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Abstract

Objective: Exact tests for Hardy-Weinberg equilibrium are widely used in genetic association studies. We 
evaluate the mid p-value, unknown in the genetics literature, as an alternative for the standard p-value in the 
exact test.
Method: The type 1 error rate and the power of the exact test are calculated for different sample sizes, sigi-
ficance levels, minor allele counts and degrees of deviation from equilibrium. Three different p-value are 
considered: the standard two-sided p-value, the doubled one-sided p-value and the mid p-value. Practical 
implications of using the mid p-value are discussed with HapMap datasets and a data set on colon cancer.
Results: The mid p-value is shown to have a type 1 error rate that is always closer to the nominal level, and to 
have better power. Differences between the standard p-value and the mid p-value can be large for insignifi-
cant results, and are smaller for significant results. The analysis of empirical databases shows that the mid 
p-value uncovers more significant markers, and that the equilibrium null distribution is not tenable for both 
databases.
Conclusion: The standard exact p-value is overly conservative, in particular for small minor allele frequen-
cies. The mid p-value ameliorates this problem by bringing the rejection rate closer to the nominal level, at 
the price of ocasionally exceeding the nominal level.
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1  Introduction
Nowadays, testing genetic markers for Hardy-Weinberg proportions (HWP) is a standard aspect of the anal-
ysis of large SNP databases used in genetic association studies. Deviations from HWP may, among other 
reasons, be the result of genotyping error (Hosking et al., 2004; Attia et al., 2010), population stratification or 
disease association. Currently, three classes of statistical procedures are in use for testing for HWP. The first 
class is the classical χ2-test for goodness of fit, which tests if the genotype counts are compatible with a multi-
nomial distribution given the observed allele frequencies. There are some variations on the χ2-test (Elston and 
Forthofer, 1977; Emigh, 1980; Smith, 1986) and results of the test can be affected by the use of the continuity 
correction, in particular if the minor allele frequency is low (Graffelman and Morales-Camarena, 2008). The 
second class of tests concerns exact procedures. The exact test for HWP dates back to the work of Levene 
(1949) and Haldane (1954) and will be discussed in more detail below. The third class comprises Bayesian 
procedures to test for HWP. The Bayesian approach started with the work of Lindley (1988). Recently, several 
interesting papers on HWP using a Bayesian approach have appeared (Ayres and Balding, 1998; Shoemaker 
et al., 1998; Wakefield, 2010). The classical χ2-test is probably still the most popular way to test HWP (Salanti 
et al., 2005, Yu et al., 2009), though thanks to the availability of increased computing power and software 
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for exact tests, the latter is becoming increasingly popular. In the remainder of this paper we restrict our 
attention to exact test procedures and bi-allelic markers. Exact procedures for multiple alleles have also been 
developed (Guo and Thompson, 1992; Chakraborty and Zhong, 1994). The structure of the remainder of this 
paper is as follows. In Section 2 we summarize the exact test for HWP and enumerate different definitions of 
the p-value for this test. In Section 3 we compare the type I error rate and the power of the different versions 
of the exact test. Section 4 shows the practical implications of using the different p-values with HapMap data-
sets and with a colon cancer dataset. A discussion (Section 5) completes the paper.

