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Summary 
 
 
Structural variation ranges from single nucleotide polymorphisms (SNP) to large genomic 
rearrangements [1, 2]. Recent and numerous SNP-based genome wide association studies 
have provided new insights to complex and metabolic diseases [3-7]. Nevertheless, in a very 
large cohort, one can explain at best 12% of the genetic variance for quantitative trait such as 
height [6]. Copy number variation (CNV) is the most frequent structural variation in the 
human genome and encompasses more nucleotides than SNPs. But to date, there are very 
few published results regarding their association to diseases [8]. There are many reasons; 
one is methods for CNV detection are not as robust as methods for SNP genotyping. CNV 
analysis is very sensitive to technical effects, such as experimental batch effects. Also the 
methodology to associate CNVs to phenotype is still a topic under active research. Moreover 
analysing rare CNVs is a challenging task, as their number can be very large and it is hard to 
distinguish them from false positives.  
This report summarizes my work on several projects, where I developed methods to detect 
CNVs, to combine these CNVs at the population level and to assess the different prediction 
methods. The main projects I have been working on are the following:  
1) The CoLaus cohort (Cohorte Lausannoise)  a 6000 individual population from apparently 
healthy individuals genotyped on Affymetrix 500K arrays and for which more than 150 
phenotypic measurements are available. Using this large dataset, we developed a new 
detection method based on Mixture Gaussian models and we compare it to other existing 
detection methods. Previously we developed a simple but efficient method to integrate 
individual CNV predictions and have now extended this in a more sophisticated approach.  
2) The Melanoma Sequencing Project, a collection of 7 metastatic melanomas with matched 
control cell lines from the same patients. These samples are being assessed by comparative 
genome hybridization (CGH) and karyotype analysis; SNP and methylation arrays; and ultra-
high throughput sequencing at genomic and transcript levels. We have already established 
analysis pipelines for both CGH and SNP arrays and are investigating a strategy to define 
regions of recurrent genomic aberrations. 
3) Studying the CN status of cancer-testis genes. Since these genes are insufficiently 
covered by probes in commercially available arrays, we developed a pipeline to design 
probes and created the first custom CT-array. 
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CNV analysis in very large cohorts 
 
 
CoLaus (Cohorte Lausannoise) is a population based health examination survey started in 
2003 to study the genetics of hypertension and cardiovascular disease [9]. More than 6000 
individuals (35-75 years old) from the Lausanne area participate in the study. Over 159 
phenotypic measurements have been collected by the CHUV; in addition, genotyping has 
been carried out on Affymetrix 500K SNP chips[10]. The CoLaus dataset provides a unique 
opportunity to develop and assess computational method for CNV detection, then to develop 
methods for association and apply them on the list of phenotypes.  
 

Detecting Copy Number Variants 
 
Analysis pipelines based on the CNAT package [11] have been previously used [12] to 
predict CNVs for each CoLaus individuals. In the mean time, other methods have been 
released in the CNV community [13, 14]. To compare with some of these recent 
development, we completely renormalized the CoLaus dataset with the Aroma framework 
[15]. Although this framework requires enormous computational resources (both in term of 
disc usage and CPU), it was of interest to compare with our previous results because the 
authors demonstrated the Aroma normalization to perform slightly better than the CNAT 
package. Subsequently to this renormalization, we used the Circular Binary Segmentation 
algorithm [16, 17], a state-of-art segmentation algorithm.  
In addition, we developed a new CNV detection algorithm based on Gaussian Mixture Model. 
This new method is unique in the sense it performs a probabilistic calling. Each probed SNP 
is compared to the signal from the whole CoLaus population and is attributed probabilities for 
being deleted (CN = 0 or 1), copy neutral (CN=2), simple copy (CN=3) or multiple copies 
(CN>3). The underlying copy number can be defined by using the dosage value of all these 
probabilities. I.e. a SNP with probabilities: 1% for CN=1, 9% for CN=2, 85% for CN=3 and 
5% for CN=4, would have a dosage value equal to 2.94 (1*0.1 + 2*0.9 + 3*0.85 + 4*0.05). 
In total, we have four set of predictions for the whole CoLaus: two from the CNAT 
implementations (CNAT_Allelic and CNAT_Total) and two using CN ratios normalized by the 
Aroma package: CBS and our new CNV calling method. 
 

