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Abstract 
 

Although the genomes from any two human individuals are more than 99.99% 

identical at the sequence level, some structural variation can be observed. 

Differences between genomes include single nucleotide polymorphism (SNP), 

inversion and copy number changes (gain or loss of DNA). The latter can range from 

submicroscopic events (CNVs, at least 1kb in size) to complete chromosomal 

aneuploidies. Small copy number variations have often no (lethal) consequences to 

the cell, but a few were associated to disease susceptibility and phenotypic 

variations. Larger re-arrangements (i.e. complete chromosome gain) are frequently 

associated with more severe consequences on health such as genomic disorders 

and cancer. High-throughput technologies like DNA microarrays enable the detection 

of CNVs in a genome-wide fashion. Since the initial catalogue of CNVs in the human 

genome in 2006, there has been tremendous interest in CNVs both in the context of 

population and medical genetics. Understanding CNV patterns within and between 

human populations is essential to elucidate their possible contribution to disease. But 

genome analysis is a challenging task; the technology evolves rapidly creating needs 

for novel, efficient and robust analytical tools which need to be compared with 

existing ones. Also, while the link between CNV and disease has been established, 

the relative CNV contribution is not fully understood and the predisposition to disease 

from CNVs of the general population has not been yet investigated. 

During my PhD thesis, I worked on several aspects related to CNVs. As I will report 

in chapter 3, I was interested in computational methods to detect CNVs from the 

general population. I had access to the CoLaus dataset, a population-based study 

with more than 6,000 participants from the Lausanne area. All these individuals were 

analysed on SNP arrays and extensive clinical information were available. My work 

explored existing CNV detection methods and I developed a variety of metrics to 

compare their performance. Since these methods were not producing entirely 

satisfactory results, I implemented my own method which outperformed two existing 

methods. I also devised strategies to combine CNVs from different individuals into 

CNV regions. 
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I was also interested in the clinical impact of CNVs in common disease (chapter 4). 

Through an international collaboration led by the Centre Hospitalier Universitaire 

Vaudois (CHUV) and the Imperial College London I was involved as a main data 

analyst in the investigation of a rare deletion at chromosome 16p11 detected in 

obese patients. Specifically, we compared 8,456 obese patients and 11,856 

individuals from the general population and we found that the deletion was 

accounting for 0.7% of the morbid obesity cases and was absent in healthy non-

obese controls. This highlights the importance of rare variants with strong impact and 

provides new insights in the design of clinical studies to identify the missing 

heritability in common disease. 

Furthermore, I was interested in the detection of somatic copy number alterations 

(SCNA) and their consequences in cancer (chapter 5). This project was a 

collaboration initiated by the Ludwig Institute for Cancer Research and involved other 

groups from the Swiss Institute of Bioinformatics, the CHUV and Universities of 

Lausanne and Geneva. The focus of my work was to identify genes with altered 

expression levels within somatic copy number alterations (SCNA) in seven metastatic 

melanoma cell lines, using CGH and SNP arrays, RNA-seq, and karyotyping. Very 

few SCNA genes were shared by even two melanoma samples making it difficult to 

draw any conclusions at the individual gene level. To overcome this limitation, I used 

a network-guided analysis to determine whether any pathways, defined by amplified 

or deleted genes, were common among the samples. Six of the melanoma samples 

were potentially altered in four pathways and five samples harboured copy-number 

and expression changes in components of six pathways. In total, this approach 

identified 28 pathways. Validation with two external, large melanoma datasets 

confirmed all but three of the detected pathways and demonstrated the utility of 

network-guided approaches for both large and small datasets analysis. 
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Résumé 
 

Bien que le génome de deux individus soit similaire à plus de 99.99%, des 

différences de structure peuvent être observées. Ces différences incluent les 

polymorphismes simples de nucléotides, les inversions et les changements en 

nombre de copies (gain ou perte d’ADN). Ces derniers varient de petits événements 

dits sous-microscopiques (moins de 1kb en taille), appelés CNVs (copy number 

variants) jusqu’à des événements plus large pouvant affecter des chromosomes 

entiers. Les petites variations sont généralement sans conséquence pour la cellule, 

toutefois certaines ont été impliquées dans la prédisposition à certaines maladies, et 

à des variations phénotypiques dans la population générale. Les réarrangements 

plus grands (par exemple, une copie additionnelle d’un chromosome appelée 

communément trisomie) ont des répercutions plus grave pour la santé, comme par 

exemple dans certains syndromes génomiques et dans le cancer. Les technologies à 

haut-débit telle les puces à ADN permettent la détection de CNVs à l’échelle du 

génome humain. La cartographie en 2006 des CNV du génome humain, a suscité un 

fort intérêt en génétique des populations et en génétique médicale. La détection de 

différences au sein et entre plusieurs populations est un élément clef pour élucider la 

contribution possible des CNVs dans les maladies. Toutefois l’analyse du génome 

reste une tâche difficile, la technologie évolue très rapidement créant de nouveaux 

besoins pour le développement d’outils, l’amélioration des précédents, et la 

comparaison des différentes méthodes. De plus, si le lien entre CNV et maladie a été 

établit, leur contribution précise n’est pas encore comprise. De même que les études 

sur la prédisposition aux maladies par des CNVs détectés dans la population 

générale n’ont pas encore été réalisées. 

Pendant mon doctorat, je me suis concentré sur trois axes principaux ayant attrait 

aux CNV. Dans le chapitre 3, je détaille mes travaux  sur les méthodes d’analyses 

des puces à ADN. J’ai eu accès aux données du projet CoLaus, une étude de la 

population de Lausanne. Dans cette étude, le génome de plus de 6'000 individus a 

été analysé avec des puces SNP et de nombreuses informations cliniques ont été 

récoltées. Pendant mes travaux, j’ai utilisé et comparé plusieurs méthodes de 

détection des CNVs. Les résultats n’étant pas complètement satisfaisant, j’ai 

implémenté ma propre méthode qui donne de meilleures performances que deux des 
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trois autres méthodes utilisées. Je me suis aussi intéressé aux stratégies pour 

combiner les CNVs de différents individus en régions. 

Je me suis aussi intéressé à l’impact clinique des CNVs dans le cas des maladies 

génétiques communes (chapitre 4). Ce projet fut possible grâce à une étroite 

collaboration avec le Centre Hospitalier Universitaire Vaudois (CHUV) et l’Imperial 

College à Londres. Dans ce projet, j’ai été l’un des analystes principaux et j’ai 

travaillé sur l’impact clinique d’une délétion rare du chromosome 16p11 présente 

chez des patients atteints d’obésité. Dans cette collaboration multidisciplinaire, nous 

avons comparés 8’456 patients atteint d’obésité et 11’856 individus de la population 

générale. Nous avons trouvés que la délétion était impliquée dans 0.7% des cas 

d’obésité morbide et était absente chez les contrôles sains (non-atteint d’obésité). 

Notre étude illustre l’importance des CNVs rares qui peuvent avoir un impact clinique 

très important. De plus, ceci permet d’envisager une alternative aux études 

d’associations pour améliorer notre compréhension de l’étiologie des maladies 

génétiques communes. 

Egalement, j’ai travaillé sur la détection d’altérations somatiques en nombres de 

copies (SCNA) et de leurs conséquences pour le cancer (chapitre 5). Ce projet fut 

une collaboration initiée par l’Institut Ludwig de Recherche contre le Cancer et 

impliquant l’Institut Suisse de Bioinformatique, le CHUV et les Universités de 

Lausanne et Genève. Je me suis concentré sur l’identification de gènes affectés par 

des SCNAs et avec une sur- ou sous-expression dans des lignées cellulaires 

dérivées de mélanomes métastatiques. Les données utilisées ont été générées par 

des puces ADN (CGH et SNP) et du séquençage à haut débit du transcriptome. Mes 

recherches ont montrées que peu de gènes sont récurrents entre les mélanomes, ce 

qui rend difficile l’interprétation des résultats. Pour contourner ces limitations, j’ai 

utilisé une analyse de réseaux pour définir si des réseaux de signalisations enrichis 

en gènes amplifiés ou perdus, étaient communs aux différents échantillons. En fait, 

parmi les 28 réseaux détectés, quatre réseaux sont potentiellement dérégulés chez 

six mélanomes, et six réseaux supplémentaires sont affectés chez cinq mélanomes. 

La validation de ces résultats avec deux larges jeux de données publiques, a 

confirmée tous ces réseaux sauf trois. Ceci démontre l’utilité de cette approche pour 

l’analyse de petits et de larges jeux de données. 
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Résumé grand public 
 

L’avènement de la biologie moléculaire, en particulier ces dix dernières années, a 

révolutionné la recherche en génétique médicale. Grâce à la disponibilité du génome 

humain de référence dès 2001, de nouvelles technologies telles que les puces à 

ADN sont apparues et ont permis d’étudier le génome dans son ensemble avec une 

résolution dite sous-microscopique jusque-là impossible par les techniques 

traditionnelles de cytogénétique. Un des exemples les plus importants est l’étude des 

variations structurales du génome, en particulier l’étude du nombre de copies des 

gènes. Il était établi dès 1959 avec l’identification de la trisomie 21 par le professeur 

Jérôme Lejeune que le gain d’un chromosome supplémentaire était à l’origine de 

syndrome génétique avec des répercussions graves pour la santé du patient. Ces 

observations ont également été réalisées en oncologie sur les cellules cancéreuses 

qui accumulent fréquemment des aberrations en nombre de copies (telles que la 

perte ou le gain d’un ou plusieurs chromosomes). Dès 2004, plusieurs groupes de 

recherches ont répertorié des changements en nombre de copies dans des individus 

provenant de la population générale (c'est-à-dire sans symptômes cliniques visibles). 

En 2006, le Dr. Richard Redon a établi la première carte de variation en nombre de 

copies dans la population générale. Ces découvertes ont démontrées que les 

variations dans le génome était fréquentes et que la plupart d’entre elles étaient 

bénignes, c'est-à-dire sans conséquence clinique pour la santé de l’individu. Ceci a 

suscité un très grand intérêt pour comprendre les variations naturelles entre individus 

mais aussi pour mieux appréhender la prédisposition génétique à certaines maladies. 

Lors de ma thèse, j’ai développé de nouveaux outils informatiques pour l’analyse de 

puces à ADN dans le but de cartographier ces variations à l’échelle génomique. J’ai 

utilisé ces outils pour établir les variations dans la population suisse et je me suis 

consacré par la suite à l’étude de facteurs pouvant expliquer la prédisposition aux 

maladies telles que l’obésité. Cette étude en collaboration avec le Centre Hospitalier 

Universitaire Vaudois a permis l’identification d’une délétion sur le chromosome 16 

expliquant 0.7% des cas d’obésité morbide. Cette étude a plusieurs répercussions. 

Tout d’abord elle permet d’effectuer le diagnostique chez les enfants à naître afin de 

déterminer leur prédisposition à l’obésité. Ensuite ce locus implique une vingtaine de 

gènes. Ceci permet de formuler de nouvelles hypothèses de travail et d’orienter la 
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recherche afin d’améliorer notre compréhension de la maladie et l’espoir de découvrir 

un nouveau traitement. Enfin notre étude fournit une alternative aux études 

d’association génétique qui n’ont eu jusqu’à présent qu’un succès mitigé. 

Dans la dernière partie de ma thèse, je me suis intéressé à l’analyse des aberrations 

en nombre de copies dans le cancer. Mon choix s’est porté sur l’étude de 

mélanomes, impliqués dans le cancer de la peau. Le mélanome est une tumeur très 

agressive, elle est responsable de 80% des décès des cancers de la peau et est 

souvent résistante aux traitements utilisés en oncologie (chimiothérapie, 

radiothérapie). Dans le cadre d’une collaboration entre l’Institut Ludwig de Recherche 

contre le Cancer, l’Institut Suisse de Bioinformatique, le CHUV et les universités de 

Lausanne et Genève, nous avons séquencés l’exome (les gènes) et le transcriptome 

(l’expression des gènes) de sept mélanomes métastatiques, effectués des analyses 

du nombre de copies par des puces à ADN et des caryotypes. Mes travaux ont 

permis le développement de nouvelles méthodes d’analyses adaptées au cancer, 

d’établir la liste des réseaux de signalisation cellulaire affectés de façon récurrente 

chez le mélanome et d’identifier deux cibles thérapeutiques potentielles jusqu’alors 

ignorées dans les cancers de la peau. 
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1 Introduction 

1.1 Structural variation in the human genome 

Genetic variation in the human genome takes many forms ranging from large 

chromosome anomalies (segmental aneuploidy) to single nucleotide polymorphisms 

(SNPs) (See definitions in Table 1). Deletion, insertion and duplication events giving 

rise to copy number variations (CNVs) have been found genome-wide in humans 1-8 

and other species 9-17. For historical reasons related to the resolution detection, 

CNVs are defined as events longer than 1kb; smaller events (100bp-1kb) are referred 

as indels. 

Initial detection of copy number changes was made decades ago in human 

cytogenetics with karyotype and microscope observations. Chromosomal 

abnormalities in structure and copy number were associated to disease. A well 

known example is the Trisomy 21, also called Down syndrome, that was identified in 

1959 by Jérôme Lejeune 18. With the completion of the Human Genome Project in 

2001 and the availability of clone libraries, new technologies such as DNA 

microarrays were developed and offered higher throughput and resolution to study 

sub-microscopic copy number changes. Rapidly, large and small copy number 

aberrations were detected in cancer cells using comparative genome hybridization 

arrays (CGH) 19 then in 2004 independent groups reported structural variation in 

apparently-healthy individuals 1,6. Subsequently, in 2006, Redon et al. published the 

first genome-wide map of CNVs in the general population 3 (see Figure 1.). This map 

showed that about 12% of the genome was covered with CNVs; re-estimation with 

higher resolution arrays reduced this fraction to 5% 20. 

The observation that CNVs could occur both in normal and disease populations has 

opened a new chapter in human genomics. CNVs have been further explored within 

the human population in European 21, African 22,23, and several Asian populations: 

Chinese 24, Japanese 25, Korean 26-28. CNV comparisons have also been performed 

between human populations 3,7,29-33 and across apes 9,10,34,35. CNVs have been 

shown to play an adaptive environmental role in the evolution of different populations. 

Remarkable examples include: the copy number of the amylase gene, correlated to 

starch diet in different human populations 36; the increase of copy number of the 
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CCL3L1 gene that protects against HIV infection 35; and the evolution of olfactory 

receptor genes through CNV events 37. Because CNVs constitute a major force in 

genetic diversity, with consequence in term of evolution and disease susceptibility, 

their identification and association to quantitative traits and clinical phenotypes, 

constitute a important and fascinating task. 

Term Description Reference 
Structural Variant A genomic alteration (e.g., a CNV, an inversion that 

involves segments of DNA >1kb) 

2 

Copy number variant (CNV) A duplication or deletion event involving >1 kb of DNA  
Copy number polymorphism 
(CNP) 

CNV with frequency > 1% in a population  

Duplicon A duplicated genomic segment > 1 kb in length with 
>90% similarity between copies 

 

Indel Variation from insertion or deletion event involving 
<1kb of DNA 

 

Intermediate-sized structural 
variant 

A structural variant that is �8 kb to 40 kb in size. This 
can refer to a CNV or a balanced structural 
rearrangement (e.g., an inversion) 

4 

Low copy repeat Similar to segmental duplication 38 
Multisite variant Complex polymorphic variation that is neither a PSV 

nor a SNP 

39 

Paralogous sequence variant Sequence difference between duplicated 
copies (paralogs) 

40 

Segmental duplication (SD) Duplicated region ranging from 1 kb upward with a 
sequence identity of >90% 

40 

Interchromosomal SD Duplications distributed among non homologous 
chromosomes 

 

Intrachromosomal SD Duplications restricted to a single chromosome  
Single nucleotide polymorphism 
(SNP) 

Base substitution involving only a single nucleotide; 
�10 million are thought to be present in the human 
genome at >1%, leading to an average of one SNP 
difference per 1250 bases between randomly chosen 
individuals 

41 

Mosaicism Mosaicism is the presence of cells within an organism 
that have a different genetic composition despite 
deriving from a single zygote. 

42 

Aneuploidy Abnormal number of chromosomes in a cell  
Segmental aneuploidy Abnormal copy number for a portion of a chromosome  
Table 1 Structural variation terms - adapted from 5 
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Figure 1 Initial genome wide map of CNV in the human genome - from 3 
The chromosomal locations of 1,447 CNVRs are indicated by lines to either side of ideograms. Green lines 
denote CNVRs associated with segmental duplications; blue lines denote CNVRs not associated with segmental 
duplications. The length of right-hand side lines represents the size of each CNVR. The length of left-hand side 
lines indicates the frequency that a CNVR is detected (minor call frequency among 270 HapMap samples). 
When both platforms identify a CNVR, the maximum call frequency of the two is shown. For clarity, the 
dynamic range of length and frequency are log transformed (see scale bars). 
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1.2 Mechanisms for CNV genesis 

Understanding the mechanisms of CNV genesis is important for the estimation of yet 

undiscovered CNVs in the genome and to improve our understanding about the 

distribution and evolution of CNVs in the genome. There are three major 

mechanisms: non-allelic homologous recombination (NAHR), non-homologous end 

joining (NHEJ) and until recently retrotransposon L1 elements 43,44. Both NAHR and 

NHEJ are involved in the repair of DNA stranded breaks. Several others mechanisms 

have been proposed: retrotransposons; non-B DNA structures; and Fork Stalling and 

Template Switching (FoSteS). 

1.2.1 Non-allelic homologous recombination 

Homologous recombination is a mechanism by which DNA is exchanged between 

two similar sequences (i.e. with nearly identical identity). This process is frequently 

used to repair double-stranded DNA breaks and also occur in meiosis where 

homologous chromosomes can form Holliday Junction structure resulting in cross-

over or gene conversion (see Figure 2). Non-allelic homologous recombination is a 

process where non homolog sequences can exchange DNA 38,45, it occurs during 

Prophase I in meiosis (with a frequency between 10-6 and 5 x 10-5 per gamete 46) and 

it was shown that newborns carried less copy number changed due to NAHR than 

older individuals, suggesting that such rearrangements can accumulate in somatic 

cells during life 47. Rearrangements in germline cells are inheritable by definition, 

changes in somatic cells will either have no impact or be lethal to the cell; in very rare 

cases they can contribute to tumorigenesis. Several groups observed that CNVs 

were closely associated to segmental duplications (SDs) 1,4,8. Similar observations 

were made in genomic disorder studies, where the microdeletion or microduplication 

were clustered in the vicinity of SDs 48-50 or Alu repeats 51,52. It was shown that SDs 

were in fact facilitating NAHR events leading to copy number changes 48, an 

illustration is given in Figure 3. NAHR is considered as a major force driving CNV 

genesis 45 and is more frequent than non-homology driven processes 5. By contrast, 

the association between Alu repeats and CNVs has been minimized within recent 

studies 32,53. 
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Figure 2 Holliday junction structure 
A Two homologous chromosomes are paired, during meiosis, B DNA single strand break; C the broken strand 
cross and exchange DNA in a Holliday junction; D Heteroduplex region formed by branch migration; E 
simplified form of the Holliday junction leading to either cross-over (F) or gene conversion (G). 
 
 

 
Figure 3 NAHR induced by segmental duplications 
The segmental duplications indicated with the green and red arrows are mistaken for homologous alleles. Arrow 
heads indicates the direction of the duplication (here direct repeat). Here the cross-over leads to deleted and 
duplicated products. 
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1.2.2 Non-homologous end joining 

Non-homologous end joining (NHEJ) is a pathway to repair double-stranded DNA 

breaks (DSB). DSBs arise when the replication fork encounters a nick or when DNA 

is damaged with ionizing radiation or reactive oxygen species. NHEJ is the major 

DSB repair pathway, because 1) it does not require a substrate with homology, as 

opposed to NAHR; and 2) it can operate during the cell cycle (NAHR can only 

operate during late S and during G2). NHEJ has been extensively reviewed by Lieber 
54. When a DSB occurs, the damaged DNA is excised with nucleases, then new 

nucleotides are inserted with polymerases and finally ligases restore the 

phosphodiester bond (see Figure 4). This mechanism is rather imprecise and often 

lead to small deletions or duplications. Such errors have been implicated in genomic 

disorders 55,56 and in cancer 57,58. 

 
Figure 4 DSB repair via NHEJ - from 57 
When a double-stranded DNA break (DSB) occurs, the ends must be held in proximity to allow subsequent 
repair steps to proceed and to align the two ends. This first step can be referred to as synapsis. Ku and the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) bind to DNA ends during this initial phase, although it is 
not clear how the synapsis occurs or what proteins specifically carry out this function. End-alignment can occur 
if there is terminal microhomology of, typically, 1–4 nucleotides between the two ends. This is an optional 
aspect, as non-homologous DNA end-joining (NHEJ) occurs regardless of microhomology. End-processing 
refers to the removal of DNA by the Artemis–DNA-PKcs complex and the filling in of gaps by polymerases. 
Ligation is the final step, and it requires a ligatable nick on each strand. Ligation in NHEJ is done by the XRCC4 
(X-ray cross complementation 4)–DNA-ligase-IV complex. 
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1.2.3 Other CNV genesis mechanisms 

 Retrotransposons 

Long interspersed element-1 (L1) elements are the only active transposons in the 

human genome 59-61. The L1 family is estimated to contain about 600,000 copies, 

among which less than 100 have two open-reading frames (ORF): ORF1 encodes an 

RNA-binding protein and ORF2 encodes a protein with endonuclease and reverse-

transcriptase activities. Integration of L1 element in the genome is made via a 

mechanism named target-primed reverse transcription (see Figure 5 and 62). The 

contribution of L1 elements to CNV has been reviewed in 63. From fosmid end-paired 

sequencing analysis, Kidd and colleagues found L1 elements accounted for about 

30% of the detected indels 64. In the high-resolution CNV discovery project 32, Conrad 

and colleagues found that small duplications were more likely to be induced by 

retrotransposition and VNTRs (variable number tandem repeats, these repeats can 

be mobilized by L1 elements) whereas longer duplications were more likely to be 

caused by NAHR re-arrangements. Disease like Haemophilia A was shown to be 

induced by de-novo insertion of L1 elements 65. 

 

 
Figure 5 Integration of L1 element via target-primed reverse transcription - adapted from 62  
During target-primed reverse transcription (TPRT), the L1 endonuclease cleaves the first strand of target DNA, 
generally between T and A at 5'-TTTTAA-3' consensus sites133 (a). The free 3' hydroxyl (OH) generated by the 
nick is then used to prime reverse transcription of L1 RNA (red) by the L1 reverse transcriptase (b). The second 
strand of the target DNA is cleaved (c) and used to prime second-strand synthesis (d) through poorly understood 
mechanisms. Hallmarks of the integration process include frequent 5' truncations, the presence of an oligo(dA)-
rich tail at the 3' end and target site duplications (TSDs) of between 2 and 20 base pairs in length (e). 
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 Non-B DNA structures 

Non canonical DNA structures (non-B DNA) have been studied over the past 35 

years, with about one new structure type discovered every three years 66. Specific 

sequence motifs like direct, mirror or inverted repeats can undergo structural 

modification from the canonical B DNA (right handed helical) structure to higher 

energy state non-B DNA structures. Non-B DNA examples include slipped hairpin 

loops, cruciforms, left-handed Z helices, triplexes and tetraplexes (Figure 6, see also 
66). These structures have been shown to coincide with deletion breakpoints 67 and 

are thought to trigger genomic rearrangements through recombination-repair 

activities (NAHR). 

 

 
Figure 6 Non-B DNA conformations involved in rearrangements - adapted from.66 

In 2009, Conrad et al. found that two motifs of non-B DNA structures (G-quadriplexes 

and slipped DNA) were significantly over-represented in CNP breakpoints 32. It was 

also demonstrated that duplications were significantly more enriched in G-

quadriplexes than deletions. These observations confirmed that some non-B 

conformation can indeed participate in genomic rearrangement and breakpoint 

formation. 
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 Fork Stalling and Template Switching 

Fork Stalling and Template Switching (FoSTeS) has first been proposed in 2007 by 

Lee and colleagues 68 as a novel replication-based mechanism to explain non-

recurrent duplications of the dosage-sensitive proteolipid protein 1 (PLP1) gene, 

involved in the Pelizaeus-Merzbacher disease 55,69 This replication-model contrasts 

with NAHR and NHJE which are recombination-based mechanisms. The proposed 

FoSTeS model was thought to be a consequence of a stall in the replication fork (see 

Figure 7). This stall can be resolved but with DNA lesions resulting from the genome 

instability near SDs. Following such stall, the lagging strand can switch, invade 

another replication fork and be replicated with the progression of this second fork 

(progression of this second fork depends of its leading strand and could be moving 

5’->3’ or 3’->5’). 

 

 

 

Figure 7 Illustration of the FoSTeS Model - adapted from 68 
(B), one replication fork (dark blue and red, solid lines) with a lagging 
strand (red, dotted line) would invade a second fork (purple and green, 
solid lines), followed by (C) DNA synthesis (green, dotted line). After 
the fork disengages (D), the original fork (dark blue and red, solid lines) 
with its lagging strand (red and green, dotted lines) could invade a third 
fork (gray and black, solid lines). Dotted lines represent newly 
synthesized DNA. Serial replication fork disengaging and lagging strand 
invasion could occur several times before (E) resumption of replication 
on the original template. 
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1.3 Platforms for CNV detection 

Gross copy number alterations were initially detected with karyotyping (Giemsa 

banding) (see Figure 8A) in the early days of cytogenetics. Several large-scale 

aberrations such as trisomy 21 and many cancer aberrations were identified before 

the development of techniques with higher resolutions. Fluorescence in situ 

hybridization (FISH) has increased this resolution, enabling the detection of sub-

microscopic copy number changes that could not be detected with karyotyping 

(Figure 8B). Methods have continued to evolve with DNA microarrays and more 

recently ultra-high throughput sequencing (UHTS) technologies. Today, the most 

widely used techniques can be classified as amplification-based (e.g. polymerase 

chain reaction), hybridization based (e.g. FISH, CGH and SNP arrays) or 

sequencing-based. These techniques differ in precision, throughput and resolution. 

For example, FISH, Southern blot, and PCR-approaches (like long-range PCR) are 

work intensive and thus not suitable for CNV analysis in large cohorts. However 

these methods, as well as novel ones, are used for the CNV validation at targeted 

loci. 

 
Figure 8 Karyotype and FISH 
A Karyotype of a metastatic melanoma (Me275), here it has 76 chromosomes and 7 unclassified markers, B 
FISH analysis of the MDM2 oncogene. MDM2 probe is in red; centromere-specific probe is in green. Here the 
sample (Me275) has 8 copies on chromosome 12, and a large ectopic amplicon located on another chromosome. 
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1.3.1 Microarray-based methods 

 Comparative Genome Hybridization arrays 

Comparative Genome Hybridization (CGH) is a method that compares the relative 

copy number of a test DNA with respect to a reference DNA 19,70,71. Both DNAs are 

labelled with different dyes (a red and a green), then are hybridized competitively 

onto a chromosome (metaphase) spread. A ratio of relative copy number changes 

can then be measured; significant deviation from the baseline indicates copy number 

gain or loss with respect to the reference. With the completion of Human Genome 

Project, libraries of large-insert clones (i.e. bacterial artificial chromosome (BAC), 

cosmid or fosmid clones) were developed and spotted onto a microarray (slide) 72-74. 

Hybridization could then be performed onto such microarray with a higher throughput 

and resolution than on metaphases chromosomes (Figure 9). The length of the BAC 

clones ranged from 150 to 200kb and did not allow the detection of small CNVs 

(<50Kb). To overcome this limitation, oligonucleotide CGH arrays were developed, 

using spotted probes that were synthesized in-situ with 25-85 oligonucleotides. 

Current oligonucleotide CGH arrays have a median resolution of one probe every 

2.1kb for Agilent 1M arrays and 1.1kb with Roche Nimblegen 2.1M arrays. CGH 

arrays have become a popular method for the identification of CNV both in tumours 
75-77 and in clinical diagnosis 78,79 (see also Figure 10). 
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Figure 9 Protocol outline for two CNV detection platforms, adapted from 3 
Experimental procedures are displayed for comparative genome hybridization (WGTP array) and SNP 
comparative intensity analysis (500K EA Affymetrix SNP array). The genome profile shows the log2 ratio of 
copy number in these two genomes chromosome-by-chromosome. Below the genome profiles are expanded 
plots of chromosome 8, and a 10-Mb window containing a large duplication was identified on both platforms (as 
indicated by the red bracket). 
 
 

   
Figure 10 CNV predictions from CGH array 
The two first plots correspond to CGH copy number profile in human tumours (melanoma); the last plot to a 
(human) male individual hybridized with respect to a female reference. Chromosomes 1 to X are delimited with 
vertical gray bars, Y axis corresponds to log2 ratio of copy number, duplication (amplification) are shown in 
cyan (dark blue); copy neutral events in light and dark gray; and deletions in orange. 
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 Single nucleotide polymorphism genotyping arrays 

The Hapmap project has played a major role in the discovery and characterization of 

single nucleotide polymorphism (SNP) in four major human populations (European, 

African, Chinese and Japanese). This has generated tremendous interest in 

population genetics and medical genetics. Manufacturers like Affymetrix and Illumina 

design and commercialize DNA arrays to genotype SNPs. With Affymetrix arrays, 

DNA sequences are digested, ligated to adaptators, amplified and hybridized to the 

array (Figure 11A). DNA sequences hybridize to 25 mers probes that describe 

specific SNP allele. These hybridization intensities can be measured at each SNP 

allele and subsequently used to perform the genotyping call (Figure 11B). By contrast 

to CGH arrays where two individuals are hybridized on the chip; a single genome is 

assayed with SNP arrays. Data from Hapmap or any other dataset (with several 

experiments), can be used as a reference to call the SNP genotype. Illumina SNP 

array uses a slightly different technique: 1) DNA sequence hybridizes to a target 

probe; 2) the nucleotide corresponding to the SNP is added in a single base 

extension phase. A and T nucleotides are labelled with biotin whereas C and G are 

labelled with dinintrophenol. 3) Antibodies with fluorochrome are added, these 

recognize either the biotin or dinintrophenol and allow to detect which nucleotide has 

been incorporated. An illustration is given in Figure 12. 
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Figure 11 SNP genotyping analysis 
A Affymetrix SNP array protocol (from www.affymetrix.com), B genotype calling based on clustering of allele-
specific intensities (adapted from 80) 
 
 

 

 
 

 

Figure 12 Illumina Infinium protocol - adapted from www.illumina.com 
A Protocol from genome amplification to probe hybridization and primer extension B Immunohistochemical 
fluorescence detection 

A 

A 

B 

B 
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Based on the SNP genotype data, deletions were detected in the Hapmap population 

using Mendelian inconsistencies between trios 81 and using clusters of genotyping 

errors or regions of SNPs that were not in Hardy-Weinberg equilibrium 82. Although 

SNP genotyping arrays were not primary designed for CNV analysis (only to call the 

three possible genotypes of SNPs), it is possible to obtain information on the copy 

number state by combining the intensities of the two alleles for a given SNP. This is 

similar to CGH analysis, where the comparison is made between the hybridization 

ratios from a test and reference sample. With SNP arrays, only one genome is 

hybridized per chip (Figure 9B) thus the reference can be a pool of external 

experiments and the copy number ratio can be computed as follow:  

)(log2
BA

BA

RR

SS
CNratio

+
+=

 

Where S refers to the intensity of the test sample (of an individual) and R to the 

(mean) intensity of the reference panel; A and B refer to the SNP alleles. 

Subsequently similarly to CGH analysis, copy number changes can be identified by 

identifying significant deviation from the baseline CN ratio (Figure 9B). An alternative 

approach is to also consider the ratio of allele intensities. This ratio is close to 1 or 0 

for homozygous SNP (AA or BB) and close to 0.5 for heterozygous (AB) (see Figure 

11B). Identification of pattern from allelic intensities ratio helps to refine the CNV 

analysis. For example loss of heterozygosity (LOH) can reflect hemizygous deletion 

(if the copy number ratio is less than 0) or duplication with LOH (if the copy number 

ratio is >0). Clusters of noisy allelic ratios (i.e. aberrant fluctuation from 0 to 1) with 

very low CNratio can reflect homozygous deletion whereas allelic ratios ranging 

aberrantly form 0.3 to 0.6 with high CNratio can reflect allelic imbalance due to 

amplification. It has been demonstrated that incorporation of allelic ratios provides a 

powerful approach for the detection of CNVs both for tumor analysis 83,84 and diploid 

sample analysis 85-87. Figure 13 illustrates an analysis with a metastatic melanoma. 

The short arm of chromosome 7 (chr7p) was predicted as 3 copies (CN ratios were 

greater than 0 and with LOH) whereas chr7q was predicted with 5 copies. 
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Figure 13 SNP array analysis 
DNA from a metastatic melanoma (LAU-Me275) was hybridized to Illumina 1M SNP arrays. The top panel 
shows genome-wide copy number: dark blue indicates more than three copies; cyan: three copies; gray: copy 
neutral; orange : deletion. Subsequent panels show chromosome 7 with, from top to bottom: Hybridization log2 
ratio; B allele frequency; and copy number prediction. 