2  The exact test for HWP and its p-values
The exact test for HWP is based on the conditional distribution of the number of heterozygotes NAB, given the 
allele count NA and sample size N. This distribution is given by
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where nA and nB are the sample counts of allele A and B, respectively (nA = 2nAA+nAB and nB = 2nBB+nAB), n is the 
total sample size and nAA, nBB and nAB are the sample counts of the homozygotes and the heterozygotes (Weir, 
1996). We refer to this conditional distribution as the Levene-Haldane distribution. Fast recursive procedures 
exist to compute the probabilities according to Equation (1) for different numbers of heterozygotes (Elston 
and Forthofer, 1977; Wigginton et al., 2005). For efficient implementation of the recursive procedure, knowl-
edge of the expectation of the Levene-Haldane distribution can be useful. The expectation and the variance 
of NAB|N, NA can, using results from Okamoto and Ishii (1961), be shown to be:
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In general, it is difficult to give an adequate definition of a p-value for a two-sided exact test if the null dis-
tribution is discrete and asymmetric. The Levene-Haldane distribution is an example of this. The p-value of 
an exact test is usually computed as the sum of the probabilities of all possible samples with the same allele 
count that are as likely or less likely than the observed sample. However, there are several ways to compute a 
p-value in an exact test, in particular if a two-sided test is desired. We will consider four different p-values, the 
one-sided p-value, the doubled one-sided p-value, the standard two-sided p-value, and the mid p-value, and 
discuss all these in the corresponding subsections below. A graphical representation of the different p-values 
is shown in Figure 1. Here, we first introduce some additional notation. With K we indicate the number of pos-
sible samples for the observed number of A alleles. Let pi be the probability of observing a particular sample 
under the Levene-Haldane distribution, given by Equation (1) , and let k be the index of the observed sample 
in the probability array pi, the latter array ordered according to the number of heterozygotes nAB.

2.1  The one-sided p-value

In a one-sided exact test, the p-values of the tests for heterozygote dearth and excess are respectively com-
puted as

 1
( ) and ( ) .

k K

AB AB i AB AB i
i i k

P N n p P N n p
= =

≤ = ≥ =∑ ∑

Authenticated | jan.graffelman@upc.edu author's copy
Download Date | 9/17/13 1:31 PM



J. Graffelman and V. Moreno: Mid p-value for Hardy-Weinberg equilibrium      435

In most modern genetic studies there are often no a priori reasons for expecting heterozygote dearth or 
excess, and two-sided tests therefore form the most natural choice.

2.2  The doubled one-sided p-value

The doubled one-sided p-value constitutes a more conservative approach to testing markers, and is based on 
doubling the p-value obtained in a one-sided test (Yates, 1984; Graffelman, 2010).

 PDOUBLED ONE-SIDED = min(2P(NAB  ≥  nAB), 2P(NAB  ≤  nAB),1). (3)

Doubling a one-sided tail of a non-symmetric discrete distribution may lead to p-values that exceed 1, 
and for this reason 1 is included in the computation of the minimum in (3). Therefore, the doubled one-sided 
p-value cannot exceed 1.

2.3  The standard two-sided p-value

A two-sided p-value is currently the standard way to perform an exact test for HWP. Given the allele frequency 
of the observed sample, the probability of the observed sample can be computed Equation (1). The two-sided 
p-value is the sum of the probabilities of all possible samples with the same allele frequency that are as far 
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Figure 1 Computation of the p-value in an exact test for HWP, for a sample of 50 individuals with a minor allele count of 23, for 
which 13 heterozygotes were observed. (A) One-sided p-value in a test for heterozygote dearth. (B) p-value obtained by dou-
bling the one-sided tail. (C) Standard two-sided p-value, (D) Mid p-value based on half the probability of the observed sample.
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as or farther from HWP in comparison with the observed sample. A two-sided test considers both too large 
and too small heterozygote counts as evidence against the null. From this point on, we assume the array of 
probabilities pi to be ordered by increasing pi, and we redefine k as the index of the observed sample in this 
ordered array (in general, the new index value for k will be different from the one used in Section 2.1). The 
two-sided p-value can then be calculated as
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The type I error rate of a test based on the standard two-sided p-value is known never to exceed the 
nominal significance level α (Wigginton et al., 2005). This means that the test does not suffer from excessively 
high rejection rates. The classical χ2-test is known to have too high rejection rates for low minor allele frequen-
cies (Emigh, 1980; Wigginton et al., 2005). When the allele frequency is not too extreme, the rejection rate 
of the χ2-test is improved by using the continuity correction (Graffelman, 2010). Even though the two-sided 
p-value is the most popular and intuitive criterion for an exact test, it suffers certain problems, and could be 
termed overly conservative for having its rejection rate always below α.

Ideally, the p-value of a statistical test should have a uniform distribution if the null hypothesis is true. 
This means that, under the null hypothesis, the p-value distribution should have expectation 1

2  and vari-
ance 1 .12  However, with discrete random variables (like the number of heterozygotes in a sample of individu-
als) this is often not exactly true in practice. It can be shown that the expectation of the standard two-sided  
p-value always exceeds one half, and that its variance exceeds 1 .12  For the expectation, we have
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which implies that the two-sided p-value is, strictly speaking, not uniformly distributed. The real null distri-
bution of the p-value typically has a spike around 1, as is discussed in detail by Rohlfs and Weir (2008).

2.4  The mid p-value

In exact tests concerning discrete random variables, Lancaster (1961) proposed the mid p-value as the p-value 
for use in exact tests. The mid p-value has also been advocated by Agresti (2002), and is further discussed by 
Barnard (1989), Hirji (1991) and Berry and Armitage (1995). To date, this p-value seems not to have been used 
in exact tests for HWP, and to be unknown in genetics. The mid p-value is half the probability of the observed 
sample plus the sum of the probabilities of all possible samples that are farther from HWP.
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The different p-values are graphically represented in Figure 1 for a sample of n = 50 individuals with a 
minor allele count of nA = 23, for which 13 heterozygotes were observed. Figure 1 shows the distribution of the 
number of heterozygotes given the minor allele count, where the different p-values are shown as grey shaded 
areas. The probabilities of all possible samples with n = 50 and nA = 23 and the different p-values are listed in 
Table 1.

Table 1 illustrates that mid p-values are smaller than standard two-sided p-values and can differ consid-
erably. If, for example, a significance level of 1% is adopted, the mid p-value would reject HWE for a sample 
with 11 heterozygotes, whereas the two-sided p-value would not.

3  Type I error rate and power comparison
Besides considerations regarding the expectation and the variance of the p-value distribution, ideally we 
would want a statistical test that has a type I error rate that is as close as possible to the nominal significance 
level (α), and that has high power. For a given sample size, allele frequency and significance level, the rejec-
tion rate of the exact test with each type of p-value can be calculated exactly (simulation is not needed). The 
probabilities of all possible K outcomes (pi = P(NAB = nAB|N = n, NA = nA)) under the Levene-Haldane distribution 
are calculated, as well as their corresponding p-values for all these samples (Pvi). The rejection rate (type I 
error) is then obtained as:

 1
( ),

k

i
i

p I i
=

⋅∑ Pvi<α

 
(6)

where (i)Pvi<α
I is a binary variable indicating whether the ith sample is significant at level α or not. Rejection 

rates for two-sided, doubled one-sided and mid p-values and power were computed as a function of sample 
size (25, 50, 100 and 1000), the nominal significance level (α = 0.05, 0.01 or 0.001) and the minor allele count 
and are shown in Figure 2.

Figure 2 shows that the mid p-value has a rejection rate that is always larger or equal to the doubled 
one-sided and the standard two-sided rejection rates, and is thus a more liberal way of testing for HWP. The 
higher rejection rate was to be expected, because mid p-values are always smaller than or equal to two-sided 
p-values. However, the most important conclusion from Figure 2 is that the rejection rate of the mid p-value is 

Table 1 Calculation of the different p-values in an exact test for HWE with n = 50 and nA = 23.

nAA nAB nBB P(NAB = nAB) P(NAB  ≤  nAB) P(NAB  ≥  nAB) PD ONE-SIDED PTWO-SIDED PMID X2 2 2
1( )P Xχ ≥

11 1 38 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 44.51 0.0000
10 3 37 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 34.50 0.0000

9 5 36 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 25.75 0.0000
8 7 35 0.0001 0.0001 1.0000 0.0002 0.0001 0.0000 18.29 0.0000
7 9 34 0.0012 0.0012 0.9999 0.0025 0.0012 0.0007 12.09 0.0005
6 11 33 0.0100 0.0113 0.9988 0.0225 0.0113 0.0063 7.18 0.0074
5 13 32 0.0510 0.0622 0.9887 0.1245 0.0987 0.0732 3.54 0.0600
4 15 31 0.1553 0.2175 0.9378 0.4351 0.2540 0.1763 1.17 0.2792
3 17 30 0.2832 0.5008 0.7825 1.0000 0.7019 0.5603 0.08 0.7768
2 19 29 0.2981 0.7989 0.4992 0.9985 1.0000 0.8509 0.27 0.6065
1 21 28 0.1647 0.9636 0.2011 0.4022 0.4187 0.3363 1.73 0.1890
0 23 27 0.0364 1.0000 0.0364 0.0729 0.0477 0.0295 4.46 0.0347

All possible samples with n = 50 and nA = 23 are listed with their probabilities (P(NAB = nAB)). All exact p-values considered are 
given (P(NAB  ≤  nAB), P(NAB  ≥  nAB), PDOUBLED ONE-SIDED, PTWO-SIDED and PMID) as well as the χ2-statistics (X2) and p-values according to a χ2-test 
without continuity correction for HWE.
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closer to the nominal significance level, and this holds for all sample sizes and significance levels. This can 
be appreciated in Figure 2 where the green line corresponding to the mid p-value is always the most close to 
the nominal level. Figure 2 also shows that the rejection rate is closest to the nominal level when the allele 
frequency is close to 0.5. For low minor allele frequencies the rejection rates are more erratic and differ to a 
larger extent from the nominal level. Using the mid p-value can lead one to exceed the nominal rate, though it 
typically exceeds the nominal rate by only a small amount. The amount by which the mid p-value exceeds the 
nominal level is always smaller than or equal to the amount by which the other tests underrate the nominal 
level. Figure 2 also shows that increasing the sample size fastens the convergence of the rejection rate towards 
the nominal level for all tests.

Besides the type I error rate, tests are compared on the basis of their power. In order to compute the power 
of a test, the distribution of the number of heterozygotes given the minor allele count under the alterna-
tive hypothesis is needed. In a seminal paper, Rohlfs and Weir (2008) introduce this distribution, where the 
degree of disequilibrium is parametrized by θ, given by:
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Figure 2 Type I error rate against minor allele count for different sample sizes (25, 50, 100 and 1000) and significance levels 
(0.05, 0.01, and 0.001) for exact tests with standard two-sided (red), doubled one-sided (blue) and mid p-values (green).
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Under HWP, we have θ = 4. Values of θ > 4 imply heterozygote excess, whereas θ < 4 means heterozygote 
dearth. By choosing different values for θ, the degree of disequilibrium (the effect size) can be specified. With 
(7) Equation (1) can be rewritten as (Rohlfs and Weir, 2008)
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where C is a normalization constant, that depends on the population genotype frequencies. The power of the 
test, given the value of θ and given a minor allele count, can be computed by summing probabilities accord-
ing to (8) for all those samples that have a p-value below the specified significance level α. These computa-
tions were performed for the three types of p-value under consideration, using several values of θ (1, 2, 4, 8 
and 16) and several sample sizes (25, 50, 100 and 1000) with α = 0.05. The resulting power graphics are shown 
in Figure 3.

Note that for θ = 4 the type I error rates shown in Figure 2 are recovered. Also note that for sample sizes 
below 100, the power of the exact test is in general low. As an indication, with 2  ≤  θ  ≤  8 and N  ≤  100, power is in 
general below 0.4. The pattern in Figure 3 shows that power typically increases with minor allele frequency. 
The best power is achieved when p is close to 0.5. Figure 3 also shows, as expected, that the exact tests have 
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Figure 3 Power of HWP exact tests against minor allele count for different sample sizes (25, 50, 100 and 1000) and degree of 
disequilibrium (1, 2, 4, 8 and 16). Standard two-sided (red), doubled one-sided (blue) and mid p-values (green).
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better power when there is a larger degree of disequilibrium (e.g., θ = 1 or θ = 16). Note that the power graphics 
are not “symmetric” with respect to θ in the sense that with θ = 16 power is generally lower than with θ = 1 (both 
representing a 4-fold change) in particular for the lower allele frequencies. Note in this respect the particular 
low power for θ = 8 and θ = 16 for minor allele counts below 30. Most interestingly, Figure 3 shows that an exact 
test based on the mid p-value has a power that is always as large as or larger than the standard two-sided 
p-value. The latter statement about the mid p-value is universal: it is observed for all disequilibrium values, 
all minor allele frequencies and all sample sizes. The figures show, as expected, better power for the larger 
sample sizes. However, even for samples as large as 1000 individuals, low power is observed for low MAF and 
disequilibrium values of 2, 8 or 16. Power is, in particular, low for those values of θ in combination with a low 
MAF, because this combination of parameters results in low frequencies for both the heterozygous and the 
rare homozygous genotypes.

4  Practical implications
In this section we work out the practical implications of using the mid p-value instead of the standard two-
sided p-value. For this purpose we use two data-sets. The first data-set is a genome-wide large selection of 
markers from the Hapmap project genotyped in a relatively small sample of subjects (n = 45). The second data-
set is a smaller dataset of markers used in an association study on colon cancer (Landi et al., 2005) with a 
larger sample size (377 cases and 329 controls).

4.1  Genome-wide HWP-analysis of HapMap data with the mid p-value

We used the full HapMap database (The International HapMap Consortium, 2003, 2005, 2007), using all chro-
mosomes of the Han Chinese sample from Beijing (CHB) consisting of 45 unrelated individuals (phase II, 
NCBI build 35). This is an unfiltered database, and SNPs were filtered prior to HWP analysis as previously 
described in Graffelman (2010). We chose this database because it gives an impression of the degree of dis-
equilibrium in a raw database, since testing for HWP is a data quality control requirement to identify markers 
with genotyping problems. Other databases available in the HapMap website have already filtered markers 
precisely by leaving out SNPs with a two-sided exact p-value below 0.001. For the HapMap project the choice 
of the type of p-value has consequences for the admission of markers to the project as is illustrated below.

All available markers were tested by a two-sided exact test, using all three types of p-values described. 
Results are summarized per chromosome in Table 2. This table shows the number of SNPs on each chromo-
some, and the percentage of SNPs for which HWP were rejected by exact tests with the three types of p-values, 
using three different nominal significance levels (0.001, 0.01 and 0.05). At the significance level α = 0.001, the 
rejection rates of all tests are invariably much higher than 0.1%, around 1% for most chromosomes. Under a 
theoretical model of independent markers that are in equilibrium, with genotypes counts following a multi-
nomial distribution, we would expect to find around 0.1% significant SNPs, but we find roughly 10 times as 
many. If we would however, use a significance level of 5% (α = 0.05), then rejection rate for two-sided and mid 
p-values is somewhat lower than the theoretical level, between 2 and 4%. Thus, at the 5% level we are below 
the nominal rate, at the 1% level we exceed the nominal rate, and at the 0.1% level we exceed the nominal 
rate ten-fold. This indicates that the HapMap SNPs that are significant have a tendency to be very significant, 
indicating that disequilibrium probably arises because of technical genotyping problems and not merely 
by chance alone (Hosking et al., 2004). The HWP rejection rate at the 0.001 level is roughly the same for all 
autosomes (0.7 through 1.4%). For the X and Y chromosomes the rejection rates are lower, which is prob-
ably due to the fact that the test uses a smaller sample size (females and males only), and has less power to 
detect disequilibrium. The extent to which the p-values deviate from their theoretical null distribution can be 
judged in a Q-Q plot. The null p-value distribution is non-uniform as shown by Rohlfs and Weir (2008), and 

Authenticated | jan.graffelman@upc.edu author's copy
Download Date | 9/17/13 1:31 PM



J. Graffelman and V. Moreno: Mid p-value for Hardy-Weinberg equilibrium      441

is different for the three types of p-values considered. A Q-Q plot of the mid p-values and a ternary plot of the 
first 5000 SNPs on chromosome 1 are shown in Figure 4. Markers simulated under HWP and conditioned to 
have the same sample size and allele frequency as the observed markers are also shown in the figure. The 
Q-Q plot shows that the lower tail of the p-value distribution is very different from what is expected under the 
null, and that many markers tend to be too significant in comparison with the null. This is in agreement with 
our findings in Table 2. The ternary plot also shows that the observed significant markers tend to have larger 
deviations from HWP, some characterized by heterozygote excess and others by heterozygote dearth. For the 
HapMap project, using the mid p-value instead of the current two-sided p-value implies that for most auto-
somes about 0.1% of the markers currently in the project would not be admitted (see Table 2, columns 8 and 
11). Some chromosomes show a high degree of similarity in their rejection rates, in particular chromosomes 8 
and 9, and chromosomes 11, 12 and 14.

