The genetics of Mexico recapitulates Native American substructure and affects biomedical traits

Mexico, hosted many cultures such as the Olmec, the Toltec, the Maya and the Aztec, conquered and colonized by the Spanish Empire in 1521. The country harbors a large source of pre-Columbian diversity and their genetic contributions to today’s population. In a recent paper, Moreno-Estrada et al. 2014 performed a detailed genetic study of Mexican genetic diversity. The results showed the genetic stratification among indigenous populations and an association between subcontinental ancestry and lung function. In the first part of the study, to estimate the genetic diversity, researchers examined autosomal single-nucleotide polymorphisms for more than 500 Native Mexican individuals from all around Mexico. Statistical analysis of genomic data showed that some populations within Mexico are more differentiated than European and East Asian populations. This extreme differentiation thought to be a result of isolation followed by a bottleneck and small effective population sizes. The data was analyzed in various ways (ROH and IBD analysis, PCA etc.) and revealed the population substructure of Mexico. In all of the analysis, the results confirmed that Seri (northernmost) and Lacandon (southernmost) have the highest level of differentiation. Also, the differentiation between Seri and Lacandon was greater than average differentiation between human populations. The relationships between …

Read More

Electrogenic fish – what’s in charge of the charge?

Electