centers are 
observed (the blue and green dots clearly separate from the red and black dots). 
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By running the normalization twice on the same individuals but with two independent reference 

panels; we were able to compute the distance between the same individuals (in the two 

normalization runs) and to compare it to the distance between random pairs of individuals (Figure 

II). We tested normalization with 30, 120, 200 and 280 references and observed that the 

normalization improves significantly with the number of references. Using 280 references is 

significantly better than using only 30 references. Using even more references (i.e. 300, data not 

shown) could still improve a little the normalization but we decided to use 280 references for 

computational reasons.  

 

 

Figure II Improvement of the normalization as a function of the reference panel size 
In cyan are shown the distances (n=55) between the CNV profiles as predicted by two independent reference panel 
(having the same size) for a same individual. In red are the distances between unrelated individuals predicted by 
these two reference panels. Different size of reference panel have been tested (30,120,200 and 280). The T’ score is 
an estimate of the separation between pairs of identical individuals (same) and controls and is computed as:  
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