4.2  HWP-analysis of markers for colon cancer

Landi et al. (2005) report on the analysis of a set of markers scored for 706 individuals (377 cases and 329 
controls) possibly involved in colon cancer. These SNPs were genotyped with early microarray technology 
and might be prone to more genotyping error in comparison with more recent technology. In Table 3 we report 
HWP test results for 77 markers using the three variations of the exact test previously described. Table  3 
illustrates the consequences of adopting the mid p-value for HWP tests, and Figure 5 shows HWP Q-Q plots 
based on the mid p-value. The mid p-value is, as expected, always the smallest p-value. There are many non-

Table 2 Rejection rates (in %) for two-sided HWP exact tests.

Chr. #SNPs Doubled one-sided Two-sided Mid

 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

1 337746 2.86 1.70 1.20 3.59 1.90 1.30 4.56 2.34 1.40
2 350757 2.05 0.93 0.58 2.77 1.13 0.66 3.74 1.51 0.72
3 277362 2.27 1.17 0.73 3.05 1.38 0.83 3.94 1.76 0.90
4 264172 2.58 1.34 0.91 3.44 1.58 0.99 4.43 2.04 1.07
5 268099 2.34 1.09 0.68 3.10 1.32 0.75 4.12 1.76 0.83
6 299796 3.16 1.74 1.17 4.03 1.99 1.28 5.07 2.53 1.39
7 232061 2.78 1.57 1.14 3.60 1.77 1.23 4.56 2.21 1.33
8 233975 2.27 1.08 0.65 3.05 1.28 0.72 4.02 1.69 0.79
9 197762 2.18 1.04 0.64 2.99 1.24 0.71 3.98 1.63 0.79

10 232330 2.80 1.51 1.00 3.54 1.75 1.11 4.49 2.20 1.23
11 226012 2.35 1.20 0.78 3.11 1.40 0.87 4.05 1.87 0.94
12 209138 2.46 1.21 0.76 3.25 1.41 0.86 4.15 1.87 0.94
13 173180 2.65 1.40 0.93 3.42 1.65 1.02 4.34 2.07 1.11
14 134267 2.44 1.20 0.78 3.18 1.39 0.88 4.09 1.83 0.96
15 116203 2.74 1.34 0.88 3.54 1.58 0.98 4.49 2.06 1.06
16 118981 2.52 1.25 0.85 3.22 1.48 0.94 4.11 1.91 1.01
17 97890 2.06 1.06 0.70 2.74 1.23 0.75 3.61 1.59 0.81
18 128811 2.25 1.14 0.76 2.95 1.34 0.82 3.85 1.72 0.91
19 62972 2.54 1.29 0.94 3.45 1.50 0.99 4.36 1.91 1.08
20 135235 2.02 1.08 0.73 2.60 1.22 0.80 3.38 1.56 0.88
21 57676 2.51 1.30 0.86 3.54 1.51 0.94 4.52 1.94 1.02
22 63978 1.85 0.88 0.61 2.45 1.01 0.67 3.29 1.30 0.73

X 12973 0.82 0.30 0.23 1.15 0.40 0.24 1.85 0.50 0.26
Y 1804 0.72 0.11 0.00 1.05 0.17 0.06 2.33 0.22 0.06

Rejection rates for different exact tests with doubled one-sided, standard two-sided and mid p-values per chromosome for the 
HapMap CHB population of 45 individuals. Three different nominal significance levels are considered (α = 0.05, 0.01 and 0.001).
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significant markers for which a two-sided p-value of 1 is observed. The mid p-value is typically much smaller 
for these samples. We note that markers UGT1A7.173 and NAT2.58 are the most significant ones. For controls, 
10 significant markers are observed when the two-sided p-value is used, whereas 11 are found with the mid 
p-value (α = 0.05). For cases these numbers are 15 and 18 for two-sided and mid p-value, respectively. If cases 
and controls are not distinguished, 19 significant results are observed for both type of p-values. The markers 
that became significant precisely by using mid p-values are CYP1B1.156, CYP2A6.107, CYP2D6.115 (cases) and 
CYP2E1.3 (controls), and are marked in bold in Table 3. For some of these markers, the difference in p-values 
for cases and controls are particularly large, which signals that these markers do deserve special attention, 
since departure of HWP in cases is an indication of association of the marker with the disease (Lee, 2003).

