New paper on the genomics of clownfish radiation

Paper by Marcionetti and Salamin on “Insights into the Genomics of Clownfish Adaptive Radiation: the Genomic Substrate of the Diversification” in Genome Biol Evol.

Abstract: Clownfishes are an iconic group of coral reef fishes that evolved a mutualistic interaction with sea anemones, which triggered the rapid diversification of the group. Following the emergence of this mutualism, clownfishes diversified into different ecological niches and developed convergent phenotypes associated with their host use. The genetic basis of the initial acquisition of the mutualism with host anemones has been described, but the genomic architecture underlying clownfish diversification once the mutualism was established and the extent to which clownfish phenotypic convergence originated through shared genetic mechanisms are still unknown. Here, we investigated these questions by performing comparative genomic analyses on the available genomic data of five pairs of closely related but ecologically divergent clownfish species. We found that clownfish diversification was characterized by bursts of transposable elements, an overall accelerated coding evolution, incomplete lineage sorting and ancestral hybridization events. Additionally, we detected a signature of positive selection in 5.4 % of the clownfish genes. Among them, five presented functions associated with social behavior and ecology, and they represent candidate genes involved in the evolution of the size-based hierarchical social structure so particular to clownfishes. Finally, we found genes with patterns of either relaxation or intensification of purifying selection and signals of positive selection linked with clownfish ecological divergence, suggesting some level of parallel evolution during the diversification of the group. Altogether, this work provides the first insights into the genomic substrate of clownfish adaptive radiation and integrates the growing collection of studies investigating the genomic mechanisms governing species diversification.

New paper on the metabolomic profile in clownfish and damselfish skin mucus

Paper by Heim et al on “Population Genetic Structure and Demographic History of Primula fasciculata in Southwest China” published in Frontiers in Ecology and Evolution.

Introduction: The clownfish – sea anemone mutualism was suggested to have triggered the adaptive radiation of clownfishes, but the origin of clownfish resistance to stinging tentacles of host anemones remains unclear. The presence of specific compounds in the mucus of clownfishes conferring them the unique ability to prevent nematocyst discharge from their hosts has been the most supported hypothesis. Yet the mystery regarding the types of compounds found in clownfish skin mucus remains unsolved.

Methods: We analyzed the chemical composition of clownfish and damselfish mucus using an untargeted metabolomics (HILIC-HRMS) and lipidomics (RPLC-HRMS) approach.

Results and Discussion: The polar and lipid metabolome signatures were highly specific and allowed to discriminate between the clownfish and damselfish clades. The most discriminative part of the signature was the sphingolipid profile, displaying a broader diversity of ceramides present in significantly higher levels in clownfish mucus. Importantly, the inter-specific variability of metabolic signature was significantly higher in clownfishes, although their diversification is evolutionarily more recent, thus implying the impact of symbiosis on metabolic variability and adaptation. Furthermore, specialists and generalists clownfish species displayed distinctive metabolite signature. Two strict clownfish specialists, which are phylogenetically distant but share the same host species, clustered together based on their molecular signature, suggesting a link with their mutualistic nature. Overall, comparative analyses of metabolic signatures highlight differences in chemical composition of clownfish mucus and provide insight into biochemical pathways potentially implicated in clownfish adaptation to inhabit sea anemones and consequently diversify.

Population structure of Primula fasciculata

Paper by Ren et al on “Population Genetic Structure and Demographic History of Primula fasciculata in Southwest China” published in Frontiers in Plant Sciences.

Abstract: Understanding the factors that drive the genetic structure of a species and its responses to past climatic changes is an important first step in modern population management. The response to the last glacial maximum (LGM) has been well studied, however, the effect of previous glaciation periods on plant demographic history is still not well studied. Here we investigated the population structure and demographic history of Primula fasciculata that widely occurs in the Hengduan Mountains and Qinghai-Tibetan Plateau. We obtained genomic data for 234 samples of the species using restriction site-associated DNA (RAD) sequencing and combined approximate Bayesian computation (ABC) and species distribution modeling (SDM) to evaluate the effects of multiple glaciation periods by testing several population divergence models and demographic scenarios. The analyses of population structure showed that P. fasciculata displays a striking population structure with six groups that could be identified genetically. Our ABC modeling suggested that the current groups diverged from ancestral populations located in the eastern Hengduan Mountains after the largest glaciation occurred in the region (~ 0.8–0.5 million years ago), which is consistent with the result of SDMs. Each current group has survived in different glacial refugia during the LGM and experienced expansions and/or bottlenecks since their divergence during or across the following Quaternary glacial cycles. Our study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes in alpine plant species with shallow population structure.

Link between micro and macroevolution

Paper by Duchen et al. on “Linking micro and macroevolution in the presence of migration”.

Abstract: Understanding macroevolutionary patterns is central to evolutionary biology. This involves the process of divergence within a species, which starts at the microevolutionary level, for instance, when two subpopulations evolve towards different phenotypic optima. The speed at which these optima are reached is controlled by the degree of stabilising selection, which pushes the mean trait towards different optima in the different subpopulations, and ongoing migration that pulls the mean phenotype away from that optimum. Traditionally, macro phenotypic evolution is modelled by directional selection processes, but these models usually ignore the role of migration within species. Here, our goal is to reconcile the processes of micro and macroevolution by modelling migration as part of the speciation process. More precisely, we introduce an Ornstein-Uhlenbeck (OU) model where migration happens between two subpopulations within a branch of a phylogeny and this migration decreases over time as it happens during speciation. We then use this model to study the evolution of trait means along a phylogeny, as well as the way phenotypic disparity between species changes with successive epochs. We show that ignoring the effect of migration in sampled time-series data biases significantly the estimation of the selective forces acting upon it. We also show that migration decreases the expected phenotypic disparity between species and we analyse the effect of migration in the particular case of niche filling. We further introduce a method to jointly estimate selection and migration from time-series data. Our model extends traditional quantitative genetics results of selection and migration from a microevolutionary time frame to multiple speciation events at a macroevolutionary scale. Our results further support that not accounting for gene flow has important consequences in inferences at both the micro and macroevolutionary scale.

Evolution of rbcS gene copies

Paper by Yamada et al. on “Duplication history and molecular evolution of the rbcS multigene family in angiosperms” published in Journal of Experimental Botany.

Abstract: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main molecule determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, was shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene is yet poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected the intensive coevolution between each rbcS gene copies and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.