Gibbon genome and the fast karyotype evolution of small apes
All contents refer to the original paper (Carbone et al. Nature. 2014 Sep 11;513(7517):195-201) Summary and personal comments This paper concerns a study of gibbon karyotype in the perspective of their divergent evolution from ancestral primates. Gibbons, small monkeys living in South-East Asia, differ from other primates, such as great apes and Old World monkeys, for a surprising number of chromosomal rearrangements. The authors aimed to study the mechanisms underlying such an important plasticity in gibbon genome gibbon. 1) The authors sequenced and assembled the genome of a white-cheeked gibbon female (Nomascus leucogenys), ordered in 26 chromosomes (against human reference), and analyzed gibbon-human synteny breakpoints (= rupture of synteny=physical co-localization of genetic loci on the same chromosome within gibbon and human). Fig 2a shows Oxford plots for human (axys y) versus other primates chromosomes (axys x), expressed in terms of collinear blocks of > 10 Mb. It is evident from the graphic that, when compared to other primates, gibbons present the highest rate of chromosome rearrangements, graphically visualized as a scattered instead of a linear plot (Fig2a), in particular large-scale reshuffling (as shown in Fig 2b, right part of the graphic). Examples of synteny breakpoints, such as chromosomal inversion, are shown in …
Read More