Although CNVs can be mined from SNP array data, the analysis suffers from two 

major limitations: 1) the measured intensities are very noisy therefore additional 

normalization steps (such as GC-correction 88,89) are needed to improve the signal to 

noise ratio but can mask small copy number changes and 2) the uneven SNP density 

on the array challenges the CNV detection. Repeat-rich regions and regions within or 

close to segmental duplications are not covered on the array. These genomic regions 

are highly dynamic (prone to induce rearrangements) and thus likely to contain 

interesting CNVs. Also many interesting genes, recently associated with complex 

disease are not assayed. 

To overcome this density limitation, Affymetrix in collaboration with the Broad Institute 

designed a new array combining both SNPs and non-polymorphic probes to cover 

CNV regions 20. The Affymetrix array (6.0) contains 906,000 SNPs and 946,000 non-

polymorphic probes, with a median inter-marker distance less than 700 bases. 

Illumina provides a similar solution with the Illumina 1M-duo SNP array that has 1.2 

million markers and a median inter-marker distance equals to 1.5kb. A new Illumina 

chip will be soon available with 2.5 million markers and inter-marker distance close to 

630 bases. 
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1.3.2 Sequencing-based methods 

 Initial application with paired-end mapping approaches 

With the availability of reference genomes 90,91 discovery of structural variants 

became possible. However these genomes still contain genomic gaps and 

assembling of complex regions (near segmental duplications, repeats etc…) is not 

perfect. However better insights were provided with the development of newer 

sequencing generations and sequencing of additional individuals. Notably in 2005, 

Evan Eichler’s group identified sequence variants by comparing fosmid end pairs of 

an individual to the reference genome sequence 4. The principle is as follow: 1) the 

genomic sequence is fragmented and cloned into fosmids. 2) ends of the cloned 

sequence are sequenced using universal primers and are aligned to the reference 

genome 3) end pairs that are discordant in length or direction indicate respectively 

possible indels or inversion (Figure 14). Similar analyses were repeated with higher 

resolution in 2007 92 and in 2008 with more genomes sequenced 64. 

 
Figure 14 Detection of structural variation from fosmid end pair sequencing - adapted from 4 
A Methodology to define deletion, insertion from distance between fosmid end pairs and inversion from the 
orientation of fosmid end pairs B Distribution of fosmid insert size on chromosome 7. 
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Since, next generation sequencing (NGS) technologies have further evolved and are 

able to sequence millions of reads in parallel. The latest Illumina platform: HiSeq2000 

is able to produce 200 GB of sequence with 100bp paired reads in less than 10 days. 

The massive amount of generated data has greatly stimulated the development of 

bioinformatics methods for structural variant analysis and now several approaches 

complementary to paired-end mapping have been proposed. These approaches 

include read-depth analysis, split-read strategies and sequence assembly 

comparisons. References to freely available tools are given in Table 2. 

Methods Algorithm Reference 
Paired-end mapping   

 Detection of discordant end-pairs 4,93,94 
 Clustering of end-pairs 64,92,95-97 

Read-depth analysis   
 Detection of local change points 98,99 
 Detection of outliers compared to 

the read-depth baseline 

100 

 Event-wise testing 101 
Split-read analysis   

 Identification of breakpoints with a 
pattern growth algorithm 

102 

Sequence assembly analysis   
 De novo assembly and comparison 

to reference genome 

103,104 

 Detection of small indels through 
local reassembly 

105 

Table 2 Algorithms for the detection of indels from NGS data 

 Read-depth and read-split approaches 

The read-depth analysis investigates drop or increase of read coverage compared to 

an expected depth distribution (Figure 15). Mutual information about paired reads is 

used to improve the mapping quality and to detect complex and large re-

arrangements. However the analysis is challenged by repeat-rich regions due to 

mapping issues, and the breakpoint position is not precise. This contrasts with 

paired-end mapping (PEM) approaches, previously described, that enable precise 

breakpoint determination and perform well even in the presence of repetitive 

elements (LINE, SINE). However PEM approaches fail when both fosmid- or paired-

ends map within repeats. Also the detection resolution is limited to the distance 

between end-pairs, therefore large (except deletion) or very small rearrangements 

cannot be detected. The split-read strategy entails in gapped-alignment of reads onto 

candidate breakpoints (Figure 15). The strategy used in the Pindel algorithm 102 is to 
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detect paired-reads where only one end is uniquely mapped onto a reference 

genome. The assumption is that the second paired-read cannot be mapped, even 

with few mismatches allowed, because it corresponds to a deletion or insertion 

breakpoint. The mapped read is used as an anchor and knowing both a maximum 

event length and the direction to search for the unmapped read; alignment of the 

unmapped read can be performed either by splitting it in two (indicating a deletion 

event) or in three (indicating an insertion) fragments (Figure 15).  

Providing a high sequencing depth, denovo assembly can be attempted using now 

standard tools like SOAPdenovo 103 or ABYSS 104. Once the genome has been 

assembled, sequence comparison can be made with the reference genome to 

identify deletions and insertions. The advantage of denovo assembling over PEM 

approaches is that deletion or insertion smaller than the paired-end insert size can be 

detected. But on the other hand, denovo assembling is only possible with high read-

depth. When this criteria is not met, several experiments can be pooled together 106. 

Also denovo assembling is very difficult for repeat-rich regions. 

 
Figure 15 Read-depth and split-read analysis 
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The above techniques present different and complementary advantages, using 

several approaches in combination definitely empower the detection of different 

structural variations. 

NGS offers several advantages over CGH and SNP arrays, in particular it allows 

detection of very small variants (indels, SNPs) and inversion. It can estimate exact 

breakpoint location and does not suffer from hybridization saturation allowing a better 

estimation of high copy numbers. Nevertheless the technique remains very 

expensive, the storage and computational analytical requirements are high and the 

computational methods still predict a significant fraction of false positives 106-108; 

which can be controlled by using multiple algorithms 106,109. 

1.3.3 Methods used in CNV validation 

Validation constitutes an integral part of any study, especially in medical genetics 

where findings need to be validated (confirmed) and replicated (assessed in 

additional samples). In CNV studies, qualitative or quantitative estimation of copy 

number at targeted loci is crucial 1) to validate predictions from high-throughput 

platforms such as microarrays, 2) to estimate the true underlying copy number of a 

CNV region, 3) to fine-map the CNV boundaries and 4) to screen larger sample 

collections at a given locus. Classical molecular techniques include FISH, Southern 

blotting and long-range PCR. FISH was described previously. Southern blotting uses 

a labelled probe to bind specific sequence in genomic DNA. This DNA has been first 

digested with restriction enzyme, migrated onto electrophoresis gel and transferred to 

a membrane. The band intensity indicates the amount of DNA present. This 

technique is work-demanding, time consuming and cannot reveal mosaic changes. 

Long-range PCR enables the amplification of long DNA fragments (up to 50kb) but its 

protocol is highly demanding and involves a combination of modifications to standard 

conditions with a two-polymerase system. Because these three techniques require a 

high amount of work and offer a very limited throughput, these are not methods of 

choice for CNV validation. Instead other techniques with multiplexing capacities like 

quantitative real-time PCR, multiplex ligation-dependent probe amplification and 

multiple amplifiable probe hybridization are preferred, because of higher throughput 

possibilities. 
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 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) is the most commonly used approach for CNV 

validation 110. It is a reliable method for the detection of deletion and duplication at 

single loci and can be applicable to a large number of samples. However it is not 

suitable for precise copy number determination. During the qPCR experiment, the 

DNA amplification is monitored in real-time as a function of PCR cycles. Detection 

can be done using fluorescence dye (e.g. SYBR green) that emits fluorescence when 

incorporated in double stranded DNA. The fluorescence of the reporter dye increases 

as the PCR product accumulates with each successive cycle of amplification. A 

limitation is the low specificity, the dye will bind to any double stranded DNA. An 

alternative, but more expensive protocol, is to use probes (e.g. Taqman probes) that 

complement specifically the target DNA. The probe is an oligonucleotide with a 

reporter dye attached to the 5’ and a quencher dye attached to the 3’. While the 

reporter is close to the quencher dye, only background fluorescence is measured. 

During the PCR, the probe complements the target DNA, the polymerase performs 

the primer extension and integrates the probe into the PCR product. Subsequently 

the 5’ exonuclease activity of the polymerase cleaves the probe, which releases the 

reporter dye from the proximity of the quencher dye and enables the emission of the 

fluorescence signal (Figure 16). The process is repeated in every cycle and does not 

interfere with the accumulation of PCR product. 

 
Figure 16 qPCR reaction with Taqman probes 
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 Multiplex Quantitative Fluorescent Real-time PCR 

Multiplex ligation-dependent probe amplification (MLPA) 111 and multiple amplifiable 

probe hybridization (MAPH) 112 provide an alternative to analyse simultaneously 

several genomic regions. MAPH is based on the hybridization of DNA probes to the 

target DNA, following stringent washing to only retain the hybridized probes, the 

probes are amplified using a common primer pair and quantified using capillary 

electrophoresis. MPLA is similar to MAPH, but requires the ligation of two adjacently 

hybridising oligonucleotides before a PCR product can be generated. Both 

techniques enable the interpretation of up to 50 loci in a single reaction and 

observation of mosaic copy number (with at least two consecutive probes). This has 

these techniques very attractive for CNV validation in a clinical setting (Figure 17). 

 
Figure 17 Identification of a deletion with CGH array and validation with MLPA - adapted from 113  
a) CGH data showing the location of deletion on 16p11.2. The data show the log2 intensity ratio for a deletion 
carrier compared to an undeleted control sample. Grey bars connected by a broken line denote the segmental 
duplication flanking the deletion region. Vertical bars indicate the positions of the probe pairs used for MLPA 
validation. b) MLPA validation of 16p11.2 deletions. Representative MLPA results are shown, illustrating one 
instance of maternal transmission and two instances of de novo deletions. Each panel shows the relative 
magnitude of the normalised, integrated signal at each probe location, in order of chromosomal position of the 
MLPA probe pairs as indicated in (a). Each panel corresponds to its respective position on the associated 
pedigree, as shown. 
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 Newest high-throughput validation technologies  

With the need for large-scale validation in SNP-based genome wide association 

studies, Illumina proposed to the scientific community custom SNP genotyping arrays 

to assay up to 200,000 SNPs associated to complex diseases (diabetes, obesity and 

cardiovascular disease), with a large throughput (24-sample format) and at reduced 

cost compared to whole genome genotyping arrays. Such custom-chips have been 

designed to screen candidate SNPs in metabolic and immune disease (referred as 

metabo- and immuno-chip). 

A novel platform, called nanostring, has been recently proposed for multiplexed 

validation of CNV regions (up to 200 regions in a single reaction). This technology 

counts the number of probes carrying a colour-coded barcode that have hybridized to 

specific targeted regions (Figure 18). Initially developed for gene expression analysis 
114, this technology has been rapidly extended to copy number analysis. This 

technology enables sensitive detection of copy number because it does not rely on 

enzymes or amplification step and because the hybridization is performed in solution. 

According to the manufacturers specifications, it can detect copy number down to 

2kb in size with a copy number range from 0 to 4. The latter implies the technology is 

of little interest in cancer genomics, where copy number within (focal) amplifications 

can reach values greater than 20. However because of the throughput (12 samples 

prepared and analysed in less than seven hours), the technology will prove useful for 

analysis of variation in the general population or disease cohorts. 
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Figure 18 Nanostring technology overview 
Both the capture and reporter probes will hybridize to a target single-stranded DNA and form a complex. After 
hybridization, probe excess is removed and complexes can be immobilized using the capture probe. Then image 
acquisition can be done using the colour-coded barcode attached to the reporter probe. Counts of barcode allow 
estimating the number of DNA that was captured. 

1.4 The clinical impact of copy number variants 

1.4.1 CNVs and genomic disorder 

From their initial detection, CNVs were thought to lead to disease. The literature is 

enriched in examples of microduplication and microdeletion linked to genetic 

disorders. Some examples are listed in Table 3, the contribution of these CNVs is not 

yet fully understood and thus further studies are still ongoing to fine-map the CNV 

breakpoints and to detect the affected genes. Cataloguing candidate CNVs involved 

with disease is part of an international effort, DECIPHER 115. This database aims at 

centralizing, providing information and facilitating data exchange between clinical 

laboratories. It also provides a number of bioinformatic tools to visualize genomic 

data (i.e. using the Ensembl browser) and to prioritize list of candidate genes using 

text mining techniques. At the end of November 2010, this database described 58 

syndromes and more than 7000 patients. It constitutes an important step towards a 

better comprehension of the clinical impact of CNVs. 

By contrast to the multitude (>700) of published SNP-based genome-wide 

association studies (GWAs), CNV-based GWAs have had a limited success so far 
116-120. It should be noted that the results from Blauw et al. did not meet the authors’ 
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criteria for replication. Wain et al. potentially identified four variants involved in 

sporadic amyotrophic lateral sclerosis, among which EEF1D was previously 

unknown. However the authors warn against the modest size effects detected and 

the suitability of the genotyping platform used. Craddock et al. 117 concluded  that it 

was unlikely that CNPs could explain the missing heritability in complex and common 

disease. However, the importance of rare CNVs emerged very recently with a few 

GWA 121-123 and several non-GWA studies 113,124-128. 

Disease Locus Gene(s) CNV Reference(s) 

Rare genomic disorders     

Cri du chat syndrome 5p15.2 Multiple genes Deletion 129 

Spinal muscular atrophy (SMA1-4) 5q12.2-
q13.3 

BIRC1, GTF2H2, 
SERF1A, SERF1B, 
SMN1, SMN2 

Deletion 130 

Williams-Beuren syndrome 7q11.23 Multiple genes Deletion/duplication 131 
CHARGE syndrome 8q12.1 CHD7 Deletion 132 

Charcot-Marie-Tooth disease type 4B2 11p15.4 ADM, SBF2 Deletion 133 

Prader-Willi and Angelman syndrome 
15q11-
q13 

ATP10A, OCA2, 
OR4M2, OR4N4, 
UBE3A Deletion 134 

Smith-Magenis syndrome 17p11.2 

ATPF2, COPS3, DRG2, 
MED9, NT5M, RAI1, 
SMCR8, SREBF1 Deletion 38 

Charcot-Marie-Tooth disease type 1A 17p11.2 COX10, HS3ST3A1, 
PMP22, TEKT3, ZNF286 

Deletion 49 

Neurofibromatosis type 1 17q11.2 NF1 Deletion/duplication 135 
Miller-Dieker lissencephaly syndrome 17p13.3 LIS1 Deletion 136 

DiGeorge/Velocardiofacial syndrome 22q11.2 GGT2, GNB1L, HIC2, 
TBX1 

Deletion/duplication 137 

Pelizaeus-Merzbacher disease Xq22 PLP1 Deletion/duplication 138 

Common disorders 
    

HIV/AIDS susceptibility 17q11.2 CCL3L1 Deletion 35 
Systemic lupus erythematosus 1q23 FCGR3B Deletion 139-141 

 6p21.3 C4 Deletion 142 

Rheumatoid arthritis 17q11.2 CCL3L1 Duplication 143 

Kawasaki disease 17q11.2 CCL3L1 Duplication 144 

Crohn’s disease 8p23.1 HBD-2 Deletion 145 

 5q33.1 IRGM Deletion 146 

Psoriasis 8p23.1 HBD-2 Duplication 147 
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ANCA-associated vasculitis 1q23 FCGR3B Deletion 140 

 1q23 FCGR3B Duplication 141 

Atopic asthma 1q13.3 GSTM1 Deletion 148 

 22q11.2 GSTT1 Deletion 149,150 

Autism spectrum disorders 15q11-
q13 

Multiple genes Deletion/duplication 151 

 16p11.2 Multiple genes Deletion/duplication 152 

 22q13.3 SHANK3 Deletion 153 

 Xp22.33 NLGN4 Deletion 154 

 2p16.3 NRXN1 Deletion 155 

Schizophrenia 2q34 ERBB4 Deletion 156 

 5p13.3 SLC1A3 Deletion 157 

 2q31.2 RAPGEF4 Deletion 158 

 12.24 CIT Deletion 159 

Epilepsy 15q13.3 CHRNA7 Deletion 157,159 
Parkinson’s disease 4q22 SNCA Duplication 160,161 
Amyotrophic lateral sclerosis 5q12.2-

q13.3 
SMN1, SMN2 Deletion 162 

Familial hypercholesterolemia 19p13.2 LDLR Deletion/duplication 163 
Table 3 CNV  reported associated to rare and common disease adapted from 164 

1.4.2 CNVs and gene expression in the general population 

Analogously to SNP-based analyses 165-168, efforts have focused on understanding 

whether CNVs could influence gene dosage in an individual from the general 

population. This is important both for our understanding of the predisposition to 

disease but also to understand “normal” phenotypic variation between individuals. 

Indeed, it has been demonstrated that both the copy number and position of CNVs 

affect the expression of nearby genes 12,169,170. Scenarios for the effect of deletions 

and duplications are illustrated in Figure 19 and Figure 20, respectively. In addition, 

there has been growing evidence that CNVs could play a role in tissue-specific 

developmental constraints 12,15,171,172. However the contribution of CNVs during 

development (i.e. impact on gene expression during morphogenesis) remains 

unknown. 



38 

 
Figure 19 CNV influencing gene dosage and expression and disease - from 173 
 

 
Figure 20 Duplication scenarios and their influence on gene expression - from 174 
(A) Single copy gene locus. The gene intron–exon region (blue box), the gene promoter (red arrow) and its 
enhancer (green box) are shown. Transcript levels are indicated schematically on the right. (B) Complete tandem 
duplication including the regulatory region. (C) Complete tandem duplication including the regulatory region of 
a gene under a compensatory mechanism. A negative feedback loop reduces the gene transcription level. (D) 
Complete tandem duplication excluding the regulatory region. The single enhancer only weakly influences 
expression of the second copy of the gene, which is expressed at a lower level. (E) Complete non-tandem 
duplication including the regulatory region. The duplicated locus maps to another chromosome region where a 
different chromatin context, e.g. insulators (yellow ellipses), modifies its expression level. (F) Immediate early 
gene model. In the presence of a duplication, the concentration of CNV gene product (blue hexagons) is 
sufficient to induce a repressor (light green box), the product of which (light green disks) blocks the expression 
of the CNV gene. (G) A tandem duplication (2) physically impairs the access of the CNV genes copies to the 
transcription factory where it should be transcribed (1). 
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1.5 Somatic copy number alterations in cancer 

Somatic copy number alterations (SCNA) are typical of cancer cells 76,175-180. It has 

been demonstrated that SCNAs near oncogenes or tumour suppressor genes can 

affect gene expression levels or result in the expression of chimeric fusion genes 
77,179. Alteration of the gene dosage and subsequent perturbation of pathways 

involved in cell proliferation, senescence or death has been shown in many cases to 

contribute significantly to the progression from the normal to the malignant state 
179,181-184.  

Challenges in cancer genomics differ greatly from medical genetics where patients or 

individuals are assumed to have a “mostly-diploid” genome (with the exception of 

specific trisomies like the Down syndrome). Cancer genomes accumulate point 

mutations and SCNAs which conspire to disrupt gene expression and the interplay 

between signalling pathways that control normal growth and tissue homeostasis 
99,107,108,175-177. Only a small fraction among these aberrations contributes to the 

development from the normal to the malignant state. Such aberrations are referred as 

“cancer drivers” and should be distinguished from “passenger events”, which are the 

consequence of the stochastic accumulation of aberrations 179,181-183. The 

identification of potential cancer driver genes can be done by screening tumor 

collections for recurrent mutations or SCNAs 177,185-189. Then validation of the 

oncogenic (or tumor suppressor) function is usually achieved by following tumor 

progression when activating or repressing the gene in tumor models 190-192. 

Identification of cancer driver genes is important to understand the initial mechanisms 

leading to cancer, establish early diagnostic tests and possibly develop novel 

therapies. 

The analysis of passenger mutations is very challenging, because in cancer 

genomes with deficiencies in DSB repair or mismatch repair pathways, there will be 

thousands of accumulated aberrations. Most of these aberrations will not give an 

advantage to the cancer cell (i.e. most of these will occur in intronic or intergenic 

regions, or be synonymous mutations). However several will occur in coding 

sequences, can result in translational frameshifts or stop codons; and be the 

consequence of premature protein termination or non-functional proteins. Even if 

these events are not initially responsible for the tumor development; there is still the 
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possibility that a small fraction can favour further tumor progression. In fact, once the 

cell has accumulated mutations that enable it to evade normal growth control (and 

enter a proliferative phase), stochastic accumulation of mutations (or SCNAs) can 

affect genes that will help the cell to proceed to an invasive phase. This scenario can 

be illustrated with melanomas, where the proliferative phase starts with the activation 

of the MAPK pathway but is not a sufficient event for malignant transformation 193-195. 

Details about the progression of melanoma are given in the next section (Scope of 

the thesis). Following malignant transformation, cells continue to evolve and new 

“features” can be acquired from later mutations. These new features can create new 

sub-populations of cancer cells that can be resistant to treatment and lead to relapse. 

For example, melanogenesis is a metabolic pathway that converts L-tyrosine to 

melanin pigment. Melanin provides protection against UV radiation in normal 

melanocytes, but melanogenesis products generate immunosuppressive and 

mutagenic environments within the cell and can confer resistance to chemotherapy 

and radiotherapy in malignant melanomas 196,197. Consequently, inhibition of 

melanogenesis, which is not a driving event in melanoma malignancy, is under active 

research for treating melanoma 196,198-200. 

To summarize, the comprehensive documentation of SCNAs and mutations with 

possible impact on gene expression and subsequent pathway regulation, will be 

useful to improve our knowledge of cancer driving events (giving rise to the initial 

malignant state), passenger events with possible contribution to malignancy and 

passenger events without contribution to the tumorigenesis. 
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1.6 Scope of the thesis 

The aim of my thesis is to develop computational methods to detect CNVs from 

microarray data, and to investigate their possible clinical impact both in complex 

disease and cancer. This theme has been studied in the three following sections. 

1.6.1 Identification and validation of Copy Number Variants using 
SNP genotyping arrays from a large clinical cohort 

In the first section (chapter 3), I aim to mine CNVs from a population-based medical 

cohort named CoLaus. CoLaus: Cohorte Lausannoise includes more than 6,000 

individuals, with age 35-75, from the Lausanne area. All individuals were genotyped 

on Affymetrix 500K SNP arrays, and extensive phenotypic data were collected by the 

Lausanne University Hospital (CHUV). These phenotypes include more than 150 

measurements from anthropomorphic traits (height, weight, age, gender…) to 

metabolic measurements (cholesterol, glucose, HDL, LDL levels); as well as 

questionnaires (smoker-status, drugs prescription etc…). The initial goal of the study 

was to perform SNP-based genome-wide association studies to investigate 

cardiovascular predisposition. This was carried out by Dr. Zoltan Kutalik and Dr. Toby 

Johnson, both postdocs in Pr. Sven Bergman’s group. At this time, the predisposition 

to disease due to CNVs was unknown and methods to analyse SNP arrays were 

limited to very few algorithms such as CNAT, GEMCA, dCHIP and CNAG 201-204. All 

but CNAT were limited to the Microsoft Windows operating system and could not 

scale with the analysis of a high number of samples. Other available methodologies 

were those used for CGH array analysis. These methods were not using allelic 

intensity ratios, a feature unique to SNP arrays that improves the CNV detection 

power 83. In addition, these methods were suitable for the analysis of BAC CGH 

arrays (with less than 30,000 clones) but could not scale to the analysis of half a 

million markers. Finally, there was no established gold standard for the comparison of 

different CNV methods. 

In chapter 3, I present my work on the development of a novel method: GMM, which 

relies on Gaussian Mixture Modelling of copy number in the whole Lausanne 

population. I compare its sensitivity and specificity to three other CNV detection 

methods, notably by investigating the concordance in predicting CNVs in a sub-

sample of individuals that were genotyped on the Illumina platform. I also describe 



42 

two merging strategies, which were applied to create a map of CNV regions and I 

devise a novel method to investigate the performance of different CNV detection 

methods using relatedness between individuals. 

1.6.2 Aetiology of CNVs in complex disease 

In this section, I describe my involvement in a collaborative effort on morbid obesity. 

This project was an international collaboration led by the CHUV and the Imperial 

College London. The aim was to investigate the penetrance of a 16p11 deletion 

detected in patients affected with developmental delays and/or obesity.  

Obesity is a major problem in modern societies, in US more than 300,000 deaths per 

year can be attributed to obesity 205. In 2005, more than 1.6 billion adults (with age 

greater than 15) were over-weights and 400 million adults were obese. According to 

the latest WHO projections for 2015, there will be 2.3 billion over-weights adults and 

more 700 million obese. Obesity has severe consequences on health such as 

increased risk for cardiovascular disease and type 2 diabetes 206,207. Lack of exercise 

and overweight can account for a third of cancers of the breast, colon, endometrial, 

kidney and oesophagus 208-210. It has been shown that obesity reduces fertility 211 and 

life expectancy 212,213. Obesity is both a common and complex disease and its 

heritability is not yet fully understood 214,215. This may be due to the fact there is a 

strong environmental effect 216 and that the disease is involved with both genomic 

disorders (for e.g. Prader-Willi, Bardet-Biel and Cohen syndrome 217) and monogenic 

disorders. Examples of monogenic disorders include mutations in the melanocortin-4 

receptor (MC4R) 218-220 and deficiencies in leptin 221,222, prohormone convertase-1 

gene 223 and proopiomelanocortin 224. Both linkage analysis 225,226 and SNP-based 

GWAs 227-230 have been performed to understand the heritability and predisposition of 

the disease. These studies confirmed several genes such as MC4R and identified 

novel ones such as the FTO and SH2B1 genes. However the implication of CNVs 

with obesity was not clear until recently 113,125. 

In this chapter, I make a direct use of my map of variation in the Swiss population 

(see chapter 3) to assess the relevance and penetrance of a rare deletion detected in 

obese patients. Since the project was an international collaborative effort which led to 

publication in a high impact journal, my contributions are fully detailed. 
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1.6.3 Detection and impact of somatic copy number alterations in 
cancer 

In chapter 3 and 4, I focused on the detection of CNVs in the general population, thus 

genomes that are assumed to be diploid. In this section, I was interested in the 

implications of somatic copy number aberrations (SCNAs) in highly aneuploid 

genomes.  

This project was part of collaboration between the Ludwig Institute for Cancer 

Research, Swiss Institute of Bioinformatics, CHUV and universities of Lausanne and 

Geneva. The global aim of the project was to perform a comprehensive molecular 

profiling of seven metastatic melanoma cell lines, with matched donor controls using 

exome and transcriptome sequencing, methylation arrays, CGH and SNP arrays and 

karyotyping. I was strongly involved in all aspects of this collaboration (from the 

experiment design to data analysis and interpretation); my contributions are fully 

explained in chapter 5. 

Melanoma was chosen for three reasons 1) the Ludwig Institute has both a 

demonstrated expertise in melanoma research and a very large sample collection 

that includes primary tumours and cell lines derived from metastases. Clinical records 

and matched donor controls are also available. 2) Melanoma is an highly aggressive 

form of cancer that leads to regional and distal metastases. Malignant melanomas 

are resistant to both radio- and chemo-therapy; and constitute the most lethal form of 

skin cancer (accounting for 80% of deaths), metastases are fatal within 5 years; only 

early diagnosis and surgical removal can provide a cure for the patient 231. 3) The 

genomes of melanoma undergo many re-arrangements 232,233 which challenges the 

analysis and identification of novel genes that can be relevant to tumor progression. 

Therefore the development of robust computational methods, the thorough and 

comprehensive documentation of somatic aberrations and any novel hypothesis 

generated with the results will not only be of benefit to melanoma scientists and 

clinicians, but could potentially be of interest to the whole cancer community. 

In melanoma the transformation from normal skin melanocytes to a proliferative cell 

is the result of somatic mutation in BRAF or NRAS, respectively in 50% and 20% of 

the cases. These mutations are mutually exclusive and lead to constitutive activation 

of serine–threonine kinases in the ERK–MAPK pathway 234-236. Loss of tumor 
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suppressors CDKN2A 237,238 and PTEN 181,239 play an important role in melanoma 

tumorigenesis. CDKN2A encodes for INK4A (p16INK4A), a protein that blocks the 

cell cycle at the G1–S checkpoint by inhibition of CDK4, a cyclin dependent kinase. 

PTEN when expressed normally, down-regulates levels of phosphatidylinositol 

phosphate (PIP3), a growth factor which controls the activation of protein kinase B 

(PKB, also called AKT). Activation of AKT represses cell cycle inhibitors and 

inactivates apoptosis inducers. In the absence of PTEN, PIP3 levels increase which 

in turn activates AKT. This AKT activation prolongs cell survival by repressing 

apoptosis and stimulate cell proliferation (for e.g. by increasing CCND1 expression). 

Further tumor progression can be associated with decreased differentiation and 

decreased expression of melanoma markers regulated by MITF 231,240. Progression 

to the vertical-growth phase (invasion) and to subsequent metastases result from 

changes in cell adhesion (with perturbation of the cadherin, WNT and integrin 

signalling pathways) 241-243. 

Despite these numerous candidate studies that have established the basis of 

melanoma development and progression, there are relatively few genome-wide 

analyses, compared to other cancers like breast cancer. Back in 2007, representative 

examples included an SCNA study 244 that documented recurrent events in a large 

sample collection (>70) and a gene expression-based study that looked at pathways 

potentially perturbed with differentially expressed genes 245. Only recently new 

studies were published: a second SCNA-based study 246; a study that investigated 

gene fusion from RNA-seq data 247 and another one which looked at somatic 

mutations from full genome sequencing 186. 

In chapter 5, I describe my work on the detection of SCNAs in metastatic melanoma, 

I study the link between SCNAs and aberrant gene expression signature, and then I 

investigate commonalities between our samples and test my findings with external 

data 244-246 both at the gene and pathway level. 
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2 Methods 

This chapter is about the main statistical methods that I used during my PhD. All the 

presented techniques or algorithms are general and can be applied to a wide range 

of analyses (regression analyses, prediction, clustering, signal segmentation etc). I 

decided to organize these techniques by themes, from micro-array normalization to 

CNV calling. I also included a section on multivariate and cluster analysis, topics that 

inspired me to design my own algorithms. 

2.1 Normalization methods 

Data normalization is a crucial aspect in any analysis, but in particular in the genomic 

era, where experiments need to be corrected for putative technical biases, as well as 

biological and experimental noise. Also experiments from different samples need to 

be calibrated with respect to each other to ensure that the results are comparable. 

2.1.1 Mean and median scaling 

The hybridization intensities measured by both CGH and SNP arrays can be 

combined into a hybridization ratio in order to infer CNVs (see Chapter 1). By 

definition, these ratios are expressed on the log2 scale, and reflect copy number 

changes between a test and a reference sample (either one sample or a pool of 

references). In an ideal, un-biased experiment, three copies measured with respect 

to a diploid locus, would have a log2 ratio equals to 0.58 (=log2(3/2)). Conversely a 

deletion (one copy with respect to two) will have a log2 ratio equal to -1. Yet,  the 

observed log2 ratios usually do not assume exactly these values because of the noise 

in the measurements that causes signal variation from one chromosome to another. 

A simple correction can be a median subtraction (or centering) whereby the median 

ratio from each chromosome is subtracted from the ratio at each probe (Figure 1). 

This approach is more adequate than the mean subtraction, because the mean is 

sensitive to outliers whereas the median, by definition, ignore most of the values 

(Figure 2). In the past, median subtraction has been used to calibrate red and green 

intensities from two colour (gene expression) experiments 1,2. However such 

centering does not consider local variations and the calibration is often in-sufficient, 

especially for aneuploid genome analysis (Figure 3). 
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Figure 1 Median subtraction 
A CGH ratios on chromosome 1, red line indicates the median and gray line y=0; B CGH ratios after median 
subtraction. 
 

 
Figure 2 Mean and median estimation 
Distribution of ratios from Figure 1, the red (blue) line corresponds to the mean (median). Neither the median 
nor the mean are centred on zero and the mean is slightly higher than the median. 

 
 

B 
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Figure 3 Calibration of red and green intensities in CGH experiments 
A Median scaling is applied independently to the two intensity distribution for two tumor cell lines 
and a diploid control cell. The calibration of the red and green dye is only correct for the diploid 
genome B Calibration using Loess smoothing; the calibration is more robust than the median scaling. 
 

2.1.2 Linear Least Square Regression 

Linear regression is a simple but powerful method to test for a (linear) relationship 

between two variables X and Y. Assuming Y as the response variable and X as the 

variable that explains the response, linear regression fits a line between points from 

X and Y (Figure 4A). This can be written as: Y = a + bX where a is the intercept and b 

the slope of the line. Both terms are estimated by the regression using a sample (X1, 

Y1), (X2, Y2) …, (Xn, Yn). The Least square method 3,4 is used to find the best fit, and 

corresponds to finding the regression line where the sum of squares of vertical errors 

is minimized (Figure 4). Linear regression is usually formalized as: Yi = β0 + β1 Xi + εi, 

where Yi is the response variable and Xi the explanatory variable at a given point i; 

both variables are known from the data. The model parameters are β0, and β1 and 

are estimated with the regression; εi corresponds to the vertical error and is referred 

as error term or residual. This error term is assumed to be normally distributed and 

the Σεi
2 is minimized by the least square method. 

B A 
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Figure 4 Linear regression 
A Dots are the observed data, the black line was fitted with a linear regression and the red lines indicate the 
vertical errors which were minimized using the Least-square method. B Regression with quadratic effects to 
explain hybridization ratios (measured from a CGH array) as a function of GC content. The red cross symbols 
correspond to a fit Yi = β0 + β1 Xi + β2 Xi

2 + εi where the response variable (Y) is the hybridization ratio and 
explanatory variable (X) the local GC content of a probe (from chromosome 1). 

Linear regression is commonly used for genome-wide association studies for 

quantitative traits analysis (assuming the trait follows a normal distribution). Often the 

biological system is more complex and should be expressed as a non-linear model. 

For example, in micro-arrays, local GC content at each probe can affect the 

hybridization ratios 5, such bias can be modelled (and subsequently corrected for) 

with a non-linear regression by adding quadratic effects in the regression formula: Yi 

= β0 + β1 Xi + β2 Xi
2 + εi with Yi being the hybridization ratio and Xi the GC content in a 

window centred on probe i (see Figure 4B). 

2.1.3 Loess smoothing 

Locally weighted polynomial regression (Lowess), better known as Loess, was 

originally proposed by Cleveland 6 and developed by Cleveland and Devlin 7. A 

Loess fits a polynomial regression 8 at each data point; using the evaluated point as 

response variable and points in the local neighbourhood as explanatory variables. 

The extent of the neighbourhood is called bandwidth or smoothing parameter, and its 

value is defined by the data analyst. Weights are applied in the regression with the 

weight least squares method 3,4. Data points close to the response variable are given 

higher weights than points further away. Loess is very flexible and only requires the 

specification of a bandwidth to partition the data for the regression. Loess has been 

extensively used in micro-array analysis, initially with the normalization of two dye 

A B 
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arrays (Figure 3B, 9,10), and more recently to remove auto-correlation between 

probes (“spatial artefact”) (Figure 5; 11). 

 
Figure 5 Loess smoothing 
A Ratios as in Figure 1, red line indicates the Loess fit, B ratios were normalized using the Loess fit 
from A. A new Loess fit reveals almost a straight line close to 0, indicating a good normalization. 
 

2.1.4 Quantile-quantile normalization  

In micro-array analysis, it is common that the signal distribution from different 

experiments differ (Figure 6A). In most cases, distributions can be made comparable 

with simple median re-centering or with Loess smoothing. However when comparing 

samples that have different properties, e.g. tumours, different tissues or experiments 

made in different labs, the respective distributions cannot be made comparable using 

simple (linear) normalization. Quantile-quantile (QQ) normalization is a technique that 

forces two distributions to become identical in statistical properties (Figure 6B). QQ 

normalization sorts the values from two distributions (a test and a reference 

distribution), the highest value in the test distribution is re-attributed the value of the 

highest in the reference distribution, then the second highest in the test is 

recalibrated to the second highest in the reference and so on. This forces the values 

of the test distribution to be on the same quantile than those from the reference, 

while preserving the initial rank of the values from the test distribution. To normalize 

several distributions, the reference distribution can be determined by selecting points 

randomly from all distributions. QQ normalization is useful to satisfy normality 

assumptions for various test-statistics. However, it only maintains the rank of values, 

B 

A 
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so valuable information on skewness or multimodality of the distribution is lost. QQ 

normalization is extremely popular to normalize SNP or gene expression micro-

arrays 12. In genome-wide association studies, it can be used to transform a non-

normally distributed phenotype to a normal distribution. 

 
Figure 6 Quantile normalization 
A Distribution of autosomal log2 ratios from twenty CGH experiments, B log2 ratios after quantile 
normalization. 

B 

A 
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2.2 Segmentation methods  

Following normalization, a classical approach to detect CNV from CGH arrays, is to 

partition the hybridization ratio profile into consecutive segments that correspond to 

copy number changes. Such segments are constituted with probes having similar 

hybridization ratios. There is a plethora of published algorithms, each making use of 

different approaches and with different performances. In this section, I will explain the 

main segmentation approaches and highlight each with representative state-of-art 

and freely available algorithms. 

2.2.1 Outlier-based detection 

The goal of segmentation analysis is to differentiate between events that are 

significantly higher or lower than the baseline (or background) signal. A naïve 

approach consists of detecting outlier probes and merge them into regions. Outliers 

can be detected with several approaches; when the data are normally distributed, a 

straightforward approach is to use Z-score: 

)(
)(

Xstd

XmeanX
Z i

i

−=   

With X being the ensemble of data (the sample) and Xi a given point (i) of this 

sample.  The Z-score reflects in how many units of standard deviation Xi is away from 

the sample mean. Assuming normally distributed data, a Z-score greater or equal to 

three will describe 0.1% of the data (Figure 7). 
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Figure 7 Normal Gaussian distribution with mean 0 and standard deviation 1 

Since the assumption of normality does not often hold for genomic data, non-

parametric approaches are more appropriate. An alternative to the Z-score could be 

computed as: 
)(

)(
XMAD

XmedianX i −
 

Where MAD corresponds to the median absolute deviation, a robust estimator of 

dispersion around the median. The MAD is computed as 

follow: |))((| XmedianXmedian i −  

MAD-based approaches have been used for the analysis of CGH 13, providing a 

simple and fast method for CNV analysis. I also used a simple MAD-based scheme 

to analyse copy number aberrations in metastatic melanoma (see Chapter 5).  
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2.2.2 Recursive binary segmentation 

Recursive binary segmentation consists of splitting a ratio profile into two segments 

and testing if the split result is significant in regions with different mean ratio. If it is, 

then a new split is attempted for one of these new segments and so on until no more 

split is possible. Testing the difference of two segments is done using permutation-

based approaches. This segmentation procedure is well-known as the Circular Binary 

Segmentation proposed by Olshen et al. 14,15. It has been applied to CGH analysis 

and is recognized as a state-of-art method in the community 16,17. However due to the 

recursive nature of the algorithm and the permutations performed at each split, the 

method is computationally very intensive. To overcome this limitation, an improved 

CBS version has been subsequently proposed by the authors 14,15. In this newer 

version, a stopping rule was added to stop the permutation procedure when strong 

evidence for differences between segments was found in early permutations. Despite 

this, it still remains computationally intensive but CBS remains a method of choice for 

CNV analysis (see Chapter 3 and 5). 
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2.2.3 Dynamic programming techniques  

Dynamic programming is a method to solve optimization problems and consists of 

solving a complex problem by recursively breaking it into smaller problems until a 

solution can be found. Applications can be illustrated with algorithms to find the 

shortest path in a graph or in a scoring matrix. Bioinformatics has greatly benefited 

from dynamic programming, in particular in sequence analysis with the Smith-

Waterman algorithm 18 that finds the optimal local alignment with respect to a scoring 

matrix. The Smith-Waterman algorithm has been extended to CGH analysis by Price 

et al. 19. The idea is to detect an initial segment made with adjacent, outlier probes 

and to expand the segment until no more expansion is possible. The detection of 

outliers is achieved via the median absolute deviation (MAD), described previously. 

Any probe with a ratio greater than α * MAD is considered as an outlier. This 

parameter α is a threshold provided by the data analyst. Adjacent outliers are 

combined in a segment, and a score is computed as ∑ =
−m

ni
MADiX α)( , where n is 

the first probe in the segment and m the last probe. The initial segment score is 

positive by definition. The best segment is determined using the Smith-Waterman 

principle: the score of the optimal segment cannot be improved by shrinking or 

expanding its boundaries. In practice, from the initial segment, adjacent probes are 

added iteratively and the score is updated. When the score becomes null or negative, 

the previous segment corresponded to the optimal solution. In addition to this 

scheme, the significance of the final segments can be controlled with a permutation-

based procedure. 
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2.2.4 Linear piecewise regression 

Copy number segments in the genome have two properties, 1) there are far less 

segments than assayed probes on the microarray and 2) the copy number at each 

segment is assumed to be discrete (0, 1, 2, 3..). Such properties cannot be measured 

directly from the hybridization ratios due to biological contamination (e.g. mixture of 

tumor and diploid cells) or technical noise inherent to the experiment. Nevertheless 

such segments can be estimated using piecewise linear regression. Piecewise linear 

regression is a form of regression that fits multiple linear models to the data (Figure 

8A). Assuming there is one breakpoint c in the data, the model from a piecewise 

regression can be written as: 

y = a1 + b1 x for x≤c 

y = a2 + b2 x for x>c  

Such regression can also use a step function (Figure 8B), which provides a natural 

framework to identify segments of copy number. This technique has been further 

developed by Pique Regi et al. 20, where segments are obtained with a piecewise-

constant regression. The list of segments is controlled by Bayesian approaches to 

optimize the balance between the number of segments (the Bayesian prior 

parameter) and the regression fit (sum of residual squares), then a backward 

elimination procedure removes segments whose score (a T-statistics) is below a 

critical value. It has been demonstrated both by the authors 20 and others 17 that this 

method (GADA) offers similar performances as the Circular Binary Segmentation 

(CBS, described previously). Moreover, GADA is two orders of magnitude faster than 

CBS and thus is a new method of choice for analysis of ultra-high resolution arrays 
17. 
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Figure 8 Piecewise regression 
A Simple linear piecewise regression B (from Pique-Regi et al. Bioinformatics 2008) Piecewise constant 
regression on hybridization ratios as a function of their genomic position.  

2.2.5 Hidden Markov Model 

Hidden Markov Models (HMMs) are widely used in bioinformatics for gene prediction, 

motif search and sequence alignment 21-23. HMMs are extensions of Markov chains 

(or Markov Model) which consist in a sequence of states (s1, s2, .., sk). A Markov 

chain starts at one state and moves from one state to another with a series of steps 

(Figure 9). If the chain is currently in a state si, the move to state sj is happening with 

a probability (Pij) which only depends on si and not from the previous states (s1,..,si-1). 

The process can also remain in the same state with a probability (Pii). These 

probabilities (Pii and Pij) are called transition probabilities. 

 

 

 
Figure 9 Markov Model  
A two states Markov chain and B three states Markov chain. Transition probabilities are indicated near 
each edge. 

A B 

B A 
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In HMMs the state is not directly visible (i.e. hidden) but an output driven by the 

hidden state can be observed. In a Markov Chain the only parameters are the 

transition probabilities whereas HMMs are defined with transition probabilities and 

emission probabilities (also called output probabilities). The emission probability 

corresponds to the probability for an observation to be associated with a given state 

(Figure 10A). At a location l, an observation Yl depends on its emission probability 

and on state Sl. State Sl depends on the transition probability from a state Sl-1 (Figure 

10B). 

Formally an HMM can be defined as follow: 

1) the number of state K in the HMM, the individual states are noted s (s1, s2, ..., 

sK) and Sl correspond to a state at a location l with 1 ≤ l ≤ L  

2) the initial state distribution π={πk}, with πk =P(s1 = Sk) and 1 ≤ k ≤ K 

3) the state transition probabilities a={Pij} with Pij=P( Sl+1 = sj | Sl = si ) and 1 ≤ i, j 

≤ K 

4) and the emission probability density function b. In special cases (e.g. CNV 

analysis), b follows a normal distribution with mean µk and covariance matrix 

Uk:{bk(Y)} ~  N (Y, µk, Uk) where Y corresponds to the vector of observations 

(Y1, Y2, …, YL) that is being modelled by the HMM. 

 

 

 

 
Figure 10 Hidden Markov Model 
A Parameters of a Hidden Markov Model with two states (S1 and S2), four observations (y), a denotes state 
transition probabilities and b emission probabilities. B HMM representation with Si the state to be predicted 
having predicted Si-1 and with the observation yi. 

A B 
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HMMs are very popular for CNV analysis since they were proposed by Fridlyand et 

al. 24 because by essence they enable both segmentation and classification. In SNP 

and CGH arrays, probes from a same chromosome follow a Markov process because 

their position (ordered along the chromosome) is correlated with a local copy number 

state. The underlying copy number is the hidden state and can be modelled from the 

hybridization ratios (the observations) and also by knowing the corresponding 

transition probability. Many implementations of HMMs are available both for CGH 24-

26 and SNP arrays 27-31.  

In CNV analysis, HMMs aim at classifying probes into a discrete and small number of 

states (e.g. homozygous deletion, hemizygous deletion, copy neutral, duplication and 

amplification). The optimal sequence state is derived using the Viterbi algorithm 32. 

This is achieved by predicting the most likely state Si at each probe i. Subsequently 

parameters can be re-estimated to maximize the likelihood of the model using the 

Baum-Welch algorithm 33 or the Expectation-Maximization algorithm 34.  

The challenge in using HMMs is to accurately estimate its parameters. It has been 

demonstrated 35 that while the initial parameters π and a (respectively the initial state 

distribution and the state transition probabilities) can be arbitrary decided, good initial 

estimation of the emission probability distribution (b) is important. b can be estimated 

either by training the HMM on known datasets 27,31 or by using Bayesian approaches 
26. 
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2.3 Multivariate and cluster analysis 

Multivariate analysis is the simultaneous analysis of more than one variable. Bivariate 

analysis (for e.g. line fitting with linear regression, segmentation analysis etc…) is a 

special case of multivariate analysis where only two variables are analysed. 

Multivariate analysis is omnipresent in genomic data, for example when comparing 

several features (i.e. genes) across several samples (or conditions). Multivariate 

analysis is a very broad field, in this section I will only concentrate on methods that I 

used intensively in my analyses. 

2.3.1 Principal Component Analysis 

 One-way PCA 

Principal Component Analysis (PCA) 36 is a linear algebraic technique which projects 

a data matrix onto a new subspace. Projection is done such that the largest variation 

can be explained along the new axes (Figure 11). These axes are called principal 

components (PC) and are orthogonal to each other. The type (or source) of variance 

explained differs from one PC to another. PCs are indexed (PC1, PC2 etc..) 

according to the fraction of explained variance: PC1 explains more than variance 

than PC2, PC2 explains more than PC3 etc… 

 
Figure 11 Principal component analysis - from Sven Bergmann, “Brief Introduction to Systems Biology” 
Scatter plot of x and y data, PCA analysis will project onto a new subspace with axes V1 and V2. Most of the 
variation will be explained by the V1 axe, a smaller (and orthogonal) fraction will be explained with V2. 
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The number of PCs is equal to the rank of the data matrix and PCs are the 

eigenvectors of the covariance matrix C computed as: 

1
*
−

=
n

MM
C

T

  

Here M is the original data matrix, assumed to have a zero empirical mean (the sum 

of each column has a zero mean); n is the number of dimension (number of rows) 

and MT is the transposed matrix of M. The eigenvectors of the C satisfy the following 

relation:  

C * PCi = λi * PCi with λi the ith eigenvalue of C.  

 

 
Figure 12 PCA and SVD decomposition - adapted from Sven Bergmann, “Brief Introduction to Systems 
Biology” 

 Singular Value Decomposition 

PCs can also be obtained by Singular Value Decomposition (SVD, a two-way PCA), 

written as: M = U * D * VT where VT correspond to the principal components (PCs) 

previously described (see also Figure 12).  

Let M be a matrix of genes by samples (as frequently used in microarray analysis), 

then U is the PC matrix of “eigen-genes”, obtained from the eigenvectors of C’ = M * 

MT; V is the PC matrix of “eigen-arrays”, composed of eigenvectors of C’ = MT * M 

and D is the diagonal matrix of eigenvalues (λ). 
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 Applications of PCA techniques 

PCA is extremely useful to reduce the complexity of a dataset (by reducing its 

number of dimension and using only PCs explaining most of the variance). It has a 

wide range of applications from data compression to computer vision and 

bioinformatics. In genomics, PCA is frequently used to check for batch effects (for 

e.g. to answer if most of the variance in a dataset is explained by (known or 

suspected) technical or experimental biases) (see Figure 13). 

PCA has been recently used to investigate population stratification in genotyping 

cohorts. Novembre et al. 37 showed it was possible given the genotype of an 

individual to locate him (her) within 840 km from his/her reported origin (in 90% of the 

cases). Since then, genome-wide association studies routinely correct for population 

stratification using the main PCs from PCA decomposition of the genotype data. This 

corrects for putative biases due to the population structure. 

  
Figure 13 PCA analysis reveals batch effects 
PCA analysis using the copy number (at each autosomal SNP) from 2654 male samples from CoLaus. Left panel 
shows PC1 and PC2; right panel shows PC1 and PC3. Each dot corresponds to a sample. Colours indicate the 
genotyping facility where a given sample was assayed. Samples processed at the blue and green facilities cluster 
differently than samples processed at the black and red facilities, suggesting a strong batch effect. 
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2.3.2 Gaussian Mixture Models 

Gaussian Mixture Models (GMM) are composed by combining multivariate Gaussian 

distributions. Each distribution or component is defined by its mixture proportion (γk), 

mean (µk) and variance (σk). GMM are useful for unsupervised clustering and are 

also applicable to univariate data analysis. Estimation of the underlying components 

from a variable X is frequently made using the Expectation-Maximization (EM) 

algorithm 34 and requires an initial guess about parameters (mean and variance) of 

the underlying Gaussian components. The EM is an iterative algorithm with an 

expectation (E) step that estimates the likelihood of the data to come from a 

Gaussian component Yk. Then a maximization (M) step updates parameters (µk, σk) 

to maximize the log-likelihood value determined in the E step (given the mixture 

proportions γ) . Several E and M iterations are performed until the algorithm 

converges to an optimal solution (optimized likelihood). An example of GMM 

clustering with in-silico data using the EM algorithm is given in Figure 14A and an 

example applied to CNV analysis is shown in Figure 14B. 

 

 
 

Figure 14 Gaussian Mixture distributions 
A The histogram shows the observed data, the green and red distribution represent the two Gaussian components 
identified using an EM algorithm. B Modelling of copy number log2 ratios: a three Gaussian Mixture was fitted 
to the data and revealed deletion, copy neutral and duplication components (as indicated in red, blue and green 
respectively). For display purpose, ratios are only shown from -2 to 1.5. 

A B 
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An alternative to the EM algorithm is to use Markov chain Monte Carlo simulations 

(MCMC) (e.g. with the Gibbs sampling algorithm 38,39 that samples (draws) posterior 

probabilities (from a probability distribution) to explain a fit given the data and the 

parameters. Based on these posterior probabilities, the parameters are updated and 

a new sampling is done until probabilities reach equilibrium. MCMC is a very efficient 

and sophisticated method to estimate parameters in a model, but it is very 

computationally intensive (a large number of sampling is required to find the 

equilibrium). 

The goodness of the GMM fit can be evaluated using the Bayes Information Criterion 

(BIC) or Akaike Information Criterion (AIC), that provide the likelihood of the fit given 

the data and given the number of components in the model. The BIC and AIC can be 

expressed as  

• AIC = 2k - 2 ln(L) 

• BIC = k*ln(n) -2 ln(L) 

With k being the number of parameters (for GMM, it is 3 * the number of components 

-1), L the maximum of the likelihood function, and n the number of observations. 

AIC and BIC are very similar, but the BIC is slightly more conservative as it accounts 

for the sample size. Typically several fits with different k will be attempted; the model 

that minimizes the AIC or BIC will be considered as the best model. 
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2.3.3 K-means clustering 

K-means is a clustering method which partitions the data into k clusters (Figure 15). 

K-means partitioning can also be achieved by the EM algorithm, as it is an iterative 

procedure that starts with initial guess about the centers (called the centroids) of 

each k clusters, then data points are assigned to the closest centroid (E step) then 

the centroid positions are refined to be the center of the assigned points (M step). 

These steps are repeated until the within-cluster sum of squares is minimized 

( ∑ ∑
= ∈

−=
k

i Sx
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ij

xWCSS
1

2|| µ ), where k is the number of clusters (S1, S2, …, Sk), xj a point in 

cluster Si and µi the mean of points in Si. 

 

  
 
Figure 15 Kmeans clustering 
A Kmeans clustering of two normally distributed variables x and y. Final centroids are marked with an X 
symbol, colours indicate which cluster the points were assigned to. B Clustering of copy number log2 ratios 
using Kmeans with k=3. Clusters revealed deletion, copy neutral and duplication components (as indicated in 
red, blue and green respectively). For display purpose, ratios are only shown from -2 to 1.5. The data used are 
the same than those from Figure 14B, major differences with GMM modelling can be observed for the “deletion” 
component. 

A B 
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2.3.4 Hierarchical clustering 

Hierarchical clustering is widely used in bioinformatics, in particular in microarray 

analysis to group genes and samples in a hierarchical manner. The output of 

hierarchical clustering is often a dendrogram (Figure 16). There are two types of 

strategies: divisive (top-down approach) where all observations start in a same and 

unique cluster, then this cluster is recursively split into smaller clusters, until the 

procedure reaches individual data points. The second strategy is called 

agglomerative (bottom-up approach): each observation starts as a singleton cluster, 

and then the most similar clusters are merged until there is only one cluster left. 

 
Figure 16 Hierarchical clustering 
Hierarchical clustering based on gene copy number from two diploid genomes and seven aneuploid genomes. 
Genes are grouped based on their copy number profile across samples; similarly samples are grouped according 
to their ploidy status. Dendograms indicates the hierarchy between the different elements. Colours in sub-trees 
represent clusters obtained after pruning the tree at a pre-defined height. 

 Distance metrics 

An important step in any clustering is to compute a measure of similarity (or 

dissimilarity) between any two pairs of variables. This measure defines a distance 

matrix, with all possible pairwise distances. Several metrics are available to compute 

the distance between two variables a and b, each with n observations. 

• Euclidean distance, ∑
=

−=
n

i
ii babad

1

2)(),(  

The Euclidean distance corresponds to the length of the line joining points a and 

b in the Euclidean space. It is the most frequently used distance in clustering. 
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• Manhattan distance, ∑
=
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n

i
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Manhattan, also known as Taxicab geometry, rectilinear distance, L1 distance or 

city block, measures the distance along coordinate axes (e.g. like a taxi route in a 

building block from Manhattan). 

• Mahalanobis distance, )()(),( baCbabad T −−=  

Here a and b are used in their vector form and C is the covariance matrix. The 

Mahalanobis distance takes into account the correlation between the variables 

and is often used to detect outliers (both in clustering and in linear regression). 

• The Hamming distance, which is the number of positions that differs between 

two vectors (or strings) normalized by the length of these vectors 

• Correlation (for e.g. Pearson) can also be used to defined a distance  
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 Linkage methods 

Once the matrix distance has been computed, rows and columns of this matrix can 

be merged into clusters: pairwise distances between clusters (or elements for the first 

merge) are computed, then the two clusters the closest to each other are merged 

together, and the procedure is re-iterated until there remains only one single cluster. 

This procedure is controlled with a linkage criterion: 

• Complete linkage: distances between clusters are defined as the maximum 

distance between elements of each cluster  

• Single linkage: as opposed to complete linkage, the cluster distances are 

defined as the minimum distance between clusters’ elements 

• Average, also referred as unweighted average distance (UPGMA) and 

corresponds to the mean distance between elements of each cluster 

• Ward, clusters with the least increase in the total sum of squares are first 

merged together. 

 Evaluating the goodness of a tree 

Both the choice of the distance metric and linkage method can lead to different 

dendrogram topology. Therefore as with regression and Gaussian Mixture Modelling, 

it is necessary to estimate the goodness of the model. In hierarchical clustering, the 

Cophenet correlation coefficient is useful to this matter. This coefficient corresponds 

to the correlation between distances from the final dendrogram and distances from 

the observations used to build the tree. It estimates how well the dendrogram fits the 

dissimilarities measured in the data and is defined as 
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With Yij the distance between objects (nodes in the tree) i and j; Zij is cophenetic 

distance between objects i and j (i.e. the height of the node at which these two 

objects are first joined); µy and µz correspond to the mean of Y and Z. A Cophenet 

correlation value close to one represents a perfect solution. 
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 Extracting clusters from a tree 

Hard clustering (i.e. identifying non-overlapping clusters) can be performed from a 

dendrogram. The most widely used approach consists in pruning the tree at an 

arbitrary height (see Figure 17). An alternative is to prune using an “inconsistency” 

coefficient. This coefficient characterizes the dissimilarity between a link in the 

dendrogram and its neighbours and is obtained by comparing the link height with the 

mean distance from other links at the same level in the hierarchy. High coefficient 

reflects smaller similarity between the objects connected by the link. This 

inconsistency-based approach relies on the cophenetic distance between sub-trees. 

  
Figure 17 Hierarchical clustering and tree pruning 
A Heatmaps showing 30 variables with 3 observations each, B Hierarchical clustering from data in A, using 
Euclidean distance and Single linkage. Y axis corresponds to Euclidean distance between variables. X axis 
display the label of the 30 variables from A. Coloured trees correspond to clusters obtained by pruning the 
dendrogram at 30% height. 

A B 



81 

2.3.5 Self-organizing maps 

Self-organizing map (SOM) is a form of artificial neural network, where the network 

learns from the data and can perform discrete clustering on the same (learning) 

dataset. Once SOMs have been trained on a dataset, they can also be used for 

prediction (i.e. classification) on a new dataset. Artificial neural networks were 

inspired by biological nervous system. In statistics, neural networks are made with 

nodes (neurons) positioned in the space (a map). Such maps are usually a 

hexagonal or rectangular grid, made with neurons that can connect to their 

neighbours (Figure 18A). Connections between neurons are defined by their distance 

(Figure 18B) and by their weights computed from the data. The weight defines the 

neuron position in the map (Figure 18C) and is adjusted in a learning phase. This 

learning phase enables to re-organized neurons so that the ones with similar weights 

(and thus position) define the same cluster (Figure 18C and Figure 18D).  

The most widely used feature in bioinformatics is the supervised clustering. In 

essence, SOMs with small number of neurons are similar to k-means clustering, with 

the major difference they do not requires specifying the number of clusters. This 

feature is particularly useful when the number of clusters is not known in advance 

and can range from a small to a .large number. In chapter 3, I used SOMs to merge 

SNPs with similar copy number into CNV regions. This merge was done on the whole 

cohort (more than 5,600 individuals) and was performed for both small regions (i.e. 

less than 50 SNPs) and longer regions. In this particular example, k-means clustering 

could have been performed but would have required iterations over different number 

of clusters and to use a metric (i.e. the BIC criteria, described previously for GMM 

clustering) to select the model with the best fit. However this k-means approach will 

still require initial guesses about the minimum and maximum number of expected 

clusters. By contrast, using a predefined grid (e.g. a 6*6 or 8*8 neuron grid) and by 

training it on the data, enables one to ignore how many clusters are expected. To 

ensure the learning phase is done using the “most relevant” information from the 

data, I performed a PCA analysis (described previously) to extract components 

explaining most of the variance. Then by training the SOM on the main PCs (i.e. 

those explaining at least 90% of the variance), I was able to cluster SNPs with similar 

copy number into CNV regions (see illustration in Figure 19). Although relatively 
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unused in statistical genetics, PCA and SOM combination has proved very powerful 

in other fields such as ECG analysis 40,41, forest fire risk classification 42, text mining 
43 and computer vision 44,45. 

  

  
Figure 18 SOMs - adapted from the Matlab Neural Network toolbox 
A SOM topology: a 6*6 grid. B Weight distances between neurons. Neurons are shown in blue, red lines indicate 
connections between neurons; darker (lighter) colours represent larger (smaller) distances between neurons. C 
Weight of each neuron (in blue), connections are shown in red, input data are shown in green. D Number of 
input data points attributed to each neuron. 

 
Figure 19 Merging SNPs into CNV regions using principal component analysis and SOMs 
A shows a principal component analysis (PCA) on a local SNP window (chromosome 3 74.5-76.5Mb) across 
CoLaus individuals. The five main components are displayed on the Y axis and adjacent SNPs on the X axis. B 
shows CNV regions obtained from the SOM clustering of the main PCs. The Y axis represents CNV frequency 
in the CoLaus population (n≈5600). 

D C 

A B 

A 

B 
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3 Identification and validation of Copy Number Variants 
using SNP genotyping arrays from a large clinical cohort 

Within the group of Pr. Sven Bergmann and in collaboration with the CHUV (Pr. 

Jacques Beckmann, Pr. Peter Vollenveider and Pr. Gérard Waeber) and 

GlaxoSmithKline (Dr. Vincent Moozer), I have been in charge of detecting CNVs from 

a large medical cohort named CoLaus. My contribution has varied from low-level 

analysis with the normalization of genotyping data to developing, applying and 

comparing CNV detection methods. With the exception of the Gaussian Mixture 

Model method, where I received help from Dr. Zoltan Kutalik, I developed and 

produced myself all the methodologies and results that are presented in this chapter. 

The first part of this chapter summarizes my work; the detailed analysis follows in the 

form of a manuscript that was submitted to an international peer-reviewed journal. 

CoLaus is a population-based health survey to study the genetics of hypertension 

and cardiovascular disease 1. More than 6,000 individuals (35-75 years old) from the 

Lausanne area participate in the study. Over 150 phenotypic measurements (e.g. 

blood pressure, lipid levels, metabolic traits…) have been collected at the CHUV; in 

addition, genotyping has been carried out on Affymetrix 500K SNP chips 2. A number 

of SNP-based genome-wide association studies that employed the CoLaus data 

have already been reported 3-10. Although so far there is no evidence for common 

CNVs contributing significantly to the kind of clinical phenotypes measured in CoLaus 

phenotypes 11, the number of rare CNVs and their contribution to clinical phenotype 

remains unclear. My main objective was to identify both common and rare CNVs in 

the CoLaus population and subsequently investigate their possible contribution to 

clinical phenotypes. 

Since the publication of the first genome-wide CNV analysis in the general population 
12, there has been tremendous development of new methods for CNV analysis. 

However, to date, there are still no gold standards, especially for Affymetrix 500K 

arrays. At the beginning of my thesis, there were even fewer publicly available 

algorithms for analysing SNP arrays. Most of these methods have been developed 

and trained for CGH data, which are more reliable than SNP arrays for CNV 

detection. Among the SNP dedicated software (e.g. dChip 13, CNAG 14, GEMCA 15), 

only available for Windows operating system, none could scale for the analysis of a 
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very large dataset. Only CNAT 16 was available as UNIX binaries thus the 

computation could be distributed on nodes from the local high-performance 

computing center (Vital-IT), but there were few papers evaluating the CNAT 

performance.  

Therefore I analysed the complete CoLaus dataset (n=5,612 individuals) with the two 

available CNAT implementations and tested their respective performance using 

technical replicates. These two methods were producing highly different results and 

their relative performance was not completely clear. In this context and with the help 

from Dr. Zoltan Kutalik, I developed a novel method based on a Gaussian Mixture 

Model. I also decided to use Circular Binary Segmentation 17,18, a state-of-the-art 

method for CGH analysis. Based on the results from these four methods, I studied 

how the predicted CNVs coincide with previously reported variants. I also 

investigated the concordance in predicting CNVs in a sub-sample of individuals that 

were also genotyped on the Illumina platform. Finally I compared the sensitivity and 

specificity of the different approaches using related individuals. These validation 

metrics offer the advantage to being applicable to any other population-based cohort. 

In addition to comparing CNV methods, I addressed the problem of integrating 

individual CNV predictions at the population-level (i.e. identifying copy number 

polymorphisms in the general population). To do so, I developed two procedures, a 

naïve approach, that relies on combining regions with identical CNV profiles, and a 

more elaborated one based on principal component analysis to combine markers that 

explain most of the copy number variance at a given locus.  

Finally my work provides an extensive collection of both rare and common CNVs, 

which have recently played a key role in a study demonstrating the penetrance of 

rare variants in the etiology of morbid obesity (see Chapter 4). 
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3.1 Abstract  

Genotypes obtained with Affymetrix 500K and Illumina 550K SNP arrays have been 

extensively used in many large case-control or population-based cohorts for SNP-

based genome-wide association studies for a multitude of traits. Yet, these 

genotypes capture only a small fraction of the variance of the studied traits. Genomic 

structural variants (GSV) such as Copy Number Variation (CNV) may account for part 

of the missing heritability, but their comprehensive detection requires either next-

generation arrays or sequencing. Sophisticated algorithms that infer CNVs by 

combining the intensities from SNP-probes for the two alleles can already be used to 

extract a partial view of such GSV from existing data sets.  

Here we present several advances to facilitate the latter approach. First, we introduce 

a novel CNV detection method based on a Gaussian Mixture Model. Second, we 

propose a new algorithm for combining copy-number profiles from many individuals 

into consensus regions. We applied both our new methods as well as existing ones 

to data from 5,612 individuals from the Cohorte Lausanne who were genotyped on 

Affymetrix 500K arrays. We developed a number of procedures in order to evaluate 

the performance of the different methods. This includes comparison with previously 

published CNVs as well as using a replication sample of 239 individuals, genotyped 

with Illumina arrays. We also established a new evaluation procedure that employs 

the fact that related individuals are expected to share their CNVs more frequently 

than randomly selected individuals. The ability to detect both rare and common CNVs 

provides a valuable resource that will facilitate association studies exploring potential 

phenotypic associations with CNVs. 

Our new methodologies for CNV detection and their evaluation will help in extracting 

additional information from the large amount of SNP-genotyping data on various 

cohorts and use this to explore structural variants and their impact on complex traits. 

Availability: http://www2.unil.ch/cbg/index.php?title=GMM  
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3.2 Author Summary 

The genomes of any two individuals can differ, for example, by single nucleotide 

polymorphisms (SNPs) or larger structural variants usually referred to as copy 

number variants (CNVs). SNPs have been intensively used to investigate potential 

links with disease but so far, collectively, explain only a small fraction of the genetic 

variance. The link between CNV and disease is well known but their contribution to 

complex disease is not yet fully understood. This is in part due to the fact, that 

genetic studies aiming to uncover such associations have been using SNP 

genotyping arrays which were not designed for CNV analysis. Yet some information 

on CNVs is hidden within these datasets. We have developed a novel CNV detection 

method and compared it with three other established methods using a variety of tests 

on a large genotyping clinical cohort. Our methods and testing procedures provide 

some new tools that will help for CNV analysis on existing cohorts and provide a first 

step to investigate the contribution of CNVs to common and complex diseases. 

3.3 Introduction  

Genetic variation in the human genome takes many forms ranging from large 

chromosome anomalies to single nucleotide polymorphisms (SNPs). Deletion, 

insertion and duplication events giving rise to copy number variations (CNVs) have 

been found genome-wide in humans 12,19-25 and other species 26-29. Genomic variants 

can impact both somatic and germ-line genetics. The link between CNVs and 

inherited diseases is now solidly established (e.g. 30-32), and copy number plasticity is 

typical of cancer cells 33. Such genomic variability was identified more than a decade 

ago using array-based comparative hybridization 34,35 and was known to exist for 

much longer from cytogenetic studies or Southern blots. It has been demonstrated 

that CNVs near oncogenes or tumor suppressor genes can affect gene expression 

levels or result in the expression of chimeric fusion genes 35,36. However, the number 

and positions of rare CNVs in the human genome are still likely to be underestimated 

and their contribution to common complex diseases such as diabetes or obesity is 

unclear. Very recent results demonstrate that rare variants can have very high 

penetrance in the etiology of morbid obesity 37. 
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CoLaus (Cohorte Lausannoise) is a population-based survey started in 2003 to study 

risk factors for hypertension and cardiovascular diseases 1. 6,188 individuals (35-75 

years old) from the Lausanne area in Switzerland participated in the study. All 

individuals were genotyped on Affymetrix 500K SNP chips, and a fraction of these 

were also genotyped on the Illumina platform 2. A number of SNP-based genome-

wide association studies (GWAS) that employed the CoLaus data have already been 

reported 3-7,10. Although many other large cohorts including thousands of individuals 

have been genotyped for SNPs 3,7,8, very few have reported CNV maps 38,39.  

It is important to emphasize that most SNP arrays used so far in GWAS of clinical 

cohorts were not designed for CNV (dosage) detection, but only to call the three 

possible genotypes of SNPs. Nevertheless, by combining the intensities of the two 

alleles for a given SNP, it is possible to also obtain information on the copy number 

state of the SNP locus. However, this is challenging for several reasons: Firstly, when 

analyzing very large datasets (with several thousands of individuals), it is likely that 

experiments were conducted at different times and/or by different laboratories, which 

often introduces strong batch effects for the raw intensities. Thus the first challenge in 

CNV calling is to ensure proper normalization of these raw data. Secondly, due to the 

large noise in the SNP probe intensities in these arrays (even after batch effects have 

been corrected for), the estimates of copy numbers for a given locus (SNP) are not 

very robust. Thus more reliable prediction can only be made by integration of 

intensities from several neighboring loci, a strategy that is employed by many 

different CNV detection methods 14-18,40. However, this approach makes CNV 

detection difficult (and sometimes completely fails) in regions with low SNP density. 

Thirdly, while some methods take advantage of the signals from a single or a group 

of SNPs across the population to predict CNV regions for each individual 41-43, there 

are very few methods to merge individual CNV predictions into regions at the 

population level: Redon et al. 12 merged CNVs based on the extent of their overlap, 

whereas Itsara et al. 38 manually annotated complex regions. 

In the current study we followed two main goals: First we performed an extensive 

survey of candidate CNVs in the CoLaus cohort as detected by SNP genotyping 

microarrays. We provide a large dataset that can serve as a resource for other 

studies elucidating human structural variants, and for future association studies of 
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CNVs with the clinical phenotypes measured in CoLaus. Second since the methods 

for detecting individual CNV profiles and merging those into consensus regions have 

not yet been well established, we developed new algorithms for CNV calling and 

merging, and devised novel techniques to evaluate and compare them with existing 

methods. Specifically, we compared three existing CNV detection methods with our 

new method that uses a Gaussian Mixture Model to estimate the copy number 

dosage at each SNP of each individual. This new method was successfully applied to 

both Affymetrix and Illumina arrays; and is not restricted to SNP array analysis. We 

also developed two merging strategies, which were applied to create a map of CNV 

regions for each of the four CNV detection methods. We studied how CNVs predicted 

by the various algorithms coincided with previously reported variants. We also 

investigated the concordance in predicting CNVs in a subsample of individuals that 

were additionally genotyped on the Illumina platform. Finally we compared the 

sensitivity and specificity of the different approaches using related CoLaus individuals 

which are expected to share more CNVs than unrelated individuals. Based on these 

criteria, we demonstrated that our new method outperforms two established CNV 

detection algorithms and has higher sensitivity than a third method.
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3.4 Methods 

The implementation of the Gaussian Mixture Model is publicly available at 

http://www2.unil.ch/cbg/index.php?title=GMM. The algorithm has been implemented 

in Matlab, both the source code and a compiled version for UNIX 64-bit operating 

systems are available. The PCA-merging algorithm has also been written in Matlab 

and the source code is available upon request.  

3.4.1. Ethics Statement  

The CoLaus study was approved by the institutional review boards of the University 

of Lausanne, and written consent was obtained from all participants. 

3.4.2. CNV calling  

 Copy Number Analysis Tool 

We used the Affymetrix GeneChip Genotyping Analysis Software (GTYPE 2) to 

extract, normalize and summarize intensities for both alleles of each SNP. We 

normalized our data using a sketch-quantile distribution of 50k PM Probes and 

summarized the intensities using the plier method in RMA mode. (Detailed 

information can be found in the GTYPE manual.) We first normalized the CoLaus 

samples versus 30 unrelated CEU Hapmap 44 individuals. Then we used the 

Affymetrix Copy Number Analysis Tool (CNAT 16) to attribute a copy number (CN) 

state to each SNP of all CoLaus individuals with the following encoding: 0 for 

homozygous deletion, 1 for hemizygous deletion, 2 for copy neutral, 3 for simple gain 

and 4 for multiple gains. It should be noted that such discrete copy number 

classification is relative to the median CN in the references. CNAT performs 

additional normalizations such as PCR bias correction; inter-array normalization 

when combining NSP and STY arrays; a Gaussian smoothing function to increase 

the signal-to-noise ratio; and combines allelic intensities into a CN ratio (CNR). CNAT 

has two HMM implementations (CNAT.total and CNAT.allelic), which mainly differ by 

the way they compute the CN ratios (equation 1 and 2). 
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In the above equations, S refers to the intensity of the test sample (of an individual) 

and R to the (mean) intensity of the reference panel; A and B refer to the SNP alleles.  

The CNAT.allelic approach uses the sum of the logs of the allelic signals and is more 

sensitive to subtle allelic CN changes than CNAT.total.  

Through QC analyses, we discovered an important batch effect related to the fact 

that samples were processed by four genotyping centers. Therefore we normalized 

data from each genotyping center independently and tested the improvement as a 

function of the number of references used (see Supplementary Data and 

Supplementary Figure 4). Although Affymetrix suggests that 25 samples are enough 

for normalization (see CNAT manual), we established that in the presence of strong 

experimental biases, using many more references performed significantly better (see 

Supplementary Methods). Thus we re-applied the two CNAT implementations to 

ratios normalized within each genotyping center and using 280 references, producing 

much more reliable results than the initial normalization (with 30 references). 

 Aroma normalization 

In parallel to the normalizations performed using GTYPE, we normalized the CoLaus 

data with the Aroma.Affymetrix framework 45. Normalizations were done 

independently for datasets from each genotyping center with at least 336 individuals 

(since the Aroma.Affymetrix requires a lot of I/O operations, which can cause a 

severe drop of the computational performance on shared-network discs, this number 

of references was decided for optimal computational performances while keeping this 

number large enough for batch effects correction (see Supplementary Methods). 

Normalization steps included Allelic Cross-talk calibration 46,47 to correct for 

differences between SNP alleles; intensity summarization using Robust Median 

Average and correction for any PCR amplification bias inherent to the Affymetrix SNP 

platform. To estimate the CNR for a given sample at a given SNP or CN probe, we 
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computed the log2 ratio of the normalized intensity of this probe divided by the 

median across all the samples from the same batch.  

 Circular Binary Segmentation 

Circular Binary Segmentation (CBS) has been described as a state-of-the-art 

segmentation algorithm 17,18; it identifies change points using maximal t-statistics and 

assesses segment significance with permutations. We applied CBS on the CNRs as 

obtained by the Aroma.Affymetrix framework. The distribution of log2 ratios 

(Supplementary Figure 6), revealed that segments with log2 ratios greater than 0.25 

or lower than -0.25 were outliers (i.e. ratios greater than 3rd quartile + 1.5 * 

interquartile range or lower than 1st quartile - 1.5 * interquartile range). A clustering 

using a three component Gaussian Mixture Model confirmed such data separation. 

Thus we decided to classify regions having a mean log2 ratio greater than 0.25 as 

gains and regions with mean log2 ratios lower than -0.25 as losses. 

 Gaussian mixture models 

Raw copy number ratios were smoothed along physical position using Loess filtering 

with a 41-probe window size. Next, a four component Gaussian mixture model (one 

component for each of the following copy number states: deletion, copy-neutral, 1 

and 2 additional copies) was fitted to the smoothed copy number ratios with a 

constraint on the differences between the mixture means. The means of the mixture 

components were decided not to be fixed as the population mean may not 

necessarily be two copies. Then, for each individual we determined the probabilities 

for each of these copy number states (see Supplementary Figure 7). The expected 

copy number was finally assigned as the weighted sum of individual dosage 

probabilities; for example a SNP with probabilities: 1% for CN=1, 9% for CN=2, 85% 

for CN=3 and 5% for CN=4, would have a CN dosage value equal to 2.94 (1*0.1 + 

2*0.9 + 3*0.85 + 4*0.05).  
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 Illumina CNV analysis 

A subset of CoLaus individuals were analyzed on Illumina arrays (550K version 1 & 

3, 1M 48). Intensities were normalized within BeadStudio using 120 Hapmap samples. 

Only SNPs that could be remapped to the 550K version 3 array (genome assembly 

build NCBI 36) were used for subsequent analysis. Only 239 samples with a 

genotyping call rate greater than 99.9% and whose QC metrics satisfied standard 

Illumina recommendations were used. To do the CNV calling, we applied our mixture 

Gaussian model (including the Loess filtering), then merged CNVs with the PCA 

approach (see below) and excluded any singleton regions. 

3.4.3. CNV merging  

 Simple merge 

Our raw CN data can be represented as a matrix where each element represents the 

Copy Number status for all individuals (rows) and all SNPs (columns). The “simple 

merge procedure” consists of combining adjacent SNPs that share the same CN 

profile across the whole population. This is equivalent to merging strictly identical 

SNP columns. To avoid creating CNV regions that would encompass long genomic 

regions with low SNP density, we applied the requirement that two SNPs in the same 

CNV region should not be further away than 500Kb from each other. This rule did not 

apply to regions where all SNPs were copy neutral.  

 PCA merge 

The PCA merge is a novel merging algorithm for CNV profiles. It includes four steps: 

(1) The genome is partitioned into smaller regions, whose boundaries are a long 

stretch of SNPs in the diploid state; (2) For each of these regions, a principal 

component analysis is performed analyzing the regional (clipped) CNV profiles 

(Supplementary Figure 1); (3) Only the few largest components that explain at least 

90% of the total variance are then used to train a self-organizing map (SOM) to 

cluster SNPs with similar variance together; (4) Strictly adjacent SNPs within a same 

cluster are merged into CNV regions. 
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3.5 Results  

3.5.1. Identification of Copy Number Variants in CoLaus  

To detect CNVs in CoLaus, we applied four different CNV detection algorithms to the 

data from 5,612 Caucasians generated with Affymetrix 500K microarrays: two 

implementations of the Copy Number Analysis Tool (CNAT 16) that integrate the SNP 

intensities by summing their raw (CNAT.total) or log-transformed (CNAT.allelic) 

values; Circular Binary Segmentation (CBS 17,18) and our own algorithm based on a 

Gaussian Mixture Model, to which we refer subsequently as GMM. We restricted our 

analysis to autosomes allowing us to use a mixture of males and females as the 

reference panel. Using these four methods, we assigned copy number values to each 

SNP and each CoLaus individual. (The CBS method only returns segments and their 

mean signal intensity, which we used to identify SNPs within candidate regions for 

CNVs if the corresponding ratio was below (loss) or above (gain) a certain threshold, 

see Methods for more details.)  

In a second step we attempted to reduce the complexity of these CNV profiles by 

merging adjacent SNPs that contained highly redundant information into CNV 

regions. The first method (“simple merge”) joins neighboring SNPs that have identical 

copy number values across all CoLaus participants. This simple approach already 

significantly reduced the number of SNPs (for example, it compresses 490K SNPs 

into 8,000 regions for CNAT.total and into 40K for CBS). However, this simple 

scheme leaves the boundaries of CNVs fragmented. Thus we devised a refined 

method, which is based on a principal component analysis (PCA). The PCA identifies 

orthogonal components explaining a significant (e.g. 90%) fraction of the variance 

that are subsequently used to cluster SNPs in CNV regions (see Methods for details).  

Next, we excluded any CNV regions found in fewer than five individuals. We 

distinguish between Copy Number Polymorphisms (CNPs, CNVs with a frequency 

greater than 1% in the population) and Copy Number Variant Regions (CNVRs, 

CNVs with population frequency below 1%). The numbers of CNPs and CNVRs 

predicted by the four different methods and the two merging methods are shown in 

Figure 1. CNAT.total and CBS are conservative methods that generate significantly 

fewer regions than CNAT.allelic and GMM. The simple merging procedure produces 

many small regions (<1kb or single SNPs) which are commonly integrated into fewer 
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larger regions with the PCA-based method. The PCA-based merging method is able 

to reduce the total number of regions by 35%, 53%, 67% and 70% for GMM, 

CNAT.total, CNAT.allelic and, CBS, respectively. 

The fraction of the genome effectively covered by these regions is reported in 

Supplementary Table 1. Although GMM produces many more CNPs than the other 

methods, they only cover about 2.4% of the autosomes. CNAT.allelic predictions for 

CNPs cover 12.4% of the autosomes, while CBS and CNAT.total cover only 1.5% 

and 0.7% respectively. We also checked the coverage with rare variants (CNVRs), 

GMM had the lowest autosomal coverage of only 9.8%, whereas CBS had the 

highest with 42.4%. CBS predictions for CNPs are rather conservative in the sense 

that CNPs found with other methods are found for fewer individuals when using CBS 

(thus much higher genome coverage for CNVRs). Supplementary Figure 5 shows the 

CNV profile on chromosome 1 as predicted by the different methods and illustrates 

the limited ability of CBS to detect CNPs (despite using optimized thresholds when 

classifying CBS segments; see Methods for details). 

We computed the intersection between the four methods using CN prediction from 

60K independent autosomal SNPs (SNPs that were not in LD in the CEU population, 

see Supplementary Methods) (see the Venn diagrams in Supplementary Figure 8). 

Only 2.3% of the SNPs composing CNPs were validated with at least three methods 

(10% with at least two methods) (see Supplementary Table 4). By contrast, 23.5% of 

the SNPs in CNVRs were found in at least three methods and this number reached 

55.3% for at least two methods. We also computed pair-wise comparison between 

the CNV methods (Supplementary Table 5). The maximal intersection between two 

methods is 47% and corresponds to the comparison between all CNVs from GMM 

and CBS. Such relatively low overlaps are not uncommon with CNV analysis from 

SNP genotyping arrays and underline the need for proper replication of any CNV 

predictions.
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In order to evaluate the different detection and merging algorithms we compared the 

various outputs with some reference. In the following we compare the different 

methods using three different approaches: (i) A comparison with known CNVs from a 

public database, (ii) A cross-platform comparison using a subset of samples that 

were also genotyped on the Illumina platform, and (iii) similarity of related individuals 

with respect to their CNV profiles.  

 

Figure 1 Counts of CNVs identified with the different methods 
Copy number variants (CNVs) were detected with four different algorithms (see legend) using data generated by 
Affymetrix 500K SNP arrays for the Cohorte Lausanne (n≈5600). Adjacent SNPs with similar Copy Number 
profiles were merged into CNV regions using two different approaches: one based on principal component 
analysis (PCA, bottom panel) and a more simple approach that only merges SNPs with identical profiles (top 
panel). Copy number polymorphisms (CNPs, i.e. CNVs with population frequency above 1%) are shown on the 
left. Copy number variant regions (CNVRs, i.e. CNVs with population frequency below 1% but seen for at least 
five individuals) are shown on the right. In each plot, CNV counts are segregated according to their size.  
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3.5.2. Comparison with known CNVs 

The Database of Genomic Variants (DGV 19) is a curated catalogue of structural 

variation in the human genome. We downloaded its content (release 7, March 2009) 

and kept only CNVs discovered from SNP or CGH arrays (BAC and ROMA arrays 

were excluded). We added to this dataset CNVs from the high resolution CNV project 
11. This combined dataset of “known” CNVs included 17,804 autosomal CNVs, whose 

size ranged from 1kb to 3Mb. 

We then computed the overlap between this reference dataset and CNVs generated 

by each prediction method from the CoLaus data (Figure 2A). The overlap is reported 

as the Jacquard coefficient, which is the ratio between the size of the intersection and 

the union of two CNVs. A ratio close to one implies that the two CNVs have very 

similar boundaries; a ratio close to zero indicates a negligible overlap (or no overlap 

at all if the ratio is equal to zero) and intermediate values correspond to partial 

overlap (including the case where a small CNV is encompassed by a larger one). 

Since DGV contains CNVs from many fewer individuals than the CoLaus dataset, it 

was important to compare the distribution of overlaps with the CNVs generated by 

the different methods in a controlled setting. Therefore we computed for each method 

the expected overlap using reshuffled data from 1,000 permutations. Estimated 

p-values for observing more or less than expected CNVs with a given overlap are 

shown in Figure 2A (see Supplementary Table 2 for the corresponding t-statistics), 

and the relative excess of observed or expected counts is shown in Figure 2B. We 

observed that all prediction methods were enriched with respect to the controls for 

known CNVs (all Jacquard coefficient bins strictly above 50%) and depleted for novel 

CNVs (Jacquard coefficient of zero). 
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Figure 2 Overlap between CNVs identified from CoLaus and published CNVs  
A) Counts of CNVs with different methods (see legend) are segregated according to their overlap with CNVs 
published in the Database of Genomic Variants. Overlap is measured by the Jacquard coefficient, i.e. the ratio 
between the intersection and the union of two groups of CNVs. Expected counts from (1000 times) reshuffled 
data are shown in gray (extending over one standard deviation). Estimated p-values are indicated for significant 
enrichment (red) or depletion (blue), with respect to these controls. Non significant p-values (alpha>1%) are 
shown in black.  
B) Percentage of changes between observed and expected counts from A. Error bars indicate +/- one standard 
deviation  

3.5.3. Validation with Illumina arrays 

DNA from a subset of 239 CoLaus individuals was assayed on the Illumina SNP 

platform, which uses a different technology from Affymetrix and also provides a 

different SNP content. In order to obtain a validation set of CNVs, we applied GMM 

and the PCA-based merging algorithm to these data. Note that CNAT is specifically 

designed for Affymetrix data so it could not be used here. To validate our CNV 

datasets as predicted from the Affymetrix arrays, we selected those CNVs containing 

at least one individual that had been assayed on the Illumina arrays. Next, we 

computed for the overlap between those selected Affymetrix CNVs and the validation 

CNV collection from the Illumina arrays (Figure 3). 

From our overlap analysis, we found that CNAT.allelic predictions were not 

significantly different from random predictions (according to the controls using 
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reshuffled data). This indicates that CNAT.allelic is too permissive and that the vast 

majority of its predictions are likely to be false positives. In contrast, CNAT.total had a 

better specificity than CNAT.allelic but identified much fewer CNVs compared to 

other methods (CBS and GMM). Both CBS and GMM performed well (showing 

depletion of CNVs unique to the Affymetrix data and enrichment of common CNVs). 

Interestingly, GMM predicted many more CNVs than CBS and the bias with respect 

to predictions from reshuffled data was much stronger than for all the other methods 

(Supplementary Table 3). We also performed the above analyses independently for 

CNPs and CNVRs (both against DGV and the Illumina data, see Supplementary 

Figure 2) and arrived at the same conclusions. 

 

Figure 3 Overlap between CNVs identified from Affymetrix and Illumina data  
A) Counts of CNVs identified with different methods (see legend) from Affymetrix data are segregated 
according to their overlap with CNVs identified from Illumina data. The Illumina panel includes a subset of 239 
CoLaus individuals. Affymetrix-based CNVs, which did not include at least one individual from the Illumina 
panel, were excluded from the analysis. Overlap is measured by the Jacquard coefficient, i.e. the ratio between 
the intersection and the union of two groups of CNVs. Expected counts from (1,000 times) reshuffled data are 
shown in gray (extending over one standard deviation). Estimated p-values are indicated for significant 
enrichment (red) or depletion (blue), with respect to these controls. Non significant p-values (alpha>1%) are 
shown in black. 
B) Percentage of changes between observed and expected counts from A. Error bars indicate +/- one standard 
deviation  
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3.5.4. Predicting relatedness between individuals based on their 
CNV profile 

Analysis of the CoLaus SNP-profiles revealed that five individuals had been 

genotyped twice and the cohort also included 157 pairs of first-degree relatives 

(either sibling or parent-offspring relationships). Using this information, we 

investigated whether predicting the relationship between these individuals would be 

feasible using exclusively their inferred CNP profiles. To this end we computed the 

Euclidean distance between the individuals belonging to 162 related pairs and 

between individuals in 2,000 randomly selected pairs. Knowing the true relationship 

status, we computed Receiver Operating Characteristic (ROC) curves for each CNV 

prediction method and for each merging approach (Figure 4). To evaluate the 

robustness of the ROC curves we reiterated the analysis 100 times with randomly 

chosen pairs of unrelated individuals.  

All methods had significant prediction power with Area Under the Curve (AUC) 

values >0.5. Only the relaxed CNV detection method CNAT.allelic did not show a 

significant difference between the PCA-based and the simple merging approach 

(both methods had an AUC ≈0.6). Interestingly for all other methods, there was a 

clear performance advantage of the PCA-based over the simple merging method. 

Also, these three CNV detection methods, post-processed with the PCA approach, 

performed better than CNAT.allelic. GMM and CNAT.total had the best AUC (0.71). 

We checked whether changing the CNV frequency filter and excluding small regions 

(<1kb) would improve the performance (Supplementary Figure 3). For all methods, 

there was no significant difference when excluding or keeping such small regions. 

For CNAT.allelic, there was some small improvement when increasing the filter on 

the CNV frequency, whereas there was no significant change for CNAT.total and 

CBS. Apparently, the rather small number of CNV predictions by CNAT.total are of 

good quality for predicting relatedness as reflected by the high AUCs (>0.7). Indeed, 

GMM, which is less conservative, profits from using a filter on CNV frequency 

significantly, improving its AUC. This improvement is particularly strong in 

combination with the PCA merge (giving an AUC up to 0.725, which is the best value 

we obtained across all methods (CNAT.total AUCs being slightly lower, see 

Supplementary Figure 3). 
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Figure 4 Performance for predicting relatedness based on CNP profiles generated by different methods 
Each plot shows the Receiver Operator Characteristic (ROC) curve for predicting relatedness between 
individuals based on the similarity of their CNV profiles generated by different methods (CNV detection 
algorithms are indicated above each plot and merging procedures by colors). The analysis employed 162 pairs of 
individuals known to be related and 2,000 pairs of unrelated individuals. Curves were made with the mean (solid 
lines) +/- two standard deviation (light blue or light red surfaces) from 100 permutations. The Area Under the 
Curve (AUC) values are shown in the legends.  
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3.6 Discussion 

In this work, we analyzed CNPs and rare CNV regions within the CoLaus population 

using four different copy number detection methods and applying two different 

merging procedures. We also devised various validation strategies to compare the 

performance of these methods. 

3.6.1. Properties of the PCA merging technique 

The simple merging approach is able to concatenate about half a million SNPs into a 

few thousands regions. Yet, this naïve technique leaves CNV edges fragmented into 

regions of few or even single SNPs. Therefore we developed a novel merging 

method, based on a PCA which, provides a strong improvement over the simple 

approach as it significantly reduces the number of single SNPs by re-attributing them 

to larger regions. Also, small regions (<1kb) were extended either by incorporating 

single SNPs or by merging them with other small regions. 

3.6.2. Comparison of the different CNV prediction methods 

We demonstrated that CNAT.allelic predicts a large number of CNVs. Yet only a 

relatively small fraction of these could be replicated, indicating that most of the 

predicted CNVs are likely to be false positives. This is also supported by the fact 

that CNV profiles generated by CNAT.allelic performed worse in predicting 

kinship. In contrast, CNAT.total appears to be overly conservative and is likely to 

miss subtle, but real CNV events. Based on our comparative analyses we find 

that CBS is a very efficient segmentation algorithm, confirming reports by several 

independent studies 40,49,50. Our GMM method also performs much better, both for 

sensitivity and specificity, than the two CNAT implementations. We also observed 

that our model was able to detect many more CNPs than CBS, suggesting higher 

sensitivity. 

Currently our model only considers deletion, copy neutral, single copy or multiple 

copies. Since very few homozygous deletions were observed with other applied 

algorithms, we did not use such a dedicated component in our analysis. 

Nevertheless, our GMM implementation allows for such an extension. 
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3.6.3. Validation of CNVs in a large clinical cohort 

Validation is an essential part of any CNV discovery project. PCR, Southern blot and 

many other targeted techniques are useful to predict accurately the copy number at a 

given locus, but low throughput is a severe limitation when large numbers of CNVs 

need to be validated. The Database of Genomic Variants is a valuable resource to 

reduce the fraction of CNVs to be further validated. Nevertheless, there still remains 

a significant fraction of novel CNVs. For such CNVs replicating a number of 

individuals (e.g. a few hundred) on an independent array platform is a viable option. 

With the recent reduction in the cost of microarrays, such large-scale replication now 

becomes affordable. 

As a complement to replication experiments, one can take advantage of the 

relatedness between individuals. Deciphering relatedness (if not already known) 

can easily be achieved by clustering the SNP genotypes. Here we showed that 

assessing how well the relatedness can be predicted based on the CNV profiles is 

a powerful technique to gauge the quality of a CNV calling and merging method. 

3.6.4. Conclusion and Perspectives  

Our GMM and PCA merging algorithm are useful techniques to detect and merge 

CNVs. They have been successfully applied to a large clinical cohort. These 

techniques are not limited to data from SNP arrays, they require as input only a 

matrix of hybridization ratios (for the former) or copy number values (for the latter). 

Thus they can be applied to data from other platforms such as CGH arrays. 

Despite significant improvements in CNV detection and analysis when using the most 

recent SNP arrays (e.g. new generation Affymetrix arrays 41,42), there are still many 

large medical cohorts where SNP data have been collected but CNV analysis has not 

been reported. This concerns both complex diseases (e.g. 5,51-53) and cancer (e.g. 54-

56). Hundreds of thousands of individuals have already been genotyped on 500K 

Affymetrix or 550K Illumina SNP chips, but the corresponding data have not been 

used for CNV analysis, simply because it is a much more challenging task due to the 

lack of well-established algorithms and protocols. We hope that the present work will 

make it easier for researchers to make better use of their data for CNV calling. 
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GWAS have demonstrated that the genetic variance cannot fully be attributed to 

SNPs. For example, for highly heritable traits such as height (with 13,665 

individuals), SNPs only explain 3% of the variance 7. It has also been shown that, for 

common traits, the large fraction of heritability cannot be accounted for by CNPs 11. 

Thus the identification of rare CNVs with stronger clinical impact, as we recently 

demonstrated for obesity 37, is one of the most promising alternatives. Meta-analysis 

of existing cohorts for CNVs gives more power to detect rare CNVs because unique 

CNVs in a single cohort can then be supported by different cohorts. But such meta-

analyses cannot be used to identify small variants due to the poor SNP density. In 

such cases, individuals with rare variants should be investigated further with higher 

density arrays or with genomic sequencing. 
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4 Aetiology of CNVs in complex disease 
 

I have been heavily involved in a project centred on morbid obesity led by Pr. 

Jacques Beckmann and Pr. Philippe Froguel. This project was a collaborative effort 

between the CHUV, the Imperial College London, UNIL, SIB, University of Tartu, and 

numerous hospitals in Europe. The aim of the project was to investigate the 

prevalence and penetrance of a rare deletion found in obese patients. 

Obesity is a major health problem in Western societies, it increases risk factor for 

type 2 diabetes, cardio-vascular problems, infertility, ostheoarthritis, and several 

cancer such as breast, liver, pancreas, prostate, kidney 1,2. The aim of this project 

was to investigate a rare, 600Kb-long deletion at chromosome 16p11.2 in obese 

patients. This locus at 16p11.2 is of the highest interest for three main reasons, 1) 

This locus is associated to schizophrenia and autism 3-5, 2) We initially detected this 

deletion in patients ascertained for developmental delays, following detailed clinical 

investigation we found all the affected patients were obese, suggesting the deletion 

could affect genes involved with both phenotypes. And 3) despite several candidates 

from genome-wide association studies (GWAs), these candidates account for little of 

the known heritability in obesity 6.  

We thus compared CNVs from 8,456 obese patients and 11,856 individuals from the 

general population and we found that the deletion explained 0.7% of the morbidly 

obese patients. The odd ratios were highly significant for both obese patients (odds 

ratio 29.8, with 95% confidence interval 3.9-225) and morbidly obese patients (odds 

ratio 43, 95% confidence interval 5.6-329). This explained more than classical SNP-

based GWAs and demonstrated the high penetrance of such rare variant. This also 

highlights an interesting strategy for identifying the missing heritability in obesity and 

other complex traits. The analysis of cohorts with extreme and well-documented 

phenotypes may offer increased power to detect rare variants with strong effects. 

In this project, I was one of the main data analyst with Dr. Robin Walters, one of the 

lead authors on the publication. More specifically, we have meta-analysed CNVs 

from 8,456 obese patients and 11,856 individuals from the general population. 

Additionally I have been in charge of the analysis of 5,612 individuals from the 
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CoLaus cohort (see Chapter 2). It should be emphasized that CoLaus constituted 

about half of the controls used in the project. I was also involved in writing the results 

for a publication in Nature 7. 

The following part includes our paper entitled “A new highly penetrant form of obesity 

due to microdeletions on chromosome 16p11.2”. This paper was published in Nature 

in February 2010. Detailed CoLaus analysis is available in Chapter 3, a method 

summary is also included in the paper and supplemental information can be found in 

the annexes. 

4.1 Abstract 

Obesity has become a major worldwide challenge to public health, owing to an 

interaction between the Western obesogenic environment and a strong genetic 

contribution 6. Recent extensive genome-wide association studies (GWASs) have 

identified numerous single nucleotide polymorphisms associated with obesity, but 

these loci together account for only a small fraction of the known heritable component 
6. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming 

under challenge 8. Here we report a highly penetrant form of obesity, initially 

observed in 31 subjects who were heterozygous for deletions of at least 593 

kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen 

similar deletions were identified from GWAS data in 16,053 individuals from eight 

European cohorts. These deletions were absent from healthy non-obese controls and 

accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kgm-2 

or BMI standard deviation score ≥ 4; P=6.43 x 10-8, odds ratio 43.0), demonstrating 

the potential importance in common disease of rare variants with strong effects. This 

highlights a promising strategy for identifying missing heritability in obesity and other 

complex traits: cohorts with extreme phenotypes are likely to be enriched for rare 

variants, thereby improving power for their discovery. Subsequent analysis of the loci 

so identified may well reveal additional rare variants that further contribute to the 

missing heritability, as recently reported for SIM1 9. The most productive approach 

may therefore be to combine the ‘power of the extreme’ 10 in small, well-phenotyped 

cohorts, with targeted follow-up in case-control and population cohorts. 
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4.2 Methods summary 

Obesity. Definitions for overweight, obesity and morbid obesity were based on 

previous studies 11,12: for adults, BMI ≥ 25, 30 and 40 kgm22 respectively; for 

children, BMI respectively above the 90th, 97th centiles and at least four standard 

deviations above the mean, calculated according to their age and gender from a 

French reference population 13,14.  