Deriving Copy Number Polymorphism from Copy Number Variants 
 
We previously addressed the problem to integrate variants from many individuals into a 
consensus CNV map [12]. Currently, scientists merge CNVs based on ad-hoc thresholds on 
the CNV reciprocal overlap. We have developed a simple merging scheme which allowed to 
reduce greatly the data complexity and did not require any prior knowledge. But such 
merging scheme had the disadvantages of producing too many small regions especially for 
noisy datasets and/or frequent polymorphic loci.  
We solved this issue, by developing a novel merging algorithm which 1) partition the genome 
into smaller regions, whose boundaries are a long stretch of SNPs in the diploid state; 2) 
then for each of these regions, perform a principal component analysis of SNP data across 
individuals [Figure 1]. Only components that explain most of the variance are used to cluster 
SNPs into CNV regions. From ~490k autosomal SNPs analysed with a relaxed algorithm 
(CNAT_Allelic), the simple merging scheme was creating ~39k regions whereas the novel 
merging algorithm creates now ~20k regions. 
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Assessing different prediction methods 
 

Overlap with the Database of Genomic Variants 
 
The Database of Genomic Variants (DGV) [1, 18] is a curated catalogue of structural 
variation in the human genome. We downloaded its content (release 7, March 2009) and only 
kept CNVs discovered from SNP or CGH arrays (BAC and ROMA arrays were excluded). 
We completed this dataset by CNVs from European ancestry individuals as found by Itsara et 
al. [19] Then we computed overlap between CNVs of each prediction methods versus this 
reference CNV set. As a control, we shuffled positions of our predictions and recomputed the 
overlap between these “random CNVs” and the reference set. Repeating this a thousand 
times, allows us to check the performance of the different prediction methods.  
We demonstrated that our novel prediction method had the highest number of predictions 
and was significantly enriched for known CNVs. Moreover this novel method had a number of 
new CNVs that was significantly less than one can expect if these predictions were random 
[Figure 2A]. On the contrary, the CNAT_Allelic method had an enrichment of know CNVs but 
its fraction of novel CNVs was not different from the expectation of a random classifier.  
 

Replication on an independent array platform 
 
312 CoLaus individuals were assayed on the Illumina SNP platform (550K and 1M chip) [20], 
after QC, we only kept 250 arrays having a call rate > 99.9% and satisfying the Illumina 
standard QC metrics. We performed CNV calling using our Gaussian Mixture model, applied 
our PCA-merging approach and only kept CNV regions present in at least 5 individuals thus 
creating a high confidence CNV dataset. 
We used this dataset to check what fraction of novel CNV regions, with respect to DGV, 
would replicate. Our Gaussian Mixture calling method was the only method to be significantly 
enriched for CNVs that replicate on the Illumina arrays [Figure 2B]. Strikingly, CNAT_Allelic 
had significantly less CNVs that replicate than by chance, implying that a random predictor 
would perform much better. This situation was the same whether looking at copy number 
polymorphisms (regions with a frequency greater than 1%) or looking at rare CNV regions 
(frequency < 1%) [Data not shown]. There was no statistical difference between prediction 
from CNAT_Total and CBS with respect to their control sets. 
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Using CNV profile to predict relatedness 
 
By chance, family-related individuals were included in the CoLaus study. These were 
identified based on the similarity of their genotype and having plausible difference between 
their birth date. 
In total, there are 5 pairs of individuals that were inadvertently sampled twice and 157 pairs 
with sibling or offspring relationship. Using this information, we could check whether 
predicting relationship between individuals using their CNV profile was possible. By 
computing Euclidean distance between pairs of related and unrelated individuals, then 
thresholding these distances and checking with the “truth”, we built ROC curves (Receiver 
Operating Curves) for each CNV prediction methods and each merging approach. All the 
prediction methods had significant prediction power (Area Under the Curve ~0.7); though no 
distinction was observed between the merging approaches [Figure 3]. 
 

Conclusion  
 
We have developed an innovative merging method which does not require ad-hoc 
thresholds, greatly reduces the data complexity while keeping relevant information explaining 
the statistical data variation. The major benefit compared to “classical merge-by-overlap 
approach” is that much finer information in highly rearranged regions is kept. The merge is 
fully driven by components explaining most of the variance, therefore outlier CNVs will not 
cause over-merging. Also it aligns each region across the whole population thus making it 
easier for subsequent association tests. We devised new testing strategies in the context of 
very large cohorts and believe such knowledge would benefit to other research groups. 
We have also implemented a novel CNV prediction method which differs from other 
Gaussian mixture methods by its probabilistic output. This novel method provides more 
predictions and performs better than the 3 other tested methods. Based on predictions from 
our method, we already started doing association with the CoLaus clinical phenotypes and 
we are currently exploring which association strategy would perform best. 
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Melanoma Sequencing Project 
 
Melanomas are malignant tumours arising from pigmentation skin cells (melanocytes); they 
can lead to regional and distant metastasis. Melanomas are responsible for more than 48000 
deaths per year in US. Many mutations in tumour suppressor genes have been identified in 
melanomas [21, 22]. As part of a collaboration between the Ludwig Institute for Cancer 
Research, universities of Lausanne and Geneva and the CHUV, we plan to perform a 
comprehensive genomic profiling of melanomas. This project includes 1) karyotype, CGH 
and SNP arrays to study genomic rearrangements; 2) to study methylation pattern using 
oligonucleotide arrays; 3) to search mutations in protein-coding genes by sequence capture 
and sequencing and 4) to identify aberrant splicing by transcriptomic profiling using ultra-high 
throughput sequencing. Samples available for this study are 6 metastatic melanomas and 
their matched control cells (either a PBLs or EBV cell lines derived from blood). We have an 
additional metastatic melanoma, taken after treatment of one of these 6 patients and we 
have 2 normal melanocytes. 
 

Comparative Genome Hybridization analysis 
 
All melanomas were analysed by Agilent 244k arrays [23], using its matched PBL or EBV cell 
line as a reference. Karyotype analysis revealed the genome-wide amplification status. We 
observed discrepancies with the hybridization ratios from CGH and applied different 
normalization scheme developed for aneuploid genome [24-26]. Nevertheless none of these 
different normalizations, although they were significantly improving the signal to noise ratio, 
allowed deciphering the true copy number baseline. We could only infer aberrant 
amplifications (i.e. 10 copies) that were significantly higher than the already amplified 
chromosome (i.e. 6 copies). A hypothesis would be that when such amplications are 
occurring genome-wide, the CGH hybridization saturates. The amount of tumour DNA is so 
high that it hybridizes and outcompetes with the reference diploid genome.  
 

High-resolution SNP array analysis 
 
Our observations on CGH arrays were also seen by Attiyeh et al. [27] In this recent study, the 
authors developed a classification algorithm that considers both hybridization ratios and 
allelic imbalance from SNP arrays. According to their results, the authors demonstrate a 
major improvement in copy number classification when other methods relying only on 
hybridization ratios are massively underpowered. We applied the same algorithm to our SNP 
arrays and observed good data reproducibility between replicates and a better concordance 
with the karyotype compared to the CGH results.  
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Defining regions of recurrent rearrangements 
 
To find genomic regions with recurrent rearrangements, we calculated for each SNP of each 
melanoma, a score T’ defined as:  

 
 
 
 
Where MAD is the median absolute deviation, a robust estimator of the dispersion around the 
median; CNi is the copy number of a SNPi, median(CNchr) the median of the copy number of 
all SNPs on this chromosome. 
Such score allows extracting SNPs having a copy number significantly different from the 
chromosomal baseline of a given melanoma [Figure 4]. Using a threshold for statistical 
significance, then requiring the same SNPs to be seen significant in a minimal number of 
melanomas, allows defining regions of recurrent rearrangements. We are currently 
investigating what thresholds are the most adequate to find regions of recurrent 
rearrangements. Then we will analyse the affected genes, in particular checking prior 
knowledge, doing pathway and Gene Ontology analysis; and correlation with the preliminary 
results from the transcriptome sequencing data. 
 

Analysing the copy number status of cancer-testis genes 
 
As part of the Melanoma Sequencing Project, we plan to investigate the copy number status 
of cancer-testis genes. Cancer-testis (CT) genes are normally expressed in testis, brain and 
placenta. They are aberrantly expressed in many tumour types. Although the function of 
these genes remains unclear, experimental data indicate that some are involved in the 
meiotic process. 
CT are mostly located on chromosome X, in highly dynamic regions such as low-complexity 
regions and segmental duplications. As a consequence the probe coverage as provided by 
different vendors is pretty low.  
In a first step, we set up an in-house pipeline to design probes that would cover the CT 
regions. Emphasis was put on designing 60 mer probes with good hybridization properties 
(such as Tm, Enthalpy and Entropy, GC content etc…) while avoiding the cross-hybridization 
inherent to these complex genomic regions. This allowed us to design a CT custom Agilent 
chip (4*44K probes) [23] and to perform the experiments with all our 7 melanomas. CNV 
analysis might be challenging given the CGH saturation observed previously in highly 
amplified samples. However, from preliminary normalizations, it seems the experiments have 
worked and we hope being able to identify the high amplification events.  
 

Conclusion  
 
Data are still being generated for this project, only SNP and CGH experiments have been 
completed. Information from transcriptome sequencing will be important for correlation with 
the copy number aberrations. Exome sequencing will be very useful to check the copy 
number and to identify both germ-line and somatic point mutations. Integration of all the 
genomic, transcriptomic and epigenetic data will definitely be an interesting challenge, 
improve our knowledge about melanomas and should provide insights for molecular 
therapies. 
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Future directions 
 
We demonstrated that our new CNV detection method was performing much better than 
other existing ones. Our novel merging algorithm is also of interest for integrating CNVs in 
control population or in disease cohort. We are optimistic that these methodologies and our 
results will prove useful to other projects and other groups.  
Using our CNV predictions, we already started doing association with the CoLaus clinical 
phenotypes. We will try devising new association methods that could take advantage of our 
CNV probabilistic calling framework.  
In parallel, more data are being generated for the Melanoma Sequencing Project. These data 
will be used to continue the genomic profiling of melanomas. We will also work on 
establishing strategies to integrate the genomic, transcriptomic and epigenetic data 
generated by the project. Then we plan to identify genes that are specific to the melanoma 
aberrations and which might be driver cancer-mutation. Additionally, we will analyse the 
custom CGH experiments to derive the copy number status of cancer-testis genes and check 
how these CN status correlate with gene expression levels as obtained from transcriptome 
sequencing.  

 

Annexes 
 
Figure 1: A) principal component analysis (PCA) on a local SNP window (chr3:74.5-76.5Mb) 
across CoLaus individual B) red regions = CNV regions from merging adjacent SNPs having the same 
CNV profile in the CoLaus population, blue = CNV regions obtained from clustering the main PCA 
components. Y axis represents frequency of CNV in the CoLaus population (N=5612) 
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Figure 2: A) Overlap between CoLaus Copy Number Polymorphisms versus DGV. Bins 
corresponds to reciprocal overlap, count is in log10 scale. B) Overlap between CNPs, having less than 
50% reciprocal overlap with DGV, versus the CoLaus CNVs detected on Illumina. Gray area 
correspond to standard deviation around the mean overlap value for 1000 sets of control CNVs. 
Numbers above each bar, correspond to T statistic between observed and control overlap (T values 
equals to 1.98; 2.58 or 3 correspond respectively to statistical significance at 5%, 1% or 0.1%). Red 
(blue) numbers indicate observed overlap is more (less) than mean control overlap. 
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Figure 3: ROC curves when predicting individual relatedness using CNV profile as predicted by our 
Mixture Gaussian model. No difference was found whether using regions from simple or PCA merges. 
Both merging approaches have prediction power (Area Under the Curve (AUC) > 0.5) 
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Figure 4: A) Copy Number (CN) from SNP arrays for a highly amplified melanoma. Y axis is the 
copy number and X axis physical position on chromosome 1 B) T’ statistic (Y axis) derived from CN. 
High/low score (.i.e. > 5 or < -5) indicates statistical difference with respect to the chromosomal 
baseline. 
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