The Q-Q plots in Figure 5 for the data (top two panels) were obtained by plotting the mid p-values against 
the quantiles of the theoretical null distribution of the mid p-value. The latter distribution is, like the theoreti-
cal null distribution of the two-sided p-value (Rohlfs and Weir, 2008), not uniform. The Q-Q plots reveal that 
the p-value distributions of both cases and controls are not in agreement with HWP. The cases show larger 
deviations from HWP than the controls. Figure 5 also shows Q-Q plots of SNPs that were simulated under 
HWP with each SNP in the simulation being matched to an observed SNP in terms of sample size and allele 
frequency. These simulated SNPs are seen to follow the null distribution indicated by the green line, and 
serve as a reference against which the top two panels can be compared. The ternary plots in Figure 5 show 
that there is heterozygote dearth for both controls and cases, and that the extent of heterozygote dearth is 
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Figure 4 Q-Q plots of mid p-values and ternary plots for the HapMap CHB population of 45 individuals. Top panels represent 
observed markers, bottom panels simulated markers matched in allele frequency and sample size. Red lines in the Q-Q plots 
are lines through the first and third quartile, green lines are the reference lines with slope 1 and intercept 0. Curves in the 
ternary plot indicate the HWP parabola and the limits of the HWP acceptance region.
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larger for cases. The results suggest that the observed degree of HW disequilibrium is partly due to genotyp-
ing error, and that cases show an additional amount of disequilibrium that may be explained by disease 
association.

5  Discussion
In genetic studies with large databases of SNPs, a two-sided test for HWP will usually be the most adequate 
test, because there are usually no a priori reasons to expect excess or dearth of heterozygotes. Figure 2 shows 
that the exact test based on the mid p-value is the most well behaved test because its rejection rate under the 
null hypothesis is closer to the nominal significance level. Moreover, under all possible combinations of MAF, 
sample size and degree of disequilibrium, tests based on the mid p-value were found to have better power. 
Based on these results, the mid p-value, hitherto largely unknown in genetics, is the preferred p-value for an 
exact test for Hardy-Weinberg proportions.
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Figure 5 Q-Q plots of mid p-values and ternary plots for colon cancer data. Controls are represented in the left column, cases in 
the right column. Red lines in the Q-Q plots are lines through the first and third quartile, green lines are the reference lines with 
slope 1 and intercept 0. Curves in the ternary plot indicate the HWP parabola and the limits of the HWP acceptance region.
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A change from the standard two-sided p-value to the mid p-value implies that more evidence against 
HWP will be found, because the mid p-value is smaller or equal to the two-sided p-value. If the observed 
sample is highly unlikely, then the mid and two-sided p-values will be virtually identical. However, if 
the observed sample is highly likely, then the mid p-value can be 50% off the two-sided p-value, that is 

TWO-SIDED MID TWO-SIDED
1 .
2

p p p≤ ≤

The colon cancer data set suggests that the HWP test with the mid p-value is a useful tool. For 3 of the 4 
additional significant markers (see Table 3) there is no evidence against HWP in controls, but considerable 
evidence among cases. Moreover, for 1 of these markers (CYP1B1.156) a co-dominant test for disease associa-
tion was found significant. This suggests that a HWP test with the mid p-value can detect potentially disease-
related markers that would have gone unnoticed in a standard HWP test.

6  Software
The R package HardyWeinberg, version 1.5. available from http://www-eio.upc.es/~jan and http://www. 
r-project.org includes a routine for the exact test that is capable of computing all three p-values considered 
in this paper, routines for Q-Q plots that use the appropriate non-uniform reference distribution for each p-
value, as well as functions for the computation of power and sample size.
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