Statistics. All reported statistical tests used Fisher’s exact test 15, performed on 

contingency tables constructed for the number of subjects carrying or lacking a 

16p11.2 deletion versus the obesity status or ascertainment of the individual. 

Because no homozygous deletions were observed, it was unnecessary to make a 

prior distinction between recessive, additive and dominant models of disease risk. 

Odds ratios and 95% confidence limits were calculated as described 16.  

CNV discovery. Subjects ascertained for cognitive deficit/malformations with or 

without obesity were selected from those clinically referred for genetic testing; 

16p11.2 deletions were identified in these individuals by standard clinical diagnostic 

procedures. Algorithmic analyses of GWAS data were performed variously using the 

cnvHap algorithm, a moving-window average-intensity procedure, a Gaussian 

mixture model, QuantiSNP, PennCNV, BeadStudio GTmodule, and Birdseed. When 

experimental validation was not possible, at least two independent algorithms were 

used for each data set. 
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4.3 Results 

The extent to which copy-number variants (CNVs) might contribute to the missing 

heritability of common disorders is currently under debate 8. Because most common 

simple CNVs are well tagged by single nucleotide polymorphisms (SNPs), it has 

recently been suggested that common CNVs are unlikely to contribute substantially 

to the missing heritability 17. However, rare variants or recurring CNVs that have 

arisen on multiple independent occasions are unlikely to be captured by SNP 

tagging, and their identification will require alternative approaches. 

We have previously proposed that cohorts with extreme phenotypes that include 

obesity may be enriched for rare but very potent risk variants 10,11. Here we 

investigate 312 subjects, from three centres in the UK and France, presenting with 

congenital malformations and/or developmental delay in addition to obesity as 

defined previously 11,12 (see Methods). Known syndromes (for example, Prader–Willi 

and fragile X) were excluded. A combination of array comparative genomic 

hybridization (aCGH), genotyping arrays, quantitative PCR (qPCR) and multiplex 

ligation-dependent probe amplification (MLPA) was used to identify and confirm the 

presence of a heterozygous deletion on 16p11.2 in nine individuals (2.9%). These 

deletions, estimated to be a total of 740 kilobases (kb) in size (one copy of a 

segmental duplication plus 593 kb of unique sequences; Figure 1a), have previously 

been associated to varying extents with autism, schizophrenia and developmental 

delay 18-21; however, the observed frequency of deletions in our cohort is appreciably 

higher than the reported frequencies in the cohorts from the previous studies (less 

than 1%), which did not include obesity as an inclusion criterion. 
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Figure 1 Identification and validation of deletions at 16p11.2  
(a) aCGH data showing the location of the 16p11.2 deletion. The data show the log2 intensity ratio for a deletion 
carrier compared to an undeleted control sample. Grey bars connected by a broken line denote the segmental 
duplication flanking the deletion region. Vertical bars indicate the positions of the probe pairs used for MLPA 
validation. Note that CGH and genotyping array probes targeted against segmental duplications may not 
accurately report copy number due to the increased number of homologous sequences in the diploid state. 
Genome coordinates are according to the hg18 build of the reference genome. (b) MLPA validation of 16p11.2 
deletions. Representative MLPA results are shown, illustrating one instance of maternal transmission and two 
instances of de novo deletions. Genotyping data excluded the possibility of non-paternity. Full results for MLPA 
validation and inheritance analysis are shown in Supplementary Figure S1. Each panel shows the relative 
magnitude of the normalised, integrated signal at each probe location, in order of chromosomal position of the 
MLPA probe pairs as indicated in (a). Each panel corresponds to its respective position on the associated 
pedigree, as shown. 

A parallel, independent survey of aCGH and SNP-CGH data from eight cytogenetic 

centres in France, Switzerland and Estonia, involving 3,947 patients with 

developmental delay and/or malformations but this time without selection for obesity, 

revealed 22 unrelated cases with similar deletions (0.6%). This is a frequency 

consistent with those found in the previous studies 18-21, but is significantly lower than 

for the above cohort, which included only obese subjects (P=2.2x10-4, Fisher’s exact 

test). 

Analysis of the available clinical data for these 22 new carriers indicated that, in 

addition to the ascertained cognitive deficits or behavioural abnormalities (including 

hyperphagia, specifically identified in at least nine cases; see Supplementary Table 

1), a 16p11.2 deletion gave rise to a strongly expressed obesity phenotype in adults, 

with a more variable phenotype in childhood. All four teenagers and adults carrying a 

deletion were obese, whereas child carriers were also frequently either obese (4 of 

15) or overweight (2 of 15), a tendency that has previously been noted 21; the very 

young (under 2 years old) were of normal weight. This age-dependent penetrance 

was observed in all instances of deletions for which phenotypic data were available, 
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whether from this study or from previously published reports 20-25, and regardless of 

ascertainment (Figure 2; see Supplementary Tables 2 and 3). 

 

Figure 2 Dependence of BMI on age in subjects having a deletion at 16p11.2.  
Data are for all individuals carrying a deletion for whom phenotypic data are available. Similar data from this 
study only are shown in Supplementary Figures S2 and S3. Lines denote the age- and gender-corrected 
thresholds (solid/broken – male/female) for obesity and morbid obesity. Symbols are: Square/circle – 
male/female; black/grey – ascertained/not ascertained for developmental delay; filled/open – ascertained/not 
ascertained for obesity; diamond – first-degree relative of proband; cross – previously published data 20-25. The 
31 year old male with BMI ~20 kg.m-2 was diabetic based on fasting blood glucose >7 mmol/L. 

Taken together, the data from these parallel studies suggest a possible direct 

association of deletions at 16p11.2 with obesity, distinct from their cognitive 

phenotype. Also identified in these cohorts were instances of the reciprocal 

duplication, which has also been implicated in neurodevelopmental disorders, but 

with a variable phenotype and lower penetrance 19,20,22. The frequency of the 

duplication in the two cohorts (12 of 4,183 (0.3%)) was consistent with previous 

reports for patients with cognitive deficits (0.3–0.7%) 20,22. Carriers of the duplication 

neither were obese nor had reported hyperphagia. 
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To investigate further the association of 16p11.2 deletions with obesity, and to 

estimate the extent to which it is observed independently of ascertainment for 

neurodevelopmental symptoms, we performed algorithmic and statistical analyses of 

genome-wide SNP genotyping data (see Table 1) from Swiss (CoLaus 26), Finnish 

(NFBC1966 27) and Estonian (EGPUT28) general population cohorts (11,856 subjects 

in total), from child obesity and adult morbid obesity case-control cohorts 11,29,30 

(1,224 and 1,548 subjects, respectively), from an extreme early-onset obesity cohort 

(SCOOP, 931 subjects) and from 141 patients undergoing bariatric weight-loss 

surgery (see Methods); in total, we identified 17 instances of deletions (and four 

duplications) with no significant gender bias (Table 1). In addition, we identified two 

further unrelated carriers of a deletion from 353 members of 149 families with sibling 

pairs discordant for obesity (SOS Sib Pair Study 31). When DNA was available for 

further analysis (15 of 19 samples), the presence of a deletion was validated by using 

MLPA (Figure 1b) or qPCR; the remaining deletions were validated by applying a 

second independent algorithm to the data. With the exception of a single individual 

who is apparently diabetic (fasting blood glucose more than 7 mM), all adult carriers 

of such deletions were obese, the majority being morbidly obese; similarly, each of 

the seven child or adolescent carriers had a BMI in the top 0.1% of the population 

range for their age and gender. None of the individuals ascertained on the basis of 

their obesity had any reported developmental delay or cognitive deficit; four subjects 

were reported as having hyperphagia. 
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Cohort Deletions/Total Technology 

 Lean/ 
Normal 

Overweight Obese 
Morbidly 

Obese 
Total  

Ascertained for cognitive deficits/malformations and obesity       

Lille/Strasbourga     8/279 qPCR, aCGH 

Londona     1/33 aCGH, MLPA 

Ascertained for cognitive deficits/malformations       

French-Swiss cytogenetic clinical diagnostic groupa     21/3870 aCGH, QMPSF, qPCR, FISH 

Estonian cases of cognitive deficita     1/77 Illumina CNV370-Duo, qPCR 

Ascertained for obesity       

Swedish families with discordant siblingsb,d 0/140 0/54 0/115 2/44 2/353 Illumina 610K-Quad, MLPA 

French adult case-controlb 0/669 0/174 - 4/705 4/1548 Illumina CNV370-Duo, MLPA 

French child case-controlc 0/530 0/51 1/260 3/383 4/1224 Illumina CNV370-Duo, MLPA 

British extreme early-onset obesityc    3/931 3/931 Affymetrix 6.0, MLPA 

French bariatric weight-loss surgeryb - - 0/15 2/126 2/141 Illumina 1M-duo, MLPA 

Population cohorts (origin)       

NFBC66 (Finnish)b 1/3148 0/1622 1/434 1/42 3/5246 Illumina CNV370-Duo 

CoLaus (Swiss)b 0/2675 0/2049 0/830 0/58 0/5612 Affymetrix 500K 

EGPUT (Estonian)b 0/412 0/358 1/213 0/15 1/998 Illumina CNV370-Duo, qPCR 

Total without ascertainment for cognitive deficits/malformationsd 1/7434 0/4254 3/1742 13/2260   

 
Table 1 Frequency of detected 16p11.2 deletions in multiple cohorts 
For each cohort, 16p11.2 deletions were identified and validated using the indicated technologies. Where full phenotypic data was available, members of cohorts were 
categorised according to the appropriate obesity criteria (see Supplementary Information): aNot categorised, complete phenotypic data not available. bBMI thresholds for 
overweight, obese, morbidly obese were ≥25 kg.m-2, ≥30 kg.m-2, ≥40 kg.m-2 respectively. cBMI thresholds for overweight, obese, morbidly obese were the age- and gender- 
corrected 90th precentile, 97th precentile, +4 standard deviations above the mean, respectively. dDiscordant siblings not included in totals due to relatedness. 
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To enable sufficient statistical power to give robust conclusions, we combined data 

from the population and obesity cohorts in an overall case-control association 

analysis (the samples from sib-pair families were excluded to avoid complications 

due to their relatedness). In comparison with lean or normal weight subjects (see 

Table 1 and Methods), 16p11.2 deletions were associated with obesity (P=5.8x10-7, 

Fisher’s exact test; odds ratio 29.8, 95% confidence limits 3.9 and 225) and morbid 

obesity (P=6.4x10-8; odds ratio 43.0, 95% confidence limits 5.6 and 329) at or near 

genome-wide levels of significance. Expanding the control group to include all non 

obese individuals increased the significance to P=4.2x10-9 (obese) and P=6.1x10-10 

(morbidly obese). 

Previous reports have indicated that these deletions are frequently not inherited from 

either parent but arise de novo, possibly by nonallelic homologous recombination 

between the more than 99% sequence-identical segmental duplications flanking the 

deleted region 21,24. Therefore, where possible we investigated the parents of carriers 

of deletions, identifying 11 cases of maternal transmission and 4 of paternal 

transmission. The available data showed that all first-degree relatives carrying a 

deletion were also obese (Supplementary Table 1). In ten instances the deletion was 

apparently de novo (see Figure 1b). Extrapolation to our full data set indicates that 

about 0.4% of all morbidly obese cases are due to an inherited 16p11.2 deletion. The 

frequency of de novo events is consistent with a previous report, in which 

ascertainment was for developmental delay and/or congenital anomalies 21; by 

contrast, deletions are reported to be almost exclusively de novo in autistic subjects 
18-20. 

Although they may be heterogeneous in nature, these deletions are highly likely to be 

the causal variants, representing the second most frequent genetic cause of obesity 

after point mutations in MC4R 32,33. Their repeated de novo occurrence is likely to 

result in a lack of linkage disequilibrium with any other flanking variant—no consistent 

haplotype has been identified by analysis of the available surrounding genotypes. To 

assess the effect of a deletion on the expression of nearby genes (for example, the 

obesity GWAS-associated SH2B1 locus 800 kb distant 34), we analysed available 

transcript data for subcutaneous adipose tissue samples from the discordant sibling 

cohort. Comparisons of the two subjects carrying a deletion with their corresponding 
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non-obese siblings, and with other obese and non-obese subjects (Supplementary 

Fig. 4 and Supplementary Tables 4 and 5), showed that many, although not all, 

transcripts from within the deletion had a markedly decreased abundance (0.4–0.7-

fold). In contrast, no clear evidence was found for consistent cis effects of the 

deletion on the abundance of messenger RNAs encoded by genes flanking the 

deletion. In addition, global analysis of this data set has not identified any trans-

acting expression quantitative trait loci either within or nearby the deletion. 

Thus, although we cannot completely exclude the possibility that a 16p11.2 deletion 

affects the expression of nearby genes (for instance, its impact may be different in 

other tissues), the expression analysis described strongly indicates that the observed 

phenotypes are likely to be due to haploinsufficiency of one or more of the about 30 

genes within the deleted region. Indeed, rather than being due to a single 

haploinsufficiency, the phenotype may well result from the deletion of multiple genes 

with an impact on pathways central to the development of obesity (see 

Supplementary Table 5). Functional network analysis of the deleted genes has led to 

the suggestion of a similar multigene effect for the cognitive phenotype 18. The extent 

to which there is overlap between the genes involved in the obesity and cognitive 

phenotypes remains to be elucidated. 

There is a strong correlation between developmental and cognitive disabilities and 

the prevalence of obesity: patients with autism or who have learning disabilities have 

a greatly increased risk of obesity 35, and the severely obese exhibit significant 

cognitive impairment 36. Possible explanations include a direct causal relationship 

between obesity and developmental delay, the involvement of the same or related 

regulatory pathways, or different outcomes of the same set of behavioural disorders 

with complex pleiotropic effects and variable ages of onset and expressivities. The 

higher frequency of 16p11.2 deletions in the cohort ascertained for both phenotypes 

(2.9%), compared with cohorts ascertained for either phenotype alone (0.4% and 

0.6%, respectively), confirms their impact on both obesity and developmental delay, 

adding to the evidence that these two phenotypes may be fundamentally interrelated. 
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4.4 Methods 

Obesity phenotype. We used previously defined criteria to define overweight, 

obesity, and morbid (class III) obesity 11,12. In adults, the thresholds were BMI ≥ 25, 

30 and 40 kg.m-2, respectively. In children and adolescents, we used age-specific 

and sex-specific centiles of BMI, calculated from a French reference population 13,14, 

that approximately corresponded to these thresholds: overweight and obesity were 

defined by thresholds at the 90th and 97th centiles, respectively. Childhood morbid 

obesity was defined as BMI ≥ 4 standard deviations above the age-specific and sex-

specific mean, which corresponds to a BMI of 40 kg.m-2 between the ages of 20 and 

30 years for both men and women; this threshold was used in the recruitment of the 

SCOOP severe early-onset obesity cohorts 12. The age-specific and sex-specific 

thresholds used to define obesity and morbid obesity are shown in Figure 1 and 

Supplementary Figs 1 and 2. No carriers of a 16p11.2 deletion were reported to be 

taking atypical antipsychotics (known to be associated with weight gain).  

Patient and population cohorts. Patients referred for cognitive delay and obesity: a 

group of 33 patients was selected from those referred for genetic testing at the North 

West Thames Regional Genetics Service, based at Northwick Park Hospital in 

Harrow, UK, with approval from the Harrow Research Ethics Committee. Inclusion 

was based on three criteria: mental retardation, dysmorphology, and a weight greater 

than the 97th centile for age and gender. Abnormal karyotype, fragile X and Prader–

Willi syndrome had previously been excluded. 

A second group of 279 French children were selected from those referred to two 

centres (Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Strasbourg, 

France, and Centre de Génétique Chromosomique, Hôpital Saint-Vincent de Paul, 

GHICL, Lille, France). Inclusion was based on obesity plus at least one Prader–Willi-

like syndromic feature (neonatal hypotonia and difficulty to thrive, mental retardation, 

developmental delay, behavioural problems, skin picking, facial dysmorphism, 

hypogenitalism or hypogonadism). Chromosomal abnormalities and Prader–Willi 

syndrome were excluded by karyotyping and DNA methylation analysis. 

Patients referred for cognitive delay: patients with cognitive deficits are routinely 

referred to clinical genetics for aetiological work-ups including aCGH. We surveyed 
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seven cytogenetic centres in France and Switzerland, identifying 3,870 patients 

ascertained for developmental delay and/or malformations. Also included in the study 

was a further 77 patients, ascertained on similar criteria, who were referred to the 

Department of Genetics, University of Tartu, Tartu, Estonia. These analyses were 

performed for clinical diagnostic purposes, all available phenotypic data (weight and 

height) being those provided anonymously by the clinician ordering the analysis. 

Consequently, research-based informed consent was not required by the institutional 

review board that approved the study. 

CoLaus: this prospective population cohort was described previously26; 6,188 white 

individuals aged 35–75 years were randomly selected from the general population in 

Lausanne, Switzerland. These individuals underwent a detailed phenotypic 

assessment and were genotyped with the Affymetrix Mapping 500K array; 5,612 

samples passed genotyping quality control. This study was approved by the 

institutional review boards of the University of Lausanne, and written consent was 

obtained from all participants. Because recruitment of this cohort required the ability 

to give informed consent, it is possible that the (statistically non-significant) lack of 

16p11.2 deletions or duplications is due to an ascertainment bias. However, any 

such bias, if it exists, is very small and affects the identification of only one or two 

subjects carrying a deletion.  

NFBC1966: the Northern Finland Birth Cohort 1966 is a prospective birth cohort of 

almost all individuals born in 1966 in the two northernmost provinces of Finland. 

Expectant mothers were enrolled, and clinical data collection took place prenatally, at 

birth, and at ages 6 months, 1 year, 14 years and 31 years. Biochemical and DNA 

samples were collected with informed consent at age 31 years. Genotyping with the 

Illumina Infinium 370cnvDuo array and phenotypic characteristics of the cohort were 

as described previously 27. Phenotypic and genotyping data were available for 5,246 

subjects after quality control.  

EGPUT: the Estonian Genome Project is a biobank coordinated by the University of 

Tartu (EGPUT) 28. The project is conducted in accordance with Estonian Gene 

Research Act, and all participants gave written informed consent. The cohort 

includes more than 39,000 individuals older than 18 years of age and reflects closely 

the age distribution in the Estonian population (33% male, 67% female; 83% 
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Estonians, 14% Russians, 3% other). Subjects are recruited by general practitioners 

and hospital physicians and are then randomly selected. Computer Assisted 

Personal interview (CAPI) was filled during 1–2 h at the doctor’s office. The data 

included personal data (such as place of birth, place(s) of living and nationality), 

family history (four generations), educational and occupational history, lifestyle and 

anthropometric data. A total of 1,090 randomly selected subjects were genotyped 

with the Illumina 370cnvDuo array, 998 passing the required criteria (nationality, 

genotyping call rate and phenotype availability). 

Case-control familial obesity: the adult-obesity case-control groups and the child-

obesity case control groups were as published previously 11, and were genotyped 

with the Illumina Human CNV370-duo array. In all, 643 children with familial obesity 

(BMI ≥ 97th centile corrected for gender and age, at least one obese first-degree 

relative, age less than 18 years), 581 non-obese children (BMI ≤ 90th centile), 705 

morbidly obese adults with familial obesity (BMI ≥ 40 kgm22, at least one obese first-

degree relative with BMI ≥ 35 kg.m-2, age ≥ 18 years) and 197 lean adults (BMI ≤ 25 

kg.m-2) passed quality control; this cohort included a further 646 control subjects from 

the DESIR prospective cohort 29 (age at examination ≥ 45 years, normal fasting 

glucose in accordance with 1997 ADA criteria, BMI < 27 kg.m-2) genotyped with the 

Illumina Hap300 array 30. All participants or their legal guardians gave written 

informed consent, and all local ethics committees approved the study protocol. 

Severe early-onset obesity cohort: the Genetics of Obesity Study (GOOS) cohort 

consists of more than 3,000 patients ascertained for severe obesity, defined as a BMI 

≥ 4 standard deviations above the age-specific and sex-specific mean, and onset of 

obesity before 10 years of age. In this study we selected a discovery set of 1,000 UK 

Caucasian patients from this cohort in whom developmental delay had been 

excluded by routine clinical examination by experienced physicians (this cohort is 

referred to as SCOOP). Mutations in LEPR, POMC and MC4R were excluded by 

direct nucleotide sequencing and a karyotype was performed. DNA samples were 

analysed with Affymetrix Genome-Wide Human SNP Array 6.0 by Aros, of which 931 

passed quality control.  

Bariatric surgery cohort: patients undergoing elective bariatric weight-loss surgery 

were recruited for the ABOS study at Lille Regional University Hospital. Genotyping 
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was performed with the Illumina Human 1M-duo array, and data from 141 adults 

passed quality control. All participants gave written informed consent, and the study 

protocol was approved by the local ethics committee. 

Swedish discordant sibling cohort: the SOS Sib Pair Study cohort was as published 

previously 31. It includes 154 nuclear families, each with BMI discordant sibling pairs 

(BMI difference.10 kg.m-2), giving a total of 732 subjects. Genotyping data with the 

Illumina 610K-Quad array was available for 353 siblings from 149 families. 

Expression data from subcutaneous adipose tissue (sampled after overnight fasting) 

were available for 360 siblings from 151 families. Subjects received written and oral 

information before giving written informed consent. The Regional Ethics Committee 

in Gothenburg approved the studies. 

Statistical methods. In view of the low frequency of the 16p11.2 deletions, all 

reported statistical tests were conducted with Fisher’s exact test 15. This was applied 

to comparisons of separately ascertained cohorts or categories and was performed 

on contingency tables constructed for the number of subjects carrying or lacking a 

16p11.2 deletion (zero or one copies, because no homozygous deletions were 

observed) versus the obesity status or ascertainment of the individual. Because no 

homozygous deletions were observed, it was unnecessary to make a prior distinction 

between recessive, additive and dominant models of disease risk. For overall 

analysis of the obesity risk resulting from a deletion, cohorts were pooled in 

accordance with their obesity status determined according to the criteria described 

above, and the described tests were then applied to the pooled data. Odds ratios and 

95% confidence limits were calculated as described 16. 

CNV discovery and validation. Clinical identification of 16p11.2 deletions: all 

diagnostic procedures (aCGH, qPCR, QMPSF and FISH) were conducted in 

accordance with the relevant guidelines of good clinical laboratory practice for the 

respective countries. All rearrangements in probands were confirmed by a second 

technique, and karyotyping was performed in all cases to exclude a complex 

rearrangement. 

cnvHap: CNVs were detected in the child/adult case-control, bariatric surgery, SOS 

sibpair and NFBC cohorts using the cnvHap algorithm (L.J.M.C., J. E. Asher, R.G.W., 
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J.S.E.-S.M., A.J.d.S., R.S., D. J. Balding, P.F. and A.I.F.B., unpublished 

observations); this method is based on a hidden Markov model that models 

transitions between copy-number states at the haplotype level, improving sensitivity 

and accuracy by capturing linkage disequilibrium information between CNVs and 

SNPs. The compiled JAR and associated parameter files can be downloaded from 

http://www.imperial.ac.uk/medicine/people/l.coin/. Sample data from the algorithm 

applied to the NFBC cohort are illustrated in Supplementary Fig. 5a. After clustering 

of genotyping data with the internal Illumina BeadStudio cluster files, values for logR 

ratio (LRR) and B-allele frequency (BAF) were exported from each project and 

normalized: effects of percentage GC content on LRR were removed by regressing 

on GC and GC2, and wave effects 37 were removed by fitting a Loess function. 

Normalized data for probes within 2.5 megabases of the 16p11.2 deletion were 

analysed with cnvHap, andCNV calls intersecting the single-copy sequences within 

the deletion (chr16:29514353–30107356, build hg18) were extracted. 16p11.2 

deletions were identified by a minimum 90% of probes within the deleted region 

being called as having a decreased copy number. All called 16p11.2 deletions were 

validated by direct analysis of LRR. Data for each probe were normalized by first 

subtracting the median value across all samples (so that the distribution of LRR for 

each probes was centred on zero), and then dividing by the variance across all 

samples (to correct for variation in the sensitivity of different probes to copy-number 

variation). The normalized data were then smoothed by application of a nine-point 

moving average and visualized graphically (see Supplementary Fig. 6); putative 

deletions were checked by subsequent manual confirmation of loss of heterozygosity 

across the entire region. Equally, all deletions called by this method were confirmed 

by cnvHap.  

Gaussian mixture model: for the CoLaus cohort, raw genotyping data were 

normalized using the aroma.affymetrix framework 38. Normalization steps included 

allelic cross-talk calibration 39,40, intensity summarization using robust median 

average, and correction for any PCR amplification bias. Copy number (CN) ratios for 

a given sample, at a given SNP or CN probe, were computed as the log2 ratio of the 

normalized intensity of this probe divided by the median across all the samples. CN 

ratios were subsequently smoothed by fitting a Loess function 37. CNV calling was 

performed with a new method based on a Gaussian mixture model (A.V., Z. Kutalik, 
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T. Johnson, B. J. Stevenson, C. V. Jongeneel, D.W., V.M., P.V., G.W., J.S.B. and 

S.B., unpublished observations). This Gaussian mixture model fits four components 

(deletion, copy neutral, one additional copy and two additional copies) to CN ratios. 

The final copy number at each probe location is determined as the expected 

(dosage) copy number. The method has been validated by comparing test data sets 

with results from the CNAT 41 and CBS 42,43 algorithms and by replicating a subset of 

CoLaus subjects on Illumina arrays. All calls at the 16p11.2 locus made by the highly 

stringent CBS algorithm were replicated by the Gaussian mixture model. Principal 

components analysis detected no significant batch effects. Sample data from the 

algorithm applied to the CoLaus cohort are illustrated in Supplementary Fig. 5b. 

PennCNV, QuantiSNP and Birdsuite: CNV discovery in the EGPUT cohort was 

performed with QuantiSNP 44, PennCNV 45 and BeadStudio GT module (Illumina). All 

analyses were conducted with the recommended settings, except changing EMiters 

to 25 and L to 1,000,000 in QuantiSNP. For PennCNV, the Estonian population-

specific BAF file was used. Data from the SCOOP cohort were analysed with 

Affymetrix Power Tools and Birdsuite software 46. Multiplex ligation-dependent probe 

amplification (MLPA): MLPA was performed with standard methods 47 using reagents 

obtained from MRC-Holland. The SALSA MLPA kit P343-B1 Autism-1 probe mix was 

used, which contained nine probes within the deleted region on 16p11.2, plus one 

probe upstream and one downstream of this locus (see Figure 1a). MLPA products 

were separated with an AB3130 Genetic Analyser (Applied Biosystems) and outputs 

were analysed with GeneMarker software (Soft Genetics) and Microsoft Excel. Data 

normalization was performed by dividing the peak areas for each of the 11 test 

probes by the mean of 9 control probe peak areas. Normalized peak area data were 

then compared across the tested samples to determine which of them carried the 

16p11.2 deletion. 
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5 Detection and impact of somatic copy number 
alterations in cancer 

 

In collaboration between the Ludwig Institute for Cancer Research, Universities of 

Lausanne and Geneva, the Swiss Institute of Bioinformatics and the CHUV, I have 

been strongly involved in the comprehensive genomic profiling of metastatic 

melanoma. More specifically I have been interested in detecting somatic copy 

number aberrations (SCNAs), how these relate with the gene expression of affected 

genes and whether recurrent aberrations can be identified in melanoma, both at the 

gene and pathway level.  

The project was centred on the molecular profiling of seven metastatic melanomas 

and their matched diploid controls with a series of experiments that included 

karyotyping, CGH and SNP arrays; methylation profiling; and exome and RNA 

sequencing. To derive a gene expression reference in melanoma samples, we also 

sequenced cDNA from a pool of normal human melanocytes. 

Karyotype and CGH experiments were performed within the Service of Medical 

Genetics (CHUV); methylation and exon-capture arrays were done within the 

Department of Genetic Medicine and Development (Geneva); exome and RNA 

sequencing were outsourced to the Genomic Technology Facility (Lausanne) and 

University of Zurich; and SNP hybridizations were done at the Genomics Platform of 

the NCCR "Frontiers in Genetics” (Geneva). Samples, both melanoma cell lines 

derived from metastases and their matched controls (Peripheral Blood Lymphocytes 

(PBL) or Epstein-Barr virus transformed lymphoblastoid (EBV) cell lines) were 

available from the Ludwig Institute for Cancer Research. Melanocytes were a 

generous gift from Dr. Ghanem Ghanem (Institut Bordet, Belgium). Approval to use 

these samples for this project was given by the CHUV (Centre Hospitalier 

Universitaire Vaudois) ethical committee for clinical research. 

In this chapter, I will concentrate on the work where I was the main actor. Notably I 

was in charge of analyzing SNP and CGH arrays for the detection of SCNAs, then to 

integrate SCNA with gene expression data. My contribution has ranged from 

developing and implementing algorithms to interpreting the biological results and 
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making appropriate decisions to refining both the experiments and the analysis. My 

work was supervised both by Dr. Brian Stevenson and Pr. Victor Jongeneel, with 

feedback from all other participants. Manual curation and final interpretation of 

pathways identified as enriched in SCNA was performed by me, with corroboration 

from Dr. Brian Stevenson and Dr. Donata Rimoldi. To validate the results, I 

performed a meta-analysis of two published, large melanoma datasets (Stark and 

Hayward 2007; Gast et al., 2010). 

The project has benefited from the expertise of several collaborators. In particular, 

Dr. Donata Rimoldi (Ludwig Institute for Cancer Research) prepared cell lines and 

subsequent biological material for the experiments; Dr. Danielle Martinet (CHUV) 

interpreted karyotype data and performed CGH experiments; Dr. Christian Iseli 

(Ludwig Institute for Cancer Research) analysed the transcriptome sequencing data 

to derive raw tag counts at each transcript; and Dr. Mark Ibberson performed 

independent network analysis to evaluate different analysis methods.  

My work shows that while few SCNA are recurrent between samples, these were 

associated essentially within the same signalling pathways. The results were 

replicated in the two external datasets, each ten-fold larger than our own melanoma 

collection. These results have two major implications 1) our analysis is useful to 

identify recurrent events from both large and small datasets and 2) the pathways and 

constituent genes we identified might offer new insights in the biology and treatment 

of melanoma. This can be exemplified with two genes involved in angiogenesis and 

migration (FRS2 and EPHA3) that have been implicated in other cancers and should 

be investigated further as potential therapeutic targets in melanoma. This work is fully 

detailed in the next section and has been submitted for publication in a peer review 

journal. 
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5.1  Abstract 

Cancer genomes frequently contain somatic copy number alterations (SCNA) that 

can significantly perturb the expression level of affected genes and thus disrupt 

pathways controlling normal growth. In melanoma, many studies have focussed on 

the copy number and gene expression levels of the BRAF, PTEN and MITF genes, 

but little has been done to identify new genes using these parameters at the genome-

wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have 

identified SCNA affecting gene expression (‘SCNA-genes’) in seven human 

metastatic melanoma cell lines. We showed that the combination of these techniques 

is useful to identify candidate genes potentially involved in tumorigenesis. Since few 

of these alterations were recurrent across our samples, we used a protein network-

guided approach to determine whether any pathways were enriched in SCNA-genes 

in one or more samples. From this unbiased genome-wide analysis, we identified 28 

significantly enriched pathway modules. Comparison with two large, independent 

melanoma SCNA datasets showed less than 10% overlap at the individual gene 

level, but network-guided analysis revealed 66% shared pathways, including all but 

three of the pathways identified in our data. Frequently altered pathways included 

WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results 

emphasize the potential of the EPHA3 and FRS2 gene products, involved in 

angiogenesis and migration, as possible therapeutic targets in melanoma. Our study 

demonstrates the utility of network-guided approaches, for both large and small 

datasets, to identify pathways recurrently perturbed in cancer. 

Microarray and sequencing data were deposited in NCBI GEO and are available 

under accession number GSE23056.  
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5.2 Introduction 

Somatic copy number alterations (SCNA) are a recurrent characteristic of malignant 

cancers 1-3. The amplification and subsequent over-expression or, conversely, 

deletion and loss of expression of key regulators of cell proliferation, senescence or 

death have been shown in many cases to contribute significantly to the progression 

from the normal to the malignant state 4-7. Therefore, the discovery and 

characterization of chromosomal regions involved in SCNA and of the genes 

encoded in them has been a crucial contributor to our understanding of the molecular 

mechanisms of carcinogenesis. 

The methods used to detect and characterize SCNA have evolved significantly over 

the last decades. Initial cytogenetic observations have been supplemented with 

Southern blots and quantitative PCR. Almost twenty years ago, the availability of 

BAC clones delineating a tiling path through the entire human genome made it 

possible to detect SCNA in a genome-wide fashion, but with limited resolution 8. More 

recently, oligonucleotide-based arrays have enabled comparative genome 

hybridizations (CGH) at high resolution, and CGH has become the method of choice 

to detect copy-number variations 9-11. A recent SNP-based survey 1 of 3,131 copy-

number profiles derived from over 26 different types of cancer has provided a 

dramatic illustration of the power of high-throughput techniques in distinguishing 

random alterations in the genome from those that may have a direct impact on 

tumorigenesis. 

Genomic alterations in many tumors, especially at late stages in their development, 

are so extensive that the copy-number status of individual genes or chromosomal 

regions can vary over a very wide range of values. A mixture of chromosomal 

rearrangements and focal expansions can create genomic landscapes that are very 

difficult to analyze using standard CGH techniques. Moreover, the exact boundaries 

of SCNA or the expression status of the genes encoded within them are usually not 

known, precluding a thorough assessment of their impact on the phenotype of the 

cancer cells. It has recently been proposed that SNP arrays may be better suited for 

the determination of copy number states in tumor samples because the analysis of 

data derived from such arrays can make use of allelic imbalance information in 

addition to hybridization intensity 12. 
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In the present study, we analyzed the genome-wide copy-number status of seven 

highly aneuploid metastatic melanoma cell lines and determined the expression of 

their genes using a sequencing-based approach. We show that a combination of 

SNP-based and CGH arrays is necessary to obtain a reliable estimate of the true 

copy-number status of the entire genome in the face of extensive genomic instability, 

and that the combination of copy-number and expression status provides powerful 

clues as to the possible role of genes encoded within SCNA in tumorigenesis. 

Moreover, we show that a protein-based network-guided analysis of SCNA-affected 

genes with altered expression in our data and two published datasets 13,14 identifies 

pathways commonly altered in melanoma. 

5.3 Methods 

5.3.1. Melanoma samples, DNA and RNA extraction 

Melanoma cell lines were established from metastases from patients with cutaneous 

melanoma and were used at low passage (<10). Donor matched cells were either 

peripheral blood lymphocytes (PBL) or Epstein-Barr virus transformed lymphoblastoid 

(EBV) cell lines. EBV cell lines were karyotyped to ensure genome stability and 

diploidy. Approval to use these samples for this project was given by the CHUV 

(Centre Hospitalier Universitaire Vaudois) ethical committee for clinical research. 

Melanoma cell lines were cultured conditions in RPMI-1640 medium supplemented 

with 10% fetal calf serum (FCS), and no antibiotics. Human foreskin melanocytes 

were grown in HAM-F10 medium supplemented with 2% FCS, 5% MelanoMax 

supplement (Gentaur, Belgium) and 6 mM HEPES. EBV cell lines were cultured in 

IMDM /10% FCS medium. All cultures were without mycoplasma. DNA (Gentra kit, 

Qiagen) and RNA (guanidinium/cesium chloride gradient) isolation and karyotype 

preparations were performed from parallel cultures.  
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5.3.2. Cytogenetic and FISH analysis 

Cytogenetic (GTG-banding) and fluorescence in situ hybridization (FISH) metaphase 

analyses of melanoma cell lines were performed using standard protocols. Dual color 

FISH was done using a commercially available set consisting of a locus-specific 

MDM2 combined with a chromosome 12 centromeric probe (Kreatech Poseidon 

FISH probe) to distinguish aneuploidy of chromosome 12 and specific locus loss or 

gain. Chromosomes with homogeneously staining region (HSR) were identified with 

the analysis of FISH metaphases in inverted digital images. Copy number estimation 

of HSR was done using FISH interphases. 

5.3.3. Comparative genomic arrays (CGH) 

CGH arrays were processed according to the manufacturer’s protocol (Agilent 

Technologies, Inc.) and as described in Martinet et al. 15.  

The normalization and detection of copy number aberration is detailed in the 

Supplemental Information. In brief, signal intensities were normalized using three 

independent normalization schemes: Loess 16; PopLowess 17; and the statistical 

framework from Chen et al. 18 .  

Then probe-level data were segmented using Circular Binary Segmentation 19,20 and 

attributed a discrete copy number to segments using three independent methods 1) a 

naive scoring-based approach, where outliers relative to the chromosomal baseline 

are detected using a non-parametric score; 2) the MergeLevels method 21 and 3) our 

own classification algorithm based on Gaussian Mixture Model which models the 

observed distribution of intensity ratios as a combination of Gaussian distributions 

that can be subsequently classified into deletion (CN<2), copy neutral event (CN=2), 

duplication and amplification (CN=3 and CN≥4). 
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5.3.4. Single Nucleotide polymorphism arrays (SNP) 

 Illumina 1M SNP arrays 

Genomic DNA from each of the 7 melanoma and their matched normal cells (either 

EBV cell line or PBL); as well as two control melanocytes were genotyped on the 

Illumina Infinium Human1M-Duo arrays. Aliquots of DNA (30 µl at 50 ng/µl) for each 

sample were processed according to the manufacturer’s protocol (Infinium HD 

Gemini protocol). Subsequently we used the OverUnder algorithm 22 to correct the 

hybridization log ratios for polyploidy and to attribute a continuous copy number value 

to each SNP. We estimated that the window size parameter set to 201 SNPs, gave 

the highest reproducibility between technical replicates (Supplemental Fig. S5A and 

S5B). 

 Affymetrix 6.0 arrays 

As part of the technical replicate design, we analyzed LAU-Me275 on Affymetrix 6.0 

SNP arrays. The experiment was performed in accordance with the manufacturer’s 

instructions. Normalization and copy number prediction were done using the PICNIC 

algorithm 23. 

5.3.5. Transcriptome sequencing 

The transcriptome from all seven melanoma as well as a pool of two melanocytes 

was sequenced using the Roche 454 Titanium technology. mRNA isolation and 

cDNA preparation were performed following the protocol used by Bainbridge et al. 24, 

with some modifications (See Supplemental Information). 3-5 µg of cDNA were used 

for 454 libraries preparation, according to manufacturer’s protocol. All experiments 

produced about 1M single end reads, with a median length of 367 nucleotides 

(interquartile range 265-436). We derived transcript tag counts using our own 

published methodology 25 (see also Supplemental Information). Using tag counts 

from the pool of melanocytes, we were able to derive a ratio of expression for each 

melanoma with respect to these control melanocytes. 
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5.3.6. Detection of somatic copy number alterations with altered 

expression (SCNA-genes)  

We computed the median copy number at each Refseq gene. To overcome density 

limitations, we included SNPs that were within 2kb of the gene boundaries. For CGH 

arrays, we included probes within 3kb of the gene boundaries. We defined SCNA-

genes as follows. A gene was flagged as within a focal amplification when its CN, as 

computed from SNP arrays, was ≥4, the difference in CN relative to the chromosomal 

arm was ≥1, the gene was diploid (CN=2) in the matched control cell line, and the 

expression in the melanoma cell line was at least 2-fold greater than that in the 

control melanocytes. For deletions, a gene needed to have CN<2, as detected by 

CGH, without expression in the melanoma cell line and CN=2 with detected 

expression in the melanocytes. 

5.3.7. Protein network-guided analysis of SCNA 

A non-redundant human protein interaction network was generated by combining 

iRefseq 26 and Pathway Commons 27 protein interaction databases with functional 

interactions from Panther pathways 28. The resulting network has 21,876 nodes and 

376,528 edges and combines interaction data from 15 primary protein interaction 

databases (BIND, BioGRID, CORUM, DIP, HPRD, IntAct, MINT, MPact, MPPI, 

OPHID, Reactome, HumanCyc, Cancer Cell Map, IMID and NCI/Nature pathway 

interaction database). Using a walk trap community algorithm and permutation 

approaches (with n=1000), we were able to extract clusters of proteins from the 

network (Details are available in the Supplemental Information). 
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5.3.8. Pathway analysis 

Significance of overlap between the modules and pathways from Panther, Kegg and 

MSigDB 28-30 was calculated with an hypergeometric test, P-values were corrected for 

multiple comparisons by calculating the false discovery rate using the Benjamini and 

Hochberg procedure 31. 

To reduce the redundancy present in pathway database annotation, we first 

combined pathways that contained the same SCNA-genes from the same melanoma 

cell lines, then we reviewed the pathway list to either remove redundancies or un-

merge unrelated pathways affected by similar genes. We also excluded KEGG 

“cancer” annotated pathways. 

5.4 Results 
5.4.1. CGH and SNP arrays are required to comprehensively document 

somatic copy-number alterations in metastatic melanoma cell lines 

We analyzed seven low-passage melanoma cell lines that were established from 

metastases (Table 1) together with matched controls from the same patients (see 

Methods). Karyotyping of the melanoma cell lines revealed extreme levels of 

aneuploidy. For example, LAU-Me280, the most extensively deleted line, had a per 

cell content of 34 to 42 chromosomes (median: 40), whereas LAU-Me275, one of the 

most amplified melanomas, harbored 68 to 81 chromosomes (median 73.5) (Figure 

1). Additionally, the presence of many unassigned chromosomal fragments (markers) 

made it difficult to determine the true level of aneuploidy. 

Melanoma Site BRAF mutation Number of chromosomes 
(karyotype) 

LAU-Me280.R.LN Lymph node G593M, L597R 34-42 
LAU-Me246.M1 Skin V600E 45-82 

LAU-T618A Skin 
wt but NRAS 

mutation (Q61R) 
55-71 

LAU-T50B Skin V600E 65-71 
LAU-T149D Visceral V600E 68-81 
LAU-Me275 Lymph node V600E 68-81 
LAU-Me235 Skin K601E 73-103 

Table 1 Melanoma cell lines 
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Figure 1 Karyotypes of two malignant melanomas  

Representative karyotype (Giemsa stain) for LAU-Me275, one of the most hyperploid melanoma (here 76 

chromosomes including 7 markers); and LAU-Me280, the most extensively deleted line (42 chromosomes 

including 5 markers). 

In initial CGH (Agilent 244k) experiments we observed that in LAU-Me275, and other 

highly hyperploid cell lines, the hybridization ratios between cancer cells and 

matched controls did not reflect the chromosome-wide aberrations observed in the 

karyotypes. For example tetraploid regions were measured as triploid or less by the 

CGH arrays (see Supplemental Fig. S1). We considered whether this was due to the 

normalization protocol and subsequent segmentation analysis. Using technical 

replicates of LAU-Me275 DNA, we tested three independent normalization schemes, 

two of which were specifically developed for cancer genome analysis (see Methods) 

and found that the methodology proposed by Chen and colleagues 18 was the most 

reproducible (Spearman correlation 0.96; Supplemental Fig. S2). We then partitioned 

the genome into regions reflecting copy number changes and assigned copy number 

using two independent classification methods (see Methods). Since neither of these 

classification methods gave entirely satisfactory results (see Supplemental Fig. S4 

and Supplemental Information), we developed a Gaussian Mixture Model (GMM) 

approach that was highly reproducible based on a technical replicate analysis 

(Spearman correlation 0.9). 
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The GMM method found only 42 regions in the LAU-Me275 genome that were 

amplified (CN≥4; Table 2A). This number was less than expected based on the 

karyotype analysis, which documented a high number of arm-level chromosome 

amplifications (Figure 1). Thus, while CGH-based methods are well adapted to 

document differences in copy number status between the genomes of normal cells 

derived from different individuals, our results clearly show that they are inadequate to 

deal with the large-scale rearrangements and amplifications typical of hyperploid 

cancer cells. The most likely reason is that the total DNA content of cancer cells is 

too different from that of normal cells to allow a robust experimental normalization. 

Given this limitation, we asked whether SNP arrays might be better suited to detect 

chromosome-wide changes in a highly amplified genome. 

We hybridized DNA from LAU-Me275 to Illumina 1M SNP arrays and analyzed the 

signals using the OverUnder algorithm 22, which uses minor allele frequencies in 

heterozygous loci to improve copy number estimation. These results correlated well 

(Spearman correlation 0.77) with a technical replicate analyzed on the Affymetrix 

SNP platform (see Supplemental Fig. S5C and S5D), and indicated that 18,251 

genes in the LAU-Me275 genome had a copy number of at least four (Table 2B). 

Within this group, 132 genes had undergone focal amplifications of at least 10-fold. 

These SNP-based results were more consistent with the karyotype observations. For 

example, CGH had predicted two copies of chromosome 7p (Chr7p) and three copies 

of Chr7q (Figure 2), while the SNP results indicated three and five copies, 

respectively (Figure 2 and Figure 3), which was more consistent with the cytogenetic 

data (Figure 1). 
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Therefore, based on our findings with LAU-Me275, we determined the SCNA in the 

six other melanoma cell lines using both CGH (Agilent 244k) and SNP (Illumina 1M) 

array platforms. Identification of genes within amplifications or deletions was 

determined as described in Methods, and the number of SCNA for each cell line is 

given in Table 2. In all cases CGH predicted more deletions than did SNP arrays, 

agreeing with our initial observations using LAU-Me275. Also, with the exception of 

the LAU-Me280 cell line, amplifications were better predicted by SNP arrays. This 

bias is evident in a graphical representation of the intersection between CGH and 

SNP predictions as presented in Supplemental Fig. S7. These results confirmed our 

conclusion that CGH is more suitable for detecting deletions while SNP arrays are 

better for identifying amplifications. 

CGH arrays LAU- 

Me280 

LAU- 

Me246 

LAU- 

T618A 
LAU- T50B 

LAU- 

T149D 

LAU- 

Me275 

LAU- 

Me235 

Unique gene 

count 

Deletion 3668 4281 986 3656 108 122 1059 10711 

Arm-level 

amplification 
222 0 549 99 998 42 0 1884 

Focal 

amplification 
0 0 0 26 379 0 4 409 

 

SNP arrays 
LAU- 

Me280 

LAU- 

Me246 

LAU- 

T618A 
LAU- T50B 

LAU- 

T149D 

LAU- 

Me275 

LAU- 

Me235 

Unique gene 

count 

Deletion 2294 3157 2 113 70 2 39 5544 

Arm-level 

amplification 
0 0 16584 1033 3477 16398 10384 19496 

Focal 

amplification 
213 0 978 438 894 1853 161 4055 

Table 2 Number of genes affected by SCNA in seven melanoma cell lines 

Number of genes affected by somatic deletions, arm-level amplifications (≥4 copies but < 1 copy 

above the chromosome arm baseline) and focal amplifications (≥4 copies and ≥ 1 copy above the 

chromosome arm baseline), as measured using SNP or CGH arrays. 

 

B 

A 



 

146 

 
Figure 2 Copy number analysis using CGH and SNP arrays 

A. and B. shows the analysis of LAU-Me275 on CGH and SNP arrays. C. and D. shows results for LAU-Me280. 

Probe/SNP are plotted as a function of their genomic position on the X axis. Y axis for CGH arrays corresponds 

to hybridization ratios. Y axis for SNP arrays corresponds to the predicted copy number. Colors indicate a copy 

number state (orange < 2 copies; gray = 2 copies; cyan = 3 copies; dark blue > 3 copies). Dark gray in the CGH 

panels indicates regions identified as diploid in the analysis, but where the karyotype analysis indicated copy 

neutral or deleted states, possibly due to cell heterogeneity. 
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5.4.2. Few SCNA-genes are recurrent in different melanoma cell 

lines 

A potential problem with SCNA studies performed in isolation is that they cannot 

assess the expression status of the genes contained within the altered genomic 

regions. Amplified genes are not necessarily highly expressed, and the exact 

boundaries of deletions may or may not encompass a gene of interest. We reasoned 

that the combination of precise copy number determination and gene expression 

measurement would allow us to highlight with much higher confidence those genes 

whose expression is affected by SCNA (SCNA-genes) in the melanoma cell lines. 

We therefore analyzed gene expression in each of the melanoma cell lines by RNA-

seq using the Roche/454 pyrosequencing method. Additionally, we performed RNA-

seq on a pool of epidermal melanocytes to determine a reference level of expression 

for each gene in normal melanocytic cells (see Methods).  

We first looked for genes within focal amplifications with at least two-fold over-

expression relative to the reference melanocytes (Supplemental Table S1). Only 

KIAA0090, a protein coding gene of unknown function not previously associated with 

cancer, was affected in three melanomas (Supplemental Table S2). A further 56 

genes were altered in two melanomas, but the only known cancer-related gene was 

MDM2, an oncogene previously demonstrated to be amplified in sarcoma, glioma, 

colorectal and other cancers including melanoma 5,32. In LAU-Me275, MDM2 was 

3.9-fold over-expressed relative to melanocytes and had a copy number greater than 

ten (as predicted by SNP array). By contrast, in LAU-T50B, MDM2 was predicted by 

SNP array to be diploid (CN=2), and by CGH to be duplicated (CN=3). This potential 

difference between these cell lines is intriguing because they were derived from 

metastases surgically removed from the same patient at a 12 year interval. We 

therefore determined the copy number status of the MDM2 gene in these two 

samples using fluorescent in situ hybridization (FISH). In LAU-Me275, the 

fluorescence signal indicated that at least 8 MDM2 copies were present at the locus 

on Chr12 in addition to a homogeneously staining region on Chr5 (Figure 3A and 

Figure 3B) which is in agreement with results from the SNP arrays. In LAU-T50B, 

FISH revealed a total of four MDM2 copies, two on Chr12 and two located on an 

unidentified chromosome (Figure 3C and Figure 2Figure 3D), which is higher than the 
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copy number estimated by CGH and SNP arrays. Re-investigation of the raw SNP 

data for LAU-T50B showed that there was indeed a small amplification signal at 

MDM2, but this had not been detected using our optimization parameters (see 

Supplemental Information). This highlights the challenge of determining optimal 

parameters that are usable on a genome-wide scale for all samples in a study. 

We next derived a list of genes within deletions detected by CGH that were 

expressed in melanocytes but not in the melanoma cell lines (Supplemental Table 

S1). We reasoned that such genes are likely to be enriched for melanocyte functions 

that have been lost during tumorigenesis. The vast majority of such genes (554) were 

private to a single melanoma sample; seventy genes were shared by two samples; 

and only ten genes were shared by three melanomas: ADAMTSL1, ARMC4, DLL1, 

HSD17B3, LOC441177, OSTCL, PARK2, PLXDC2, SLC24A2 and ULBP3 (see 

Supplemental Table S2).  

Altogether, we identified a total of 1,710 SCNA-genes affected by amplification or 

deletion (summarized in Supplemental Table S2; complete dataset in Supplemental 

Table S3). To determine the relevance to melanoma of this set of altered genes from 

our small sample set, we compared it to gene lists in two published studies that used 

larger melanoma collections 13,14. These two studies provided a list of genes 

recurrently affected by amplification or deletion in 76 (primary and metastatic) and 60 

(metastatic) melanoma samples, respectively. Only 196 of our 1,089 amplified genes 

(p-value <0.001, Figure 4A), and 17 of our 634 genes within deletions (p-value 

<0.007, Figure 4B) were present in the Stark and Hayward or Gast et al. datasets. 

Surprisingly, the number of genes common to the two published gene sets was also 

small (27 amplified genes and 2 genes within deletions; p-values <0.005), and 

demonstrates the difficulty to identify commonly affected genes relevant to tumor 

progression even within larger melanoma collections.  
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Figure 3 Determination of MDM2 copy number by FISH 

The MDM2 gene was assayed in two melanoma samples (LAU-Me275 and LAU-T50B) derived from the same 

patient. Panels A and C show a metaphase and B and D an interphase. MDM2 probe is in red; centromere-

specific probe is in green. FISH shows amplification for both LAU-Me275 (more than eight copies) and LAU-

T50B (four copies). Metaphase-FISH helps to identify homogeneously staining regions and Interphase-FISH to 

estimate the copy number. 
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Figure 4 Intersection between our dataset and two published datasets of SCNA-genes and derived 

pathways 

A. Intersection between amplified genes in published melanoma datasets (Stark and Hayward 2007; 

Gast et al., 2010) and our list of over-expressed genes within focal amplifications B. Intersection 

between genes within homozygous deletions from the Stark and Hayward and Gast et al. datasets and 

our list of non-expressed genes within deletions C. Intersection between pathways found significantly 

affected by SCNAs from our analysis of the three datasets. 
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5.4.3. Pathways significantly enriched in SCNA-genes are recurrent 

in melanoma 

As described above, we found that very few of the SCNA-genes were altered in more 

than one melanoma cell line, which is not unexpected given the small number of 

samples in our dataset. An idea popular in the current literature is that signaling 

pathways, rather than individual genes, are recurrently perturbed in cancer 33. To 

determine whether the SCNA-genes from different melanoma cell lines shared 

membership of one or more cellular pathways, we investigated whether the proteins 

encoded by the SCNA-genes were connected in known human protein interaction 

networks (see Methods). Out of a total of 1,563 proteins analyzed, 377 (24%) were 

connected within the network, and clustering of the proteins based on the topology of 

the sub-networks identified 14 protein networks, or ‘clusters’, containing at least five 

significantly connected members. For each cluster, we identified genes belonging to 

known signaling and metabolic pathways including nine clusters that significantly 

overlapped known pathways (FDR ≤ 0.05; listed in Supplemental Table S4). 

Following detailed manual annotation, the resulting pathways were ranked according 

to the number of contributing melanomas and to the number of SCNA-genes involved 

in the pathway. The pathways common to at least four melanoma samples are shown 

in Table 3 (for the complete list see Supplemental Table S4). Interestingly, the vast 

majority of the recurrent pathways we identified involve signal transduction and have 

been implicated in one or more cancer types. In addition, that we identified ten 

pathways common to at least five of the melanoma samples confirms the idea that 

protein network-guided analysis is a good method for detecting recurrently affected 

pathways in small datasets. 

In our search for genes recurrently affected by SCNA, we found only ~10% overlap 

between our list of SCNA-genes and those derived from studies with much larger 

sample sizes 13,14. To determine if this was also true at the level of pathways, we 

performed a protein network-guided analysis as described above on each of these 

datasets using the published gene lists (neither study originally presented this type of 

analysis). Detailed annotation and comparison of the results for each dataset is given 

in Supplemental Table S4. In contrast to what we had found at the gene level, all but 

three of our pathway modules were also present among those identified from one or 
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both of the published gene datasets (Figure 4C). Ten pathway modules 

(angiogenesis, EGF, ERBB, integrin signaling, long term potentiation, MAPK, natural 

killer cell mediated toxicity, PDGF, regulation of actin cytoskeleton and VEGF) were 

common to all three datasets, and the combined overlap with our pathway dataset 

was 66%. Thus, the majority of pathways defined by SCNA affected genes in our 

melanoma samples were recurrent in the three datasets, whereas the individual 

genes were not.  

An additional benefit of the protein network-guided approach is that it generates a list 

of genes affected by SCNA that contributed significantly to a given pathway 

(Supplemental Table S4). Although two-thirds of the pathways were common 

between our dataset and the published datasets, only two genes, NRAS and BRAF, 

were present in all three (Supplemental Table S5). Of the genes shared by two 

datasets, four were components of the angiogenesis pathway, including EPHA3 and 

FRS2. We noted also that several members of the WNT (WNT3A, 4, 5B, 7A, 9A, 11, 

16) or cadherin (CDH2, 4, 9, 12, 17, 18, 19) gene families were affected by SCNA in 

only one dataset, further reinforcing the idea that different genes can potentially alter 

the same pathway (WNT or cadherin) in different melanoma samples.
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Pathway #Melanomas Genes #genes 

G protein signaling 6 

ADORA1, ADRA2A, CHRM1, CHRM5, DRD2, GNAO1, GNB3, 

GNG4, HTR1F, OPRL1, PLCB2, RGS10, RGS11, RGS14, 

RGS19 

15 

WNT signaling (includes Apoptosis and Hedgehog 

signaling) 
6 

CDH19, CDH2, CDH4, DVL1, FRAT1, FZD8, PCDH17, PCDH9, 

SFRP1, WNT11, WNT16, WNT2B, WNT4, WNT5B 
14 

Cadherin signaling 6 
ACTG2, CDH19, CDH2, CDH4, FZD8, PCDH17, PCDH9, 

WNT11, WNT16, WNT2B, WNT4, WNT5B 
12 

Melanogenesis 6 
CAMK2A, CAMK2G, DVL1, FZD8, NRAS, WNT11, WNT16, 

WNT2B, WNT4, WNT5B 
10 

Angiogenesis 5 
BRAF, DVL1, EFNB2, EPHA3, EPHB2, FGF1, FRS2, NRAS, 

PIK3R3, PRKCZ, SFRP1, WNT2B, WNT5B 
13 

Axon guidance (migration and adhesion) 5 CDK5, EFNB2, EPHA3, EPHB2, EPHB6, FES, NRAS 7 

MAPK signaling 5 DUSP1, DUSP12, DUSP2, FGF1, FGF14, FGFR4, MAPK9 7 

TGF beta signaling 5 ACVRL1, AMHR2, FOXH1, LEFTY1, SMAD9, TGFB1, TLL2 7 

Alzheimer disease 5 CHRM1, CHRM5, PKN3, PRKCZ 4 

FGF signaling 5 FGF1, FGF14, FGFR4, FRS2 4 

Calcium signalling 4 
CAMK2A, CAMK2G, CHRM1, CHRM5, GNAO1, GRIN2C, 

PRKCZ, RGS10, RGS11, RGS14, RGS19 
11 

Huntington_disease (vesicle-mediated transport) 4 ACTG2, CLTB, GRIN2B, GRIN2C, GRIN3A, KALRN 6 

Neuroreceptor (Muscarinic, Metabotropic) 4 GRIN2B, GRIN2C, GRIN3A, KCNQ2, PKN3, PRKCZ 6 

Cell cycle (G1 progression) 4 CCNA1, CDC20, CDC26, CDKN2B, HDAC1 5 

Table 3 Pathways identified by network-guided analysis 
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5.5 Discussion 

Our goal to identify somatic copy number aberrations in metastatic melanoma cell 

lines revealed extreme levels of aneuploidy characteristic of this cancer type 34,35, 

and complicated the application of standard CGH array protocols 9-11. Nevertheless, 

using our GMM method we were able to demonstrate that although CGH arrays fail 

to identify all large-scale amplifications, they are able to detect deletions very 

efficiently, including genes having lost expression compared to melanocytes (Table 2 

and Supplemental Fig. S7). Conversely, SNP arrays, which measure hybridization 

intensities for both alleles at heterozygous loci, allow the consideration of an 

additional parameter (the so-called B-allele frequency) and greatly improve the 

measurement of DNA copies beyond the normal diploid complement (as 

implemented in the OverUnder algorithm, Attiyeh et al., 2009; see Supplemental Fig. 

S6). We did notice, however, that this algorithm systematically detected deletions 

located in sub-telomeric regions for both tumors and controls, which indicates a 

systematic bias and suggests that the algorithm is optimized to detect duplications 

and amplifications but not deletions. Therefore, it can be argued that CGH and SNP 

techniques should be combined to obtain a reliable assessment of all copy number 

states from deletion to high-level focal amplification. 

To enrich for genes that might be involved in the oncogenic process, we focused on 

two groups: focally amplified genes that were over-expressed relative to 

melanocytes; and deleted genes with no expression in the melanoma cell lines, but 

that were expressed in normal melanocytes. In the first group, MDM2 5,32 was the 

only cancer gene amplified and over-expressed in more than one melanoma sample. 

Comparison of genes amplified in our samples with published gene lists from two 

large melanoma studies (Stark and Hayward 2007; Gast et al., 2010) while revealing 

very little overlap (Figure 4) did identify BRAF, MDM2, and NRAS, genes known to 

be important in melanoma 5,32,36-42. In the second group, ten genes were deleted in 

three of the melanoma samples (Supplemental Table S2). These genes are located 

on Chr6q25, Chr6q27, Chr9 or Chr10p, consistent with previous observations that 

both arms of chromosomes 9 and 10 and Chr6q frequently undergo hemizygous 

deletion or copy neutral LOH in melanoma 14. Of the ten genes, the Parkinson's 

disease-associated gene PARK2 has been recently described as a tumor suppressor 
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gene in glioblastoma and other malignancies 43, while DLL1, HSD17B3 and ULBP 

have been reported to be associated with cancer, although not as tumor suppressors 
44-50. Experimental investigation will be required to determine if any of these ten 

genes performs an anti-oncogenic function in melanoma cells. The only deleted gene 

common to our study and those of Stark and Hayward and Gast et al. was PTEN, a 

tumor suppressor gene already known to be deleted in melanoma 7,51. 

In an alternative approach to detect recurrent events in these samples, we used a 

protein network-guided analysis 33,52-56 to identify pathways affected by SCNA-genes 

in the seven melanoma cell lines. In contrast to the low level of recurrence in these 

melanoma samples at the individual gene level, we found that six pathways were 

shared by five of the samples, and four pathways (G protein, WNT, cadherin 

signaling and melanogenesis) were common to six (Table 3). Several of these 

pathways are highly relevant to melanoma (e.g. MAPK, cadherin and FGF signaling) 

and have also emerged from cDNA expression studies 57, lending support to our 

results. G proteins transduce signals from G protein-coupled receptors (GPCRs), the 

largest family of membrane receptors involved in signal transduction, and whose 

over-expression in tumors can contribute to tumor progression, angiogenesis and 

metastasis 58. Alteration of G proteins could impact the activities of GPCRs key to 

melanocytic cells, such as MC1R (melanocortin receptor), chemokine (e.g. CXCR2), 

and endothelin receptors. 59. The recent identification of activating mutations in two G 

protein alpha subunits, GNAQ and GNA11,in a large proportion of uveal melanomas 
60,61, further underscores the relevance of this class of proteins to melanoma. 

Although annotated as distinct pathways, WNT, cadherin signaling and 

melanogenesis shared six SCNA-genes in common (FZD8 and several members of 

the WNT family). This may reflect interactions between these pathways, an interplay 

between the WNT and cadherin pathways is known to exist 62, or may be a 

consequence of poor pathway annotation. The cadherin pathway controls cell-

adhesion and plays a role in invasion and metastasis 63. WNT (and Hedgehog) 

control development and growth in the embryo; aberrant activation of their 

transcriptional components ultimately affects cell fate, proliferation, and migration 64-

66. The only common non-signaling pathway was melanogenesis. Melanoma 

develops from melanocytes, cells highly specialized in the synthesis of melanin 
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pigment, a process that requires a complex enzymatic machinery and unique 

organelle structures 67. Our pathway analysis predicted that melanoma SCNA affect 

melanogenesis. Loss of pigmentation in metastases compared to primary tumors is 

commonly observed in cutaneous melanoma, and although not completely 

understood, it can be brought about by different mechanisms, such as premature 

degradation of melanogenic proteins 68
 or downregulation of MITF transcription 

program 69. Our study suggests that SCNA may also contribute to these alterations. 

An unexpected pathway that emerged from our analysis, and perhaps merits further 

exploration, is neurotransmission. These results suggest an involvement of neuronal 

pathways in melanoma, possibly related to the neural crest origin of melanocytes. 

Lending support to this hypothesis, the metabotropic glutamate receptor GRM1 has 

recently been implicated in the development of spontaneous melanoma in a mouse 

model, and an autocrine glutamate/GRM1 loop has been described in human 

melanoma 70. 

Comparison of the pathways generated from SCNA-genes in our data and genes 

affected by copy number changes in two published datasets (Stark and Hayward 14 

and Gast et al. 13) revealed a high level of overlap, much higher than we expected 

based on the number of commonly affected genes (Figure 4). An explanation for this 

outcome is that different genes within the same pathway are affected in different 

datasets, and the commonalities are apparent only at the pathway level. The number 

of affected genes in a given pathway would be expected to increase with increasing 

sample size, and this is largely the case between our data and those of Stark and 

Hayward, but not in the Gast et al dataset (Supplemental Table S4). The reason for 

the low number of SCNA affected genes and corresponding pathways in the latter 

case may be the high stringency criteria employed in their analysis 13. 

The angiogenesis pathway was one of ten common to all three datasets. Its up-

regulation is a well-known hallmark of cancer 71, and it has long been proposed as a 

target for therapeutic treatment 72,73. Activation signals for angiogenesis include 

vascular endothelial growth factor (VEGF) and acidic fibroblast growth factor (FGF), 

and both were in our list of significantly affected pathways (Table 3) and within our 

analysis of the Stark and Hayward (VEGF and FGF ) and Gast et al (VEGF) datasets 

(Supplemental Table S4). Two genes in this pathway, EPHA3 and FRS2, were 



 

157 

designated SCNA-genes in both our dataset and in Stark and Hayward, and were 

annotated as amplified, in skin-derived tumors, in the Cancer Genome Project 

dataset 5,74.  

In our analysis EPHA3, an ephrin tyrosine kinase receptor, was both focally amplified 

and over-expressed only in LAU-Me275. However, EPHA3 was highly over-

expressed in LAU-T149D and LAU-Me246 (Supplemental Table S3) and amplified in 

LAU-T618A (CN=6.4), LAU-Me235 (CN=4) and LAU-T50B (CN=4.2). EPHA3 is 

recurrently mutated in adenocarcinoma 75,76 and has been implicated in renal 

carcinoma, glioblastoma, colorectal, breast and lung cancer 76-80. Mutations in 

EPHA3 have been detected in melanoma 81, and several ephrin-derived peptide 

antigens (from EPHA2, EPHA3 and EPHB6) can be recognized by cancer-specific 

cytotoxic T-cells 82-85. In addition, the feasibility of specific EPHA3 targeting has been 

reported 86. These observations indicate that EPHA3 might be a promising target for 

therapeutic treatment in melanoma and other cancers.  

FRS2, fibroblast growth factor receptor substrate 2, is an adaptor that acts 

downstream of a limited number of receptor tyrosine kinases, in particular FGF and 

neurotrophin receptors, RET and ALK, and plays a major role in tumorigenesis 87. 

Dey and coworkers 88 recently targeted the FGF receptors (FGFR) using tyrosine 

kinase inhibitors to decrease the activity of AKT and ERK kinases, inducing 

apoptosis in breast cancer cell lines. FGFR inhibition is highly relevant to melanoma, 

where autocrine stimulation via FGF2/FGFR1 constitutes a pivotal role in proliferation 

and survival 89. FRS2 has been suggested as a therapeutic target in cancer 90 and 

because of its downstream activities to FGFR and other receptors, it might offer new 

insights in melanoma treatment. In our data FRS2 was both focally amplified and 

over expressed in two melanoma samples (LAU-T149D and LAU-Me275) and 

amplified (CN=4) in two additional melanomas (LAU-T618A and LAU-Me235). 

Inspection of its amplification status in larger melanoma collections would be useful 

to confirm its potential role as a target of interest in melanoma.  

In conclusion, we have identified SCNA-genes and pathways potentially altered in 

our metastatic melanoma samples and two published datasets (Stark and Hayward 

2007; Gast et al., 2010) which should be investigated by screening larger tumor 

collections and in functional studies. Two SCNA-genes, EPHA3 and FRS2, emerged 
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from our analysis as potential therapeutic targets. These genes were replicated in our 

analysis of the two published melanoma collections, have been extensively studied in 

other cancer types, and thus might offer new insights in the treatment of malignant 

melanoma. 
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under accession number GSE23056.  
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6 Outlook 
 

In this outlook, I summarize the utility of the methods I developed in the context of 

rare variant analysis, then discuss the implications and the new challenges that arose 

from the obesity and melanoma studies. Finally, I will expose my personal views 

about the future of medical genetics. 

6.1 Utility of methods for CNV analysis 

6.1.1 Mining medical cohorts for rare CNVs 

In chapter 3, I presented novel methods to identify CNVs from Affymetrix 500k SNP 

arrays and to compare the predictions from different methods. Back in 2006, 

Affymetrix arrays were considered as a cutting-edge technology, today this platform 

is seen as obsolete due to its lack of coverage for dynamic genomic regions (i.e. 

repeat-rich regions, segmental duplications). To overcome this limitation, the 

Affymetrix generation (Affymetrix 6.0 SNP array) is a hybrid array that combines 

SNPs as well as probes covering known CNV regions. Nevertheless very large 

number of individuals (at least 100,000) have been genotyped on Affymetrix 500k 

arrays and extensive clinical phenotypic measurements have been recorded. These 

data have been extensively used in SNP-based genome-wide association studies but 

have definitely been not brought to their full potential for CNV analyses. Also recent 

development in CNV-detection algorithms were heavily focused on the newest chips. 

Thus generic algorithms, like GMM, are important to analyse the previous generation 

arrays. Analysis of several large genotyping cohorts (from these older arrays), could 

potentially be useful for rare variant discovery. There might be intermediate (>50Kb) 

or long (>100Kb) CNVs, with rare frequency but strong impact on clinical phenotypes 

that could be discovered and provide new insights about their contribution to disease. 

This can be exemplified with the obesity project where the identified rare variant was 

associated to the disease with a very high penetrance. 
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6.1.2 CNV-based genome-wide association studies 

My PhD work has been useful to catalogue CNVs in the Swiss general population. 

This CNV dataset has already proved valuable in several studies (obesity, 

narcolepsy) and will continue to play an important role both in medical studies and in 

bioinformatics analyses. Notably, the exomes from 500 CoLaus individuals have 

been sequenced at the Wellcome Trust Sanger Institute and my set of CNV 

predictions will be used to tune and validate algorithms predicting indels from 

sequencing data. Then association studies on cardiovascular traits will be performed 

using this comprehensive set of CNVs (as predicted from sequencing data). Since 

CNV-based GWA using the CoLaus microarray CNV predictions have been so far 

unsuccessful, association with a more comprehensive CNV set, as detected from 

sequencing, might provide some new insights in cardiovascular disease. 

I anticipate that more CNV-based association studies will be performed in the future. 

There was a trend to focus on SNPs so far, because SNP genotyping methods were 

more reliable than CNV detection methods; genotyping arrays were indeed designed 

for SNP analysis whereas there are some strong limitations (i.e. genome coverage, 

experimental noise) that challenge CNV detection. Now that we are revising our 

estimates about the fraction of CNVs to be discovered in the genome, I expect that 

microarray technology will evolve to include more markers that facilitate the 

identification of such CNVs. In addition, technologies like Nanostring seem very 

promising for CNV analysis at targeted loci in large number of samples, and we will 

probably witness many new CNV detection technologies being developed in the next 

few years. Similarly, new association methods (or strategies) could be developed and 

prove more powerful than the simple linear regression currently used in quantitative 

trait association studies. Statistical genetics is still a recent field, with less than 20 

years expertise in handling large-scale datasets. In contrast, methods developed 40 

years ago in econometrics only recently started to be used in Genetics. Thus it 

reasonable to assume that more statistical methods will be borrowed from other fields 

(like electrical engineering, climatology, computer vision etc…) and applied to 

statistical genetics. This is even more likely considering genetics is a multidisciplinary 

area which has attracted over the past few years a plethora of scientists from 

different quantitative fields (e.g. physicists, mathematicians, computer scientists…). 
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6.2 Perspectives in Obesity 

6.2.1 Follow-up studies 

Our work on morbid obesity has led to three major questions to follow-up: 1) The 

deletion encompasses 28 genes. Since the very same locus was found associated to 

schizophrenia and autism, some of these genes may, individually or more likely 

collectively, contribute to these different disorders. A follow up study on gene 

expression is in progress for deletion- and duplication-carriers and diploid controls. 

This study is expected to highlight the genes that differ in expression between the 

three groups and could result in new hypothesis to be tested with the inactivation or 

activation of certain gene in model organisms (providing orthologous genes can be 

identified). 2) Another obesity-associated gene (SH2B1) is located 800Kb 

downstream from the 16p11 deletion. SH2B1 encodes an adaptor protein involved in 

insulin and leptin signalling; and regulates the satiety effect. It will be interesting to 

study whether there is a cis-effect between SH2B1 and the 16p11 genes. 3) About 

110 individuals were found with a reciprocal duplication at 16p11. This duplication is 

significantly associated with leanness, which is very interesting as it suggests a 

mirror effect of the deletion. This aspect is also being investigated and we hope being 

able to publish these results very soon. 

6.2.2 Implication for medical genetics research 

Beyond the scope of obesity, this study represents a real breakthrough in medical 

genetics. It challenges the concept of genome-wide association studies; where 

modest effects are usually detected and where an association hit often does not 

imply causality. With this study, we showed that cohorts with extreme phenotypes 

can be enriched in rare variants with very high penetrance. To identify the missing 

heritability in complex disease, we proposed to identify rare variants in well-

documented cohorts with extreme phenotypes, then to perform a follow-up of 

candidate variants in the general population. This approach might be more powerful 

than current scans in the general population, where very large sample size are 

required to detect reliable association signals. 
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6.3 Perspectives in Melanoma 

6.3.1 Investigation of the pathways enriched in SCNAs 

Our study of melanoma has been useful to establish a map of pathways enriched in 

SCNA and gene expression data. But enrichment, even if statistically significant, 

does not imply the pathway is genuinely perturbed. As such, our list of pathways 

deserves further exploration notably with functional studies. Among this list of 

pathways, we found WNT, angiogenesis, MAPK, FGF signalling and many other 

examples, which were previously well-known in melanoma development and 

progression. This definitely lends support to our results.  

Among the pathways, for which the implication in melanoma is not yet fully 

understood, we identified neurotransmission and melanogenesis. The 

neurotransmission pathway may relate to the neural origin of melanocytes and could 

play a role in melanoma progression with the activation of other signalling pathways 

(via G-coupled receptors). Supporting this hypothesis, the glutamate receptor MC1R, 

has been shown to play a crucial role in the development of spontaneous melanoma 

in mice model 1.  

Melanogenesis is mediated by a network of complex metabolic pathways responsible 

for the secretion of melanin by melanocytes. Loss of pigmentation is common in 

metastatic melanoma compared to primary tumours. Melanogenesis products confer 

resistance to chemotherapy and radiotherapy in malignant melanomas 2,3. All but one 

of the seven melanoma samples were obtained following treatment (mostly 

immunotherapy and chemotherapy; only one patient was treated with radiotherapy), 

thus assuming the pigmentation pathway is activated, there might have been a 

selection on a melanoma subpopulation resistant to these different treatments. 

But only one sample is pigmented, so it not clear whether this pathway is indeed 

activated. Because accumulation of melanin is a complex and delicate process (the 

protein needs to be synthesized, post-processed, exported and accumulated), 

protein quantification analyses are needed to check whether melanin is indeed 

produced by the cell but cannot be exported. Additional experiments, such as 

spectrophotometry, could be used to determine the quantity of oxygen free radicals in 

the cells (these products are usually damaging for the cell, but were shown to interact 
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with chemotherapy agents in metastatic melanoma). If the pathway is not perturbed 

(or activated), then the SCNA-enrichment could be the consequence of an early 

event in the primary tumor (loss of function) or just be result of poor pathway 

annotation. However in the case this pathway is indeed active in these samples, the 

cell lines will be very valuable for drug design studies (i.e. to test new compounds 

inhibiting melanogenesis, this is a very active research topic in melanoma 2,4-6) and 

possibly to investigate the SCNA-affected genes (other than MITF) that could play a 

key role in the pathway destabilization. 

6.3.2 Further characterization of FRS2 and EPHA3 

From our results, the products of two genes (FRS2 and EPHA3) have emerged as 

potential therapeutic targets for melanoma. Both genes participate to the 

angiogenesis pathway and are frequently mutated in melanoma and other cancer 

types. We confirmed these genes were amplified in two large, external melanoma 

collections. Several inhibitors of angiogenesis already exists 7,8, but several 

angiogenesis factors can be expressed in melanoma and their expression vary 

greatly 9,10. Thus developing new inhibitors that could complement the action of 

existing ones may prove a more efficient way to treat patients. The feasibility of 

targeting these two genes has been previously demonstrated 11,12, but it may still be 

necessary to further characterizes these two genes in cancer model organisms. For 

example, the Ludwig Institute for Cancer Research (at the Brussels branch) recently 

established a mice melanoma model and performed gene expression profiling. 

Investigation of gene expression pattern under different conditions (i.e. treatment) in 

the model, might confirm the importance of FRS2 and EPHA3. 
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6.3.3 Incorporating results from exome sequencing 

The pathway map established from the SCNA study will be refined with the results 

from the exome sequencing of the same samples. We anticipate being able to 

strengthen connections within the detected pathways by the identification of 

additional genes and hope this will improve our understanding about how the 

different affected genes can potentially deregulate pathways. 

In parallel to the analysis of somatic mutations, the genome from the matched diploid 

control has been sequenced and we are investigating recurrent germline mutations 

with possible impact on melanoma predisposition. Already, we identified some 

interesting candidates that are mutated in six of the patients and that are involved in 

DNA repair pathways. Validation of these genes in a larger (control) population is 

being pursued and should clarify the relevance of these candidates. 

6.3.4 Implications of our methodology for cancer genomics 

More generally, our study has several implications in cancer genomics. First, we 

demonstrate that combining platforms and selecting genes with both copy number 

alterations and perturbed expression is a means to enrich for putative candidate 

genes. Second, we show that gene alterations tend to be private (between our 

samples and across external melanoma collections) which challenges the 

identification of novel and recurrent candidate cancer genes. To overcome this 

limitation, we show that commonalities can be found at the pathway level with a 

network-guided approach. We demonstrate this approach is applicable to both large 

and small dataset analysis. 

In the past, studies have focused on the identification of a single gene driving the 

cancer progression and very little has been done to identify groups of genes that 

collectively disrupt signalling pathways. Such network-guided approach could be 

applied to the analysis of primary tumours (or precursor cells) and could help to 

understand the pathways and their key regulators that contribute to tumorigenesis. 

For example, in melanoma research investigation of BRAF and NRAS mutations 

have been extensively done in nevi cells (which are considered as melanoma 

precursors). But to date, there is no report about comprehensive profiling at the gene 

and pathway level for these cells. In collaboration with dermatologists from the Bern 
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University hospital, a grant proposal has been submitted to carry such analyses in 

nevi cells. 

6.4 The future of human genetics 

The past few years have witnessed tremendous discoveries in the field of medical 

genetics. These discoveries were achieved with the advent of microarrays both CGH 

and SNP, and more recently with massively parallel sequencing. There are several 

examples with the Hapmap project 13,14, the first map of CNV in the general 

population 15, the sequencing of several genomes 16, and the myriad of genome-wide 

association studies 17-19. Much more is to come with the release of the 1000 

Genomes project data 20,21 and in the coming months of the 1000 Cancer Genomes 

project. These progresses have significantly expanded the list of loci associated to 

disease. For example, in 2007 the most important susceptibility gene for type 2 

diabetes was TCF7L2, in 2008 the FTO gene was found from GWAs 22. Since 2008, 

123 loci have been discovered 23, their respective contribution is not yet fully 

understood and no gene was reported for nine of these loci. What I see as the most 

important challenge in the next decade(s) is to make sense of these GWA 

associations. Finding novel associations is necessary as it helps to find new 

biomarkers either for diagnosis or population stratification purpose. But efforts should 

also be focused on understanding the biology and the real contribution of these 

associated loci. This will involve both functional studies in model organisms and a 

better characterization of the effect of genetic variants to the phenotype (for example, 

though investigation of gene expression). Longitudinal experiments in carriers of the 

risk/protective variant will also be interesting to perform. 

I anticipate that more and more sequencing analysis will be done in the coming 

years. Sequencing technologies are constantly evolving, each new generation 

producing even more and potentially longer reads, which facilitates the analysis. 

Targeted re-sequencing with sequence capture arrays or barcode technologies offers 

both the accuracy and high throughput needed for validation in large-scale project. A 

barrier to sequencing projects was (and is) the cost, but it is becoming more 

affordable every year. The Achon Genomics Xprize (http://genomics.xprize.org) is a 

$10 million prize, awarded to the first team that can sequence 100 human genomes 

within ten days; with 98% coverage; less than one error in every 100,000 bases; and 
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for less than $10,000 per genome sequenced. This prize will definitely stimulate 

innovation and help reducing running costs. It constitutes a fascinating challenge that 

will undoubtedly benefit to scientific community.  

Sequencing has already started to give new insights in population genetics and in 

medical genetics. It will definitely help with orphan diseases, where there are no 

candidate genes and with very rare diseases, where it is difficult to collect and 

analyse a large number of samples. 

In term of clinical diagnostics, it seems unlikely sequencing will be used as a routine 

because 1) the cost is still too large compared to microarray analysis and 2) the data 

interpretation is challenging. However, I think sequencing might be more commonly 

applied in clinical research to screen patients with atypical symptoms. 
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Annexe I: CoLaus Supplementary 
Information 

 

Supplementary methods 

Normalization scheme to account for experimental biases   

Principal Component Analysis applied to the CN status of SNPs across CoLaus 

individuals revealed four distinct clusters of individuals, which corresponds to the four 

genotyping centers. To correct this batch effect, we performed normalization within 

each center and used an increasing number of randomly chosen samples (with equal 

proportions of males and females).  

By running the normalization twice on the same individuals but with 2 independent 

reference panels; we were able to compute the distance between the same 

individuals (in the two normalization runs) and to compare it to the distance between 

random defined a score G as:  

 

where d1 is the Euclidean distance between CNV profiles of the same individual, but 

with respect to two different reference panels for normalization (Supplementary 

Figure 4). For comparison we also computed d2, the Euclidean distance between 

random pairs of individuals; here µ is the geometric mean and std is the standard 

deviation.    

This score G measures how well the distribution of distances between pairs of 

replicates separate from the distance distribution of unrelated pairs. It can be seen as 

an indicator of goodness for a given normalization and is useful to rank 

normalizations using different number of references. As the number of references 

increases, the distance between pairs of replicates should become smaller and the 

separation between replicates and unrelated samples should increase.  
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We tested normalizations with 30, 120, 200 and 280 references. As expected, the 

resulting G scores indicated that the normalization improves significantly with the 

number of references (Supplementary Figure 4). Using 280 references is significantly 

better than using only 30 references. Using even more references would not 

significantly improve the normalization; therefore we decided to use 280 references 

to keep compute times reasonable. 

Intersection between CNV detection methods  

Overlap-based approaches are useful to compare the CNV predictions between two 

distinct methods. But it becomes tedious when comparing results between more than 

two methods. A way to simplify this problem is to use a common number of elements 

to compare between the different methods. The full autosomal dataset was subjected 

to “LD based pruning”, as implemented in plink [1]. We used a sliding window of 100 

SNPs, sliding along in 20 SNP increments. SNPs with a variance inflation factor (VIF) 

greater than 1.2 were pruned from each window. This procedure identified around 

60’000 autosomal SNPs. Then, for each method, we created a binary SNP vector, 

indicating which SNPs where found variant or copy neutral. This facilitates the 

comparison and the number of SNPs found variant in one or more methods can 

easily be computed. We used such approach both for pair-wise comparison and for 

generating 4-way Venn diagrams. 

Evaluation of the Gaussian Mixture Model using simulated data 

To evaluate the true and false positive rates of our Gaussian Mixture Model, we 

generated an artificial dataset composed of 5600 individuals, in which the true copy 

number status was defined and different levels of Gaussian noise was added. This 

approach is similar to other studies ([2,3]). In more detail, our artificial dataset 

consists of a distribution of log2 ratios (n=5600), where a predefined number of 

individuals should reflect a deletion state (log2 ratio = -1); all remaining individuals are 

copy neutral thus log2 ratios = 0. We then added Gaussian noise to the true copy 

numbers and tested the ability of our model to correctly detect the underlying copy 

number state. Supplementary Figure 9 illustrates one test where half of the 

population is expected to have a deletion. 
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Supplementary figure 10 shows the performance of our model as a function of the 

number of individuals sharing the CNV. Each colored curve corresponds to a different 

level of noise in the data (from low : σ=0.1 to high : σ=0.6). This analysis was 

repeated 50 times for each point of the curves (mean and standard deviation are 

shown in the figure). The high TPR and very low FPR demonstrate the good 

performance of our model. 

Supplementary figures and tables 

 

Supplementary figure1: Merging SNPs into CNVs using principal 
component analysis   

Top plot shows a principal component analysis (PCA) on a local SNP window 
(chromosome3:74.5-76.5Mb) across CoLaus individual. The main components are 
on Y axis and adjacent SNPs are on X axis. The bottom plot shows in red regions 
obtained from simple merge and in blue, regions from the PCA merge. The Y axis 
represents CNV frequency in the CoLaus population (n≈5600)  
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 PCA merged Simple merge 
 CNPs CNVRs CNPs CNVRs 
GMM 2.4 9.86 0.02 0.38 
CBS 1.54 42.43 0.09 24.23 
CNAT.allelic 12.4 30.88 8.08 21.19 
CNAT.total 0.73 12.71 0.15 7.79 

Supplementary table1: genome coverage of CNVs identified by different 
methods 

CNV detection methods are shown as rows, the merging approach as columns. 
Distinction is made between CNPs (i.e. CNVs with population frequency above 1%) 
and CNVRs (i.e. CNVs with population frequency below 1% but seen for at least five 
individuals). The coverage is expressed as the % of the autosomes (there are no 
predictions for sex chromosomes). 

 

 

 GMM CBS CNAT.allelic CNAT.allelic 
0 -12.21 -10.26 -3.62 -10.42 

]0-25] 8.79 6.27 1.20 6.36 
]25-50] 7.53 4.75 0.81 4.12 
]50-75] 7.25 4.15 3.17 6.25 

]75-100] 9.48 13.75 7.03 11.43 

Supplementary table2: T statistic values for overlap between CNVs 
identified from CoLaus and published CNVs 

The T statistic is computed from the difference between observed overlap and 
expected counts normalized by the standard deviation of expected counts. Expected 
counts are inferred from the overlap between reshuffled data (n=1000) and published 
CNVs. T statistics greater than 2.58 are significant with α=1%. Positive (negative) T 
statistics indicates enrichment (depletion) with respect to the expected counts.  
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 GMM CBS CNAT.allelic CNAT.allelic 
0 -17.68 -12.67 0.31 -9.69 
]0-25] 12.14 9.78 -1.01 6.81 
]25-50] 12.81 8.45 1.06 8.59 
]50-75] 5.49 12.28 1.95 7.78 
]75-100] 15.14 6.13 0.34 7.18 

Supplementary table 3: T statistic values for overlap between CNVs 
identified from Affymetrix and Illumina data   

The T statistic is computed from the difference between observed overlap and 
expected counts normalized by the standard deviation of expected counts. Expected 
counts are inferred from the overlap between reshuffled data (n=1000) and CNVs 
identified on Illumina. T statistics greater than 2.58 are significant with α=1%. Positive 
(negative) T statistics indicates enrichment (depletion) with respect to the expected 
counts. 
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Supplementary figure 2: Overlap between CNPs/CNVRs and published 
CNVs/Illumina CNVs  

These figures are similar to figures two and three. Each plot title indicates the overlap 
analysis. Overlap is measured by the Jacquard coefficient, i.e. the ratio between the 
intersect and the union of two CNVs. Expected counts from reshuffled data (n=1000) 
are shown in gray (extending over one standard deviation). Estimated p-values are 
indicated for significant enrichment (red) or depletion (blue), with respect to these 
controls. Non significant p-values (alpha>1%) are shown in black.  
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Supplementary figure 3: Performance for predicting relatedness based on 
CNV profiles generated by different methods    

Each plot shows the Area Under the Curve (AUC) (Y axis) for predicting relatedness 
between individuals as a function of CNV frequency (X axis). CNV detection 
algorithms are indicated on top and merging procedure by colors. Predictions made 
with all CNV regions irrespective of their length are shown as straight lines and 
predictions using only CNV regions with length greater than 1kb are represented with 
dashed line (both solid and dash lines overlap each other). Curves were made with 
the mean from n=100 permutations, +/- one standard deviation around the mean is 
shown by the thickness of the square points. The analysis employed 162 pairs of 
individuals known to be related and 2000 pairs of unrelated individuals.  
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Supplementary figure 4: Improvement of the normalization as a function of 
the reference panel size 

In cyan are shown the distances (n=55) between the CNV profiles as predicted by 
two independent reference panel (having the same size) for a same individual. In red 
are the distances between unrelated individuals predicted by these two reference 
panels. Different size of reference panel have been tested (30,120,200 and 280). The 
T’ score is an estimate of the separation between pairs of identical individuals (same) 
and controls and is computed as:  
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Supplementary figure 5: CNV frequency on chromosome 1   

Each plot shows the CNV prediction from a CNV detection algorithm (title indicates 
the method name). Each cyan bars is a SNP on chromosome 1, the bar height 
represent the % of CoLaus individuals found as having this SNP as variant (deleted 
or duplicated). In red are regions defined by the PCA merge, the height shows the 
maximal CNV frequency found in this region. Only regions with CNV frequency 
greater than 0.1% are plotted. 
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Supplementary figure 6: Distribution of CBS segment mean ratios  

Distribution of all CBS segments mean log2 ratios, detected in the 5612 CoLaus 
individuals. Left panel shows a boxplot representation. Median is -0.007 (and mean -
0.0637), inter-quartile 0.114 and 25th and 75th percentiles are respectively -0.082 and 
0.032. Right panel shows an histogram representation, data have been clustered 
using a 3 components Gaussian Mixture Model (color indicates data points from a 
same cluster). 
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Supplementary figure 7: CNV calling using Gaussian Mixture Model 

Top panel, distribution of log2 ratios for all 5613 CoLaus individuals at a single SNP. 
Bottom panel, matrix of probabilities for CoLaus individuals to have the queried SNP 
in a deletion state (CN=1), copy neutral (CN=2), with one or additional copy (CN=3 

and CN=4). The CN dosage value can be computed as ∑ =

4

1
*

i ii CP  where Pi 

represents the probability at an individual j and a SNP k to be in the copy number 
state Ci.  
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Supplementary figure 8: Intersection between CNVs methods 

Intersection between the different CNV detection methods using the CNV status at 
60k autosomal and independent SNP (i.e. SNPs that are not in LD in the CEU 
population). The percentage of SNPs found variant in several methods is indicated in 
Supplementary Table 4. 

 

 CNPs CNVRs All CNVs 
% of SNPs found variant in at least 3 methods 2.3 23.5 27.21 
% of SNPs found variant in at least 2 methods 10 55.3 59.17 

Supplementary table 4: Percentage of SNPs found copy number variant by 
several methods 
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CNPS GMM CBS CNAT.allelic CNAT.total 
GMM 3226 (100.00%) 317 (8.00%) 366 (5.58%) 102 (3.06%) 
CBS  1055 (100.00%) 228 (5.03%) 138 (12.22%) 

CNAT.allelic   3705 (100.00%) 172 (4.59%) 
CNAT.total    212 (100.00%) 

     
CNVRs GMM CBS CNAT.allelic CNAT.total 
GMM 25355 (100.00%) 15720 (39.54%) 9118 (26.34%) 5666 (19.48%) 
CBS  30119 (100.00%) 11543 (31.24%) 7847 (24.78%) 

CNAT.allelic   18376 (100.00%) 7073 (34.16%) 
CNAT.total    9401 (100.00%) 

     
ALL CNVs GMM CBS CNAT.allelic CNAT.total 

GMM 28581 (100.00%) 19098 (46.97%) 12555 (32.95%) 7155 (23.05%) 
CBS  31174 (100.00%) 14274 (36.62%) 8632 (26.84%) 

CNAT.allelic   22081 (100.00%) 8521 (36.77%) 
CNAT.total    9613 (100.00%) 

Supplementary table 5: Pairwise comparison between CNV detection 
methods 

Pairwise comparison between the different detection methods using the CNV status 
at 60k autosomal and independent SNPs (i.e. SNPs that are not in LD in the CEU 
population). Intersection is reported as the number of SNPs found variant in both 
methods, the percentage, indicated between the parentheses, corresponds to the 
intersection divided by the union of SNPs found variant in any of the two methods. 
The number of variant SNPs in each method (independently of any other methods) is 
indicated as self-self comparison. 
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Supplementary Figure 9: Testing the Gaussian Mixture Model on simulated 
data 

A) Distribution of simulated log2 ratios (n=5600) with Gaussian noise (σ=0.2). Half of 
the individuals have an underlying log2 ratio = -1 (deletion) and the remaining log2 

ratio = 0 (copy neutral) B) Probabilities, as computed by our Gaussian Mixture Model, 
for each individual (Y axis) to belong to a given copy number state (X axis) C) 
Comparison between the true and predicted copy number state of each individual D) 
Contingency table containing the number of individuals correctly or incorrectly 
predicted 
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Supplementary Figure 10: Performance of the Gaussian Mixture Model  

Panels show respectively from top to bottom, the True Positive, False Discovery and 
False Positive rates, when predicting deletions (with predefined frequency, see X 
axis) in a population of n=5600 individuals. The different curves correspond to 
simulated data with a given Gaussian noise (see graph legend). Each point is the 
mean from 50 resamplings, error bars correspond to one standard deviation. 
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Annexe II: Obesity Supplementary 
Information 

 

Supplementary Figure S1 
Validation of 16p11.2 deletions by MLPA and determination of their modes of inheritance. MLPA 
was carried out using 9 probe pairs within and 2 lying outside the deletion (one to each side), as 
shown in Figure 1, together with 9 control (nominally copy number invariant) probe pairs. Panels 
show the relative magnitude of the normalised, integrated signal at each probe location in order of 
chromosomal location. Where DNA was available,  samples were analysed if they were identified 
from GWAS data as carrying a deletion at 16p11.2 (top) or if they were a first degree relative of a 
proband (bottom). Labels correspond to the case ID of the proband as shown in Table S2; f = father; 
m = mother; a-c = siblings. 
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Supplementary Figure S2 
Dependence of BMI on age in subjects having a deletion at 16p11.2. Data are shown for all 
individuals identified in this study as having a deletion at 16p11.2, for whom phenotypic 
information is available. Lines denote the age- and gender-corrected thresholds (solid/broken – 
male/female) for obesity (adults – BMI ≥ 30 kg.m-2, children ≥ 97th percentile) and morbid obesity 
(adults – BMI ≥ 40 kg.m-2, children Z-BMI ≥ 4).  Symbols are as follows: Square/circle – 
male/female; black/grey – ascertained/not ascertained for developmental delay; filled/open symbols 
– ascertained/not ascertained for obesity; grey diamonds – first-degree relative of a proband. 
Individuals from general population are shown as open grey circles or squares. 
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Supplementary Figure S3 
Dependence of BMI on age in subjects having a deletion at 16p11.2. Data are shown for all 
individuals identified in this study as having a deletion at 16p11.2, for whom phenotypic 
information is available. Lines denote the age- and gender-corrected thresholds (solid/broken – 
male/female) for obesity (adults – BMI ≥ 30 kg.m-2, children ≥ 97th percentile) and morbid obesity 
(adults – BMI ≥ 40 kg.m-2, children Z-BMI ≥ 4).  Symbols are as follows: Square/circle – 
male/female; black – all probands and relatives identified in this this study (see Figure S1); grey – 
subjects from other studies. 

0 10 20 30 40 50 60
10

20

30

40

50

60

70

80

B
M

I (
kg

/m
2 )

Age (years)
 

 



195 

Supplementary Figure S4 
Transcript levels for genes within and nearby 16p11.2 deletions. Expression data for adipose tissue 
from the SOS Sib Pair cohort were analysed for probes detecting transcripts for genes lying within 
the interval chr16:28.4–31.0Mb (see Supplementary Table S4 for details). Transcript levels in the 
two individuals carrying a deletion of 16p11.2 (black symbols) are plotted alongside those for their 
non-obese siblings (white). Also shown are box plots summarising the data for the other 157 obese 
subjects from this study,  indicating the 10th, 25th, 50th, 75th and 90th percentiles for each transcript. 
The positions of the the 16p11.2 deletion and the flanking segmental duplications relative to the 
transcripts are indicated by a solid line and grey bars at the left axis. 
Within the deleted region, there is a consistent reduction in expression in the subjects carrying a 
deletion, relative to both their siblings and to other obese subjects.  In contrast, although CNVs have 
been shown to have the potential to affect expression of neighbouring genes up to 0.5Mb 
distant31,32, no such clear and consistent differences in transcript levels are observed for the genes 
lying nearby, outside the region of the 16p11.2 deletion. 
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Supplementary Figure S5 
Graphical representation of the output of CNV discovery algorithms.  Copy number calls at SNPs 
within and surrounding the deleted region (black bar) and its flanking segmental duplications (grey 
bars) are shown as follows: blue – 1 copy; cyan – 2 copies (i.e. no aberration); yellow – 3 copies; 
red – 4 copies. (a) cnvHap output for the NFBC cohort, showing all individuals with at least 10 
aberrant probes within the deletion; (b) Gaussian Mixture Model output for the CoLaus cohort, 
showing all individuals with at least 1 aberrant probeset; this method has been validated by 
comparing test datasets with results from the CNAT33 and CBS34,35 algorithms. The different 
patterns for the two methods reflect the locations interrogated by the respective platforms, and also 
the respective sensitivities of the platforms and algorithms to copy number variation. 
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Supplementary Figure S6 
Validation of deletion calls from Illumina genotyping data. LogR ratio (LRR) data exported from 
Illumina BeadStudio was normalised with respect to the median and variance for each probe, and 
smoothed by averaging over a 9-point moving window.  Example data are shown for samples from 
the NFBC cohort that had normal copy number (green) and which carried a deletion (blue) or 
duplication (purple). 
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Supplementary Table S1 
Cognitive/behavioral symptoms observed in carriers of 16p11.2 deletions ascertained for developmental delay, and for affected relatives. ‘No 
data’ indicates that this phenotype was not assessed. NA – not applicable due to age of the patient. 
case ID Age Mental retardation Language Hyperphagia ASD Other Behavioral symptoms 

1 4.1 Borderline-mild Language delay yes no no data 

2 16.3 Executive function deficits Language deficit yes 
no, social 
cognition 

deficit 

Shyness, obsessive compulsive 
disorder 

3 5.3 No Echolalia  yes Stereotypes, hyperactivity 

4 31 no no data yes no data no data 

5 8 No Dysphasia fluctuating no Hyperactivity 

6 41 Mild Language delay severe no data no data 

7 10 Mild-modeate Language delay mild no data no data 

8 11 Mild, IQ 72-49 mild language delay yes no anxiety 

9 11.5 Mild Language delay no yes 
Oppositional, aggressivity, 

stereotypes 

10 1.4 NA NA no no no 

11 2.8 
Mild to moderate, global 

delay 
Language delay yes no data Hyperactivity 

12 53 Mild to moderate no data no no no data 

13 1 
Developmental age: 5 

months 
NA no NA NA 

14 4.4 Borderline, IQ 73 Language delay no no Hyperactivity 

15 4.8 Mild Language delay no yes no data 

16 6.9 Mild Language delay yes no Oppositional, aggressivity 

17 7.5 No, IQ 77-89 Language delay no no Anxiety, hyperactivity 

18 1.9 moderate Language delay no NA none / NA 

19 4.4 Moderate, IQ 57 
Severe language 

delay 
no yes Repetitive, restricted behavior 
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20 8 
Borderline, VIQ: 78, PIQ: 

96 
Language delay no no Attention deficit 

21 4 Moderate 
Severe language 

delay 
no no 

Hyperactivity, temper tantrums, 
oppositional 

22 8 no data no data no no Attention deficit, mutism 

63 15 Mild, VIQ: 67, PIQ: 61  yes no Hyperactivity, aggressivity, anxiety 

64 36 Borderline  yes no no data 
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Supplementary Table S2 
Obesity characteristics of carriers of 16p11.2 deletions. The basis for ascertainment and all 
available data for gender, age and BMI are shown for each subject identified as carrying a deletion 
at 16p11.2. Also shown are the methods used to identify the deletion and for its validation, and the 
inheritance of the deletion as inferred from the results of analysis of parental DNAs where these 
were available. 

CNV detection platform 
Ascertainment 

case 
ID 

gende
r 

location 
Age 

(years
) 

BMI inheritance 
detection validation 

1 M Estonia 4.1 15.8 de novo 
Illumina Human 
CNV370-Duo 

qPCR 

2 M Lausanne 16.3 38.6 
inherited 
(mother) 

aCGH Agilent 
244k 

none 

3 M Lille 5.3 16.4 
inherited 
(mother) 

aCGH Agilent 
44K 

qPCR 

4 F Lille 31 62.1 
probably 
inheriteda 

aCGH Agilent 
44K 

qPCR 

5 F Lille 8 22.9 de novo 
aCGH Agilent 

44K 
qPCR 

6 M Lille 41 61  
aCGH Agilent 

44K 
qPCR 

7 M Lille 10 20.8 
inherited 
(father) 

aCGH Agilent 
44K 

qPCR 

8 F Lille 11 20.3 
inherited 
(mother) 

aCGH Agilent 
44K 

qPCR 

9 M Lille 11.5 17.7  
aCGH Agilent 

44K 
qPCR 

10 M Lille 1.4 18.8 
inherited 
(father) 

aCGH Agilent 
44K 

qPCR 

11 F Lyon 2.8 16.6 
inherited 
(father) 

aCGH Agilent 
105K 

qPCR 

12 M Lyon 53 33.3  
aCGH Agilent 

105K 
qPCR 

13 F Nancy 1 14.9 de novo 
aCGH Agilent 

105K 
qPCR 

14 M Nancy 4.4 16.8 de novo 
aCGH Agilent 

105K 
qPCR 

15 M Nancy 4.8 20.0 
inherited 
(mother) 

aCGH Agilent 
105K 

qPCR 

16 M Nantes 6.9 24.1 
inherited 
(mother) 

aCGH Agilent 
44K 

FISH 

17 M Nantes 7.5 14.6 
inherited 
(mother) 

aCGH Agilent 
44K 

FISH 

18 M Nantes 1.9 15.0 
inherited 
(mother) 

aCGH Agilent 
44K 

FISH 

Developmenta
l Delay 

19 M Paris 4.4 16.0 de novo FISH none 
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20 F Rouen 8 15.4  QMPSF FISH 

21 M Rouen 4 17.3 de novo QMPSF FISH 

22 F Rouen 8 15.7 
inherited 
(mother) 

QMPSF FISH 

23 M Lille 6 31.4  qPCR 
aCGH Agilent 

44K 

24 M Lille 10.3 34.8  qPCR 
aCGH Agilent 

44K 

25 F Lille 12 31.9  qPCR 
aCGH Agilent 

44K 

26 M Lille 14.5 40.2  qPCR 
aCGH Agilent 

44K 

27 F Lille 13.3 34.2  qPCR 
aCGH Agilent 

44K 

28 M Lille 13   qPCR 
aCGH Agilent 

44K 

29 M Lille 6 25.0  qPCR 
aCGH Agilent 

44K 

30 F Nîmes 12.3 29.0  qPCR 
aCGH Agilent 

44K 

Obesity & 
Developmenta

l Delay 

31 M London 7.5 29.2 
inherited 
(father) 

aCGH Agilent 
185K 

none 

32 M Estonia 23 36  
Illumina Human 
CNV370-Duo 

qPCR 

33 F Finland 31 33.4  
Illumina Human 
CNV370-Duo 

multiple 
algorithms 

34 F Finland 31 45.7  
Illumina Human 
CNV370-Duo 

multiple 
algorithms 

General 
Population 

35 M Finland 31 19.2  
Illumina Human 
CNV370-Duo 

multiple 
algorithms 

36 F Lille 28 48.9  
Illumina Human 
CNV370-Duo 

MLPA 

37 M Lille 33 71.8 
inherited 
(mother) 

Illumina Human 
CNV370-Duo 

MLPA 

38 F Lille 41 51.8  
Illumina Human 
CNV370-Duo 

MLPA 
Adult Obesity 

39 F Lille 36 57.9  
Illumina Human 
CNV370-Duo 

MLPA 

40 M Lille 16 36.0 
inherited 
(mother) 

Illumina Human 
CNV370-Duo 

MLPA 

41 F Lille 7 24.2 de novo 
Illumina Human 
CNV370-Duo 

MLPA 

42 F Lille 6 29.2 de novo 
Illumina Human 
CNV370-Duo 

MLPA 

43 M Lille 11 25.1 
inherited 
(mother) 

Illumina Human 
CNV370-Duo 

MLPA 

Childhood 
Obesity 

44 F Cambridge 15 43.9  Affymetrix 6.0 MLPA 
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45 M Cambridge 13 57.0  Affymetrix 6.0 MLPA 

46 F Cambridge 15 45.8  Affymetrix 6.0 MLPA 

47 F Lille 46 49.6  
Illumina Human 

1M-Duo 
MLPA Obesity 

Bariatric 
Surgery 48 F Lille 59 71.9  

Illumina Human 
1M-Duo 

MLPA 

49 F Gothenburg 36 51.9 de novo 
Illumina Human 

610K-Quad 
MLPA Obesity 

Discordant 
Siblings 50 F Gothenburg 35 57.4 de novo 

Illumina Human 
610K-Quad 

MLPA 

51 F Lausanne 36 73.4 Mother of 2 
aCGH Agilent 

244K 
none 

52 F Lille   Mother of 3 MLPA none 

53 M Lille 35 59 
Brother of 

4a 
aCGH Agilent 

44K 
qPCR 

54 M Lille   Father of 7 qPCR none 

55 F Lille 42 34.7 Mother of 8 
aCGH Agilent 

44K 
qPCR 

56 F Lille 8.5 20.8 Sister of 8 
aCGH Agilent 

44K 
qPCR 

57 M Lille   Father of 10 MLPA none 

58 M Lyon 37 31.1 Father of 11 
qPCR, 3 primer 

pairs 
none 

59 F Nancy 28 30.1 
Mother of 

15 
qPCR none 

60 F Nantes 32 32.8 
Mother of 

16 
FISH none 

61 F Nantes 34 31.6 
Mother of 

17 
FISH none 

62 F Nantes   
Mother of 

18 
FISH none 

63 M Rouen 15 32.7 
Brother of 

22 
QMPSF FISH 

64 F Rouen 36 36 
Mother of 

22 
QMPSF FISH 

65 M London   Father of 31 
aCGH Agilent 

244K 
MLPA 

66 F Lille   
Mother of 

37 
MLPA none 

67 F Lille   
Mother of 

40 
MLPA none 

Proband 
Relative 

68 F Lille   
Mother of 

43 
MLPA none 
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aThe proband’s brother has the deletion, but both parents are deceased so inheritance cannot be 
confirmed. One instance has been reported4 of presumed germ-line mosaicism in which a deletion 
was found in two siblings but neither parent. 

Supplementary Table S3 
Obesity phenotype of carriers of 16p11.2 deletions from other publications, as included in Figure 2. 
 

Publication Patient ID gender Age (years) BMI 

Case 1 M 44.0 28.7 

Case 2 M 17.2 40.1 

Case 3 F 8.2 26.6 

Case 6 F 7.0 16.8 

Case 8 F 11.0 20.1 

Case 10 F 8.0 14.7 

Case 11 M 4.0 14.6 

Bijlsma et al.11 

Case 13 M 4.8 16.7 

Proband 2 M 13.0 42.5 

Proband 3 M 4.5 16.7 

Patient 3b M 3.5 14.6 
Fernandez et al.14 

Patient 3c F 35.5 34.7 

Twin1 M 28.0 31.3 Ghebranious et 
al.13 Twin2 M 28.0 34.0 

CHOP1 F 3.0 16.8 

CHOP4 M 14.8 23.5 

03C18520 M 23.0 31.4 
McCarthy et al.12 

AU041905 M 8.0 15.9 

Shimojima et al.15 - M 3.2 16.5 

Pt1 M 6.5 16.3 

Pt3 M 1.4 16.3 

Pt4 M 9.2 31.8 

Pt5 M 9.2 32.0 

Aut1 F 5.2 16.0 

Weiss et al.10 

Aut2 M 10.5 29.9 
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Supplementary Table S4 
Details of probes analysed in the course of expression analysis (Supplementary Figure S4), listing 
the Affymetrix probe identification code, the gene whose transcript is listed as being detected by the 
probe, and the chromosomal coordinate (build hg18) for the start of that gene. 
 
Probe ID Gene Coordinate  Probe ID Gene Coordinate 
209275_s_at CLN3 28396101  242414_at QPRT 29582101 
210859_x_at CLN3 28396101  1559584_a_at C16orf54 29661285 
220023_at AC138894.3 28413494  214142_at ZG16 29697091 
1552995_at IL27 28418184  202183_s_at KIF22 29709542 
209230_s_at NUPR1 28456107  216969_s_at KIF22 29709542 
221822_at CCDC101 28472748  207824_s_at MAZ 29725356 
48117_at CCDC101 28472748  212064_x_at MAZ 29725356 
207122_x_at SULT1A2 28510765  228798_x_at AC009133.1 29729246 
211385_x_at SULT1A1 28524404  218300_at C16orf53 29734786 
238995_at SULT1A1 28524404  227192_at C16orf53 29734786 
217314_at AC145285.2 28618998  202180_s_at MVP 29739230 
200647_x_at EIF3S8 28630283  201253_s_at CDIPT 29777179 
210949_s_at EIF3S8 28630283  240537_s_at AC120114.2 29782656 
215230_x_at EIF3S8 28630283  218720_x_at SEZ6L2 29789981 
201806_s_at ATXN2L 28741821  223458_at SEZ6L2 29789981 
207798_s_at ATXN2L 28741821  233337_s_at SEZ6L2 29789981 
201113_at TUFM 28761233  238406_x_at SEZ6L2 29789981 
238190_at TUFM 28761233  1553997_a_at ASPHD1 29819201 
209322_s_at SH2B1 28782579  214993_at ASPHD1 29819201 
40149_at SH2B1 28782579  221889_at KCTD13 29825158 
205444_at ATP2A1 28797305  45653_at KCTD13 29825158 
219057_at RABEP2 28823244  238142_at KCTD13 29825158 
74694_s_at RABEP2 28823244  224981_at TMEM219 29880852 
77508_r_at RABEP2 28823244  204877_s_at TAOK2 29892723 
206398_s_at CD19 28850761  204878_s_at TAOK2 29892723 
212808_at NFATC2IP 28869814  204986_s_at TAOK2 29892723 
212809_at NFATC2IP 28869814  204504_s_at HIRIP3 29911812 
217526_at NFATC2IP 28869814  227286_at INO80E 29914532 
217527_s_at NFATC2IP 28869814  205744_at DOC2A 29924336 
229235_at NFATC2IP 28869814  1557162_at C16orf92 29942156 
223173_at SPNS1 28893597  227781_x_at FAM57B 29943249 
209881_s_at LAT 28903648  200966_x_at ALDOA 29971945 
211005_at LAT 28903648  214687_x_at ALDOA 29971945 
216902_s_at AC009093.1 28993664  208932_at PPP4C 29994812 
216908_x_at AC009093.1 28993664  207684_at TBX6 30004583 
243124_at AC009093.1 28993664  215122_at TBX6 30004583 
221184_at AC009093.2 29167674  223179_at YPEL3 30011136 
241644_at BOLA2 29365833  232077_s_at YPEL3 30011136 
215299_x_at SULT1A4 29374628  219722_s_at GDPD3 30023632 
1558044_s_at AC009086.2 29471943  212046_x_at MAPK3 30032927 
1558534_at AC009086.2 29471943  209083_at CORO1A 30102393 
237464_at AC009086.2 29471943  209836_x_at BOLA2B 30111740 
1568964_x_at SPN 29581801  203615_x_at SULT1A3 30113244 
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206056_x_at SPN 29581801  209607_x_at SULT1A3 30113244 
206057_x_at SPN 29581801  210580_x_at SULT1A3 30113244 
216981_x_at SPN 29581801  218317_x_at SULT1A3 30113244 
204044_at QPRT 29582101  222094_at SULT1A3 30113244 
       
233334_x_at SULT1A3 30113244  235950_at ZNF688 30488529 
211996_s_at AC106782.7 30141697  213525_at AC002310.1 30491072 
214035_x_at AC106782.7 30141697  1554769_at ZNF785 30497795 
214870_x_at AC106782.7 30141697  1554770_x_at ZNF785 30497795 
215920_s_at AC106782.7 30141697  242272_at ZNF785 30497795 
215921_at AC106782.7 30141697  227294_at ZNF689 30521380 
221501_x_at AC106782.7 30141697  227445_at ZNF689 30521380 
238449_at AC106782.7 30141697  1559397_s_at PRR14 30569724 
1557987_at AC106782.7 30141697  218714_at PRR14 30569724 
215123_at AC106782.7 30141697  45687_at PRR14 30569724 
215002_at AC106782.7 30141697  218255_s_at FBRS 30577790 
235060_at AC106782.7 30141697  242217_s_at FBRS 30577790 
235167_at AC106782.7 30141697  238771_at FBRS 30577790 
238341_at AC106782.7 30141697  1552630_a_at SRCAP 30617031 
242114_at AC106782.7 30141697  1569138_a_at SRCAP 30617031 
231989_s_at AC106782.4 30186315  212275_s_at SRCAP 30617031 
244766_at AC106782.4 30186315  213667_at SRCAP 30617031 
210396_s_at AC106782.8 30204010  215053_at SRCAP 30617031 
202257_s_at CD2BP2 30269588  38766_at SRCAP 30617031 
202256_at CD2BP2 30269588  203709_at PHKG2 30667092 
220947_s_at TBC1D10B 30275923  231300_at C16orf93 30676254 
205163_at MYLPF 30293613  206845_s_at RNF40 30681100 
227552_at 37135 30296955  239801_at RNF40 30681100 
227470_at ZNF48 30313934  1556368_at RNF40 30681100 
219781_s_at ZNF771 30326236  1556369_a_at RNF40 30681100 
218069_at DCTPP1 30342520  213196_at ZNF629 30697271 
200961_at SEPHS2 30362453  219072_at BCL7C 30752874 
1554240_a_at ITGAL 30391484  206813_at CTF1 30811875 
213475_s_at ITGAL 30391484  1553586_at NCRNA00095 30841418 
218916_at ZNF768 30442826  228277_at FBXL19 30841893 
206180_x_at ZNF747 30449189  221864_at ORAI3 30867888 
228856_at ZNF747 30449189  213202_at SETD1A 30876116 
238606_at ZNF747 30449189  222817_at HSD3B7 30904020 
239774_at ZNF747 30449189  230691_at STX1B 30908078 
57516_at ZNF764 30472586  203530_s_at STX4 30951820 
222120_at ZNF764 30472586  229395_at STX4 30951820 
213527_s_at ZNF688 30488529  219047_s_at ZNF668 30979672 
213529_at ZNF688 30488529  204876_at ZNF646 30993265 
235951_s_at ZNF688 30488529  214226_at AC135050.2 31002259 
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Supplementary Table S5 
Details of genes lying within the deleted region at 16p11.2. Gene name, coordinates and strand of 
protein coding region are according to genome build hg18. Protein function descriptions are based 
on GeneCards entries (http://www.genecards.org/) or from the indicated references. Change in 
expression is given as the mean transcript level (all probes) in the 2 deletion carriers relative to 
obese (normal/lean) subjects (data as in Supplementary Figure S4). Possible functional relevance to 
obesity (bold type) or developmental delay/ cognitive deficit (italics) is as indicated. The first three 
pairs of genes lie within the segmental duplications. 

Gene 
name 

CDS 
start 

CDS end 
Stran

d 
Change 
in Exprn 

Protein function Refs 

BOLA2 
BOLA2B 

2936583
3 

3011179
6 

2937378
6 

3011261
5 

- 
- 

0.6 (0.8) Possibly involved in cell proliferation or 
cell-cycle regulation 

 

GIYD1 
GIYD2 

2937337
6 

3011290
6 

2937704
1 

3011628
8 

+ 
+ 

- GIY-YIG domain containing  

SULT1A
4 
SULT1A
3 

2937390
2 

3011955
0 

2938380
1 

3012274
2 

+ 
+ 

1.0 (1.5) 

Induced in response to fasting or as a 
result of a defect in leptin signalling 
Catalyzes the sulfate conjugation of 
phenolic monoamine neurotransmitters 

36 
 
 

SPN 
2958255

0 
2958375

3 
+ 1.1 (1.1) Sialophorin, CD43. Activator of JNK1 

and MAPK3 signalling 
37-
39 

QPRT 
2959801

9 
2961623

3 
+ 1.2 (1.3) 

Catabolism of quinolinate, a neural 
excitotoxin and NMDA receptor agonist 

40 

C16orf54 
2966309

8 
2966377

3 
- 0.5 (0.8)   

MAZ 
2972552

3 
2972856

4 
+ 0.7 (0.8) 

Interacts with SP1 in regulating 
transcription of serotonin receptor gene 
HTR1A 

41 

PRRT2 
2973187

6 
2973346

0 
+  Proline-rich transmembrane protein  

C16orf53 
2973534

7 
2973857

6 
+ 0.8 (0.8)   

MVP 
2974937

1 
2976681

1 
+ 0.5 (0.8) Regulates cytoplasmic localisation of 

PTEN 
42 

CDIPT 
2977801

0 
2978167

9 
- 0.4 (0.5) Phosphatidylinositol synthesis  

SEZ6L2 
2979052

0 
2981784

1 
- 0.9 (0.9) 

Seizure-related. May contribute to 
specialized ER function in neurons 

 

ASPHD1 
2981979

3 
2982471

9 
+ 1.0 (1.1) 

Aspartate beta-hydroxylase domain 
containing 

 

KCTD13 
2982569

3 
2984485

5 
- 0.6 (0.6) 

Similar to TNFAIP1, a mediator of 
insulin resistance in rodent obesity 
models 

 

TMEM21
9 

2988196
5 

2989036
7 

+ 0.6 (0.7) Transmembrane protein  
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TAOK2 
2989659

4 
2990680

2 
+ 0.8 (0.8) 

Activates JNK1 and MAPK3 pathways 
via the upstream MKK3 and MKK6 
kinases 

 

HIRIP3 
2991202

8 
2991442

7 
- 0.6 (0.5) 

Possibly functions in some aspects of 
chromatin and histone metabolism 

 

INO80E 
2991513

2 
2992426

4 
+ 0.5 (0.5) INO80 complex subunit E  

DOC2A 
2992500

7 
2992904

4 
- 1.0 (1.0) 

Possibly involved in Ca2+-dependent 
neurotransmitter release 

 

C16orf92 
2994217

6 
2994304

9 
+ 1.1 (1.1)   

FAM57B 
2994400

4 
2994934

9 
- 0.9 (0.8)   

ALDOA 
2998607

6 
2998903

4 
+ 0.5 (0.6) Fructose-bisphosphate aldolase A  

PPP4C 
2999519

9 
3000388

4 
+ 0.7 (0.8) Regulates JNK1 signalling  

TBX6 
3000504

6 
3001001

5 
- 1.0 (1.0) 

Transcription factor involved in regulation 
of early developmental processes 

 

YPEL3 
3001153

1 
3001419

0 
- 0.6 (0.6) 

Possibly involved in proliferation and 
apoptosis in myeloid precursor cells 

 

GDPD3 
3002369

3 
3003230

0 
- 0.8 (0.9) Glycerophosphodiesterase domain  

MAPK3 
3003565

8 
3004203

1 
- 0.7 (0.7) ERK1. Multiple roles in proliferation 

and differentiation of preadipocytes 
43 

CORO1A 
3010403

1 
3010778

6 
+ 0.3 (0.5) Coronin. Actin binding protein  
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Annexe III: Melanoma Supplementary 
Information 

 
 

Supplementary Methods 

CNV analysis from CGH arrays 
Hybridization signals were extracted using the Feature Extraction software (v.9.5.3.1) and 

normalized using three independent methods: 1) the local weighted polynomial regression 

(Loess (Smyth and Speed 2003)), widely used for the analysis of diploid genomes; 2)  the 

PopLowess method proposed by Staaf et al (Staaf et al. 2007), where normalization is applied 

to population of probes that have been clustered in a deletion, copy neutral or duplication bin; 

and 3) the more elaborated framework from Chen et al (Chen et al. 2008), which combines 

several approaches to calibrate channels from all arrays and  to centralize the copy number 

ratios. 

After normalization, we segmented the log2 ratios using Circular Binary Segmentation 

(Olshen et al. 2004; Venkatraman and Olshen 2007) (with parameters undo.splits=”sdundo”, 

undo.SD=2, nperm=10000 and alpha=0.01) and attributed a discrete copy number to 

segments using three independent methods:  

1) Scoring-based approach.  

We computed a score S defined as : 

)(

)(

Rmad

Rmedianr
S

−=
  

where R is the log2 ratio for a chromosome, r the median log2 ratio for a CBS segment, and 

mad the median absolute deviation, a robust estimator of dispersion around the median. This 

score reflects how significant a segment is compared to the chromosome baseline, segments 

with S <-4 were classified as CN=0; S <-2 as CN=1; S >2 as CN=3 and S >4 as CN=4. 

2) The MergeLevels method from Willenbrock and Fridlyand (Willenbrock and Fridlyand 

2005). This procedure is used to effectively remerge similar segments and to produces a new 

segment level that is used for classification into deletion and duplication events. This 

procedure has been used in several CNV detection frameworks (Diaz-Uriarte and Rueda 

2007; Budinska et al. 2009). 
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3) Classification based on Gaussian Mixture Model (GMM).  

GMM fit Gaussian Model on the log2 ratios from CBS segments to identify Gaussian 

components in the distribution (Supplemental Fig. S3). Several models (with different 

numbers of components) are fitted using an expectation maximization algorithm (Dempster et 

al. 1977), only the model that minimizes the Bayesian Information Criteria (Schwarz 1978) is 

kept for subsequent segment clustering. The cluster with the median log2 ratio the closest to 

zero is assumed to reflect copy neutral events (CN=2). The right-hand side cluster (with 

positive ratios) is assumed to reflect duplication events (CN=3), any additional clusters with 

higher ratios are classified as amplification events (CN≥4).  

An interesting property of the GMM is its ability to detect copy neutral events due to cell 

heterogeneity. We initially thought the GMM clusters with negative ratios would only reflect 

deletion events. In fact, karyotype analysis revealed that the component left of the diploid 

state was reflecting mostly diploid events and few deletions. For example, in LAU-Me275, 

Chr4q and Chr10q both had mean log2 ratios close to -0.8 (see Fig. 2) and were diploid in 12 

and 13 karyotype spreads, respectively (out of 19 spreads), duplicated in 6 and 5 spreads and 

deleted in one. By contrast, in LAU-Me280, Chr13q had a mean log2 ratio close to -0.5, was 

deleted in 10 out of 15 karyotype spreads and its corresponding GMM component was not the 

adjacent neighbor of the diploid component. This demonstrates that setting thresholds on log 

ratios is not appropriate and that the ratios should be modeled within a sample and not across 

samples. In this case, statistical decomposition of the data (e.g. using GMM) is helpful to 

distinguish between genuine copy number events and loci that are mostly diploid in a cell 

population but can undergo sporadic copy number events. Based on this observation, we 

assigned the cluster left of the diploid component as copy neutral, and any cluster with a more 

negative ratio was classified as a deletion event (CN<2). 
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Transcriptome analysis 
cDNA preparation 

mRNA isolation and cDNA preparation were performed following the protocol used by 

Bainbridge et al (Bainbridge et al. 2006), with some modifications. Specifically, mRNA was 

purified from 300-500 µg of total RNA from each sample using the µMACS mRNA Isolation 

Kit (Miltenyi Biotec, Bergisch Gladbach, Germany), inclusive of the optional DNase I 

treatment (2 U of DNase I, RNase free, Roche, Mannheim, Germany) during the purification. 

The quality and amount of purified mRNA were determined using a Bioanalyzer 2100 (RNA 

Nano assay, Agilent Technologies, Basel, Switzerland). cDNA was prepared from mRNA (2-

5µg), using the SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen Life 

Technologies, Carlsbad, CA), and quantified with Quant-iT PicoGreen (Invitrogen). The 

resulting 3-5 µg of cDNA were used for Roche 454 library preparation, according to the 

manufactures’ procedures. RNA preparations from two normal melanocytecell lines were 

pooled together and purified as a single sample. 

 

Sequence analysis  

Sequences from the Refseq, GeneBank RNA and ESTs databases, as well as 454 reads 

obtained from the melanoma and melanocyte cell line cDNAs were aligned to the the 

GRCh37 assembly of the human genome using SIBsim4, a modified version of sim4 (Florea 

et al. 1998). For sequences that matched to multiple locations, only the best alignment was 

kept. Finally Refseq mRNAs were used to annotate these unique transcripts and to compute a 

sequence tag count per transcript and per sample analyzed. 

Protein network-guided analysis 
We mapped SCNA onto our non-redundant human protein interaction network and identified 

connected components using the RBGL package (Gentleman et al. 2004). Putative functional 

clusters within these networks were calculated using the walk trap community algorithm from 

the igraph package (Pons and Latapy 2005; Csárdi and Nepusz 2006). For community 

detection a random walk path length of 3 was used and functional clusters were extracted 

where the modularity was maximal. Clusters with less than 5 nodes were filtered out and not 

used for further analysis. To test the significance of the clustering, a permutation test was 

performed by re-calculating the clustering of 1000 random networks generated from the 

original subnetwork. The resulting random networks had randomized edges but the same 

degree distribution as the original subnetwork.  
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Figure S1. CGH hybridization ratio in a tetraploid region in LAU-Me275. 

Each plot shows the hybridization log2 ratio at each CGH probe (in gray) obtained using three 

normalization methods. Ridge refers to the framework from Chen et al. Red segments were obtained 

using Circular Binary Segmentation. Karyotype analysis of LAU-Me275 revealed 11q amplification 

(CN≥4), so the expected CGH log ratio would be two. Here the ratios obtained from three different 

normalizations failed to reflect the amplification (both Loess and Ridge were close to 0; PopLowess 

was close to 0.6 indicating 3 copies).  
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Figure S2. Correlation between replicates using different normalization 
schemes. 
The scatter plots illustrate the correlation at each CGH probe between two replicates. The heatmaps 

show the correlation for each pairs of replicates. The normalization method is indicated in each plot 

title. RIDGE refers to the framework from Chen et al. 
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Figure S3. Gaussian Mixtures identified in four replicates from LAU-
Me275. 
Each histogram shows the distribution of CBS segment log2 ratios, colors highlight the Gaussian 

components. The number of components identified and the Bayes Information Criterion are indicated 

in each figure title.  
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Figure S4. Comparison of CNV detection algorithm on CGH data. 
Panels are, from left to right: a melanoma with large deletions (LAU-Me280); a melanoma with large amplifications (LAU-Me275); and a control EBV cell line 

(male) hybridized using a pool of female references. From top to bottom: CNV classification (following CBS segmentation) using 1) Gaussian Mixture Model 

(GMM), 2) MergeLevels, 3) the scoring-based approach. Each dot corresponds to a CGH probe with its genomic position on the X axis and its log2 ratio of 

hybridization on the Y axis. Colors indicate the copy number state : orange <= 1 copy gray = 2 copies, cyan = 3 copies and dark blue more than 3 copies. For 

the scoring approach distinction is made between 1 copy (orange) and 0 copy (red). 
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Figure S5. Optimization of Illumina analysis and comparison with Affymetrix prediction in LAU-Me275. 
A. Pearson correlation between SNP CN, as a function of OverUnder window size. B. Copy number concordance at each SNP for different window sizes 

of OverUnder. Colors indicate window size parameters, the bar height indicates the total number of SNPs (in log10 scale) found in one replicate. The 

gray bar indicates the intersection between two technical replicates. The percentage of concordance (number of SNPs found with the same copy number 

bin in both replicates / total number of SNPs from this given copy number bin in the first replicate) is shown on top of each bar. C. Copy number 

A 

B 

C 

D 
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prediction on chromosome 1 using OverUnder with a window size of 201 SNPs. D. Copy number prediction on chromosome 1 using an Affymetrix 6.0 

array (with the PICNIC algorithm). 

 

 

Figure S6. Copy number analysis using Illumina SNP arrays. 
DNA from LAU-Me275 was hybridized to Illumina SNP arrays, and the data were analyzed using the method of Attiyeh et al. The top panel shows genome-wide 

copy number: dark blue indicates more than three copies; cyan:three copies; gray:copy neutral; orange : deletion. Subsequent panels show chromosome 7 with, 

from top to bottom: Hybridization log2 ratio; B allele frequency; and copy number prediction. 
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Figure S7. Intersection between CGH and SNP predictions.  
A. Intersection between CGH and SNP predictions for genes with more than 4 copies. B. Intersection for genes within deletions. C. Intersection for 

genes within deletions for which expression was not detected.   

 

A C B 
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Figure S8. Copy number prediction from CGH and SNP arrays, LOH prediction from SNP arrays. 
Supplied as a PDF file. 

 

  SNP arrays  

  LAU-Me280 LAU-Me246 LAU-T618A LAU-T50B LAU-T149D LAU-Me275  LAU-Me235 unique gene count 

Focal Amplification 213 0 978 438 894 1853 161 4055 

Focal Amplification with 2xOE 85 0 227 106 202 502 25 1089 

Arm-level Amplification 0 0 16584 1033 3477 16398 10384 19496 

Arm-level Amplification with 2xOE 0 0 2988 263 915 3566 1778 6007 

Deletion 2294 3157 2 113 70 2 39 5544 
Deletion w/o expression in 

melanoma but some in melanocytes 167 157 0 6 3 0 4 333 

                  

  CGH arrays  

  LAU-Me280 LAU-Me246 LAU-T618A LAU-T50B LAU-T149D LAU-Me275 LAU-Me235 unique gene count 

Focal Amplification 0 0 0 26 379 0 4 409 

Focal Amplification with 2xOE 0 0 0 6 129 0 1 136 

Arm-level Amplification 222 0 549 99 998 42 0 1884 

Arm-level Amplification with 2xOE 92 0 148 32 398 29 0 689 

Deletion 3668 4281 986 3656 108 122 1059 10711 
Deletion w/o expression in 

melanoma but some in melanocytes 240 208 18 185 5 5 63 634 

Supplementary Table 1. Count of genes affected by SCNA. 
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Table S2. Processed list of SCNA genes in all seven melanoma cell lines. 
Supplied as an Excel file. 

 

Table S3. Genomic and transcriptomic data for SCNA-genes in all seven 
melanoma cell lines. 
Supplied as an Excel file. 

 

Table S4. List of pathways significantly enriched in SCNA, and pathway 
comparison between three melanoma datasets. 
Supplied as an Excel file. 

 

Table S5. List of genes contributing to pathway enrichment in three 
melanoma datasets 
Supplied as an Excel file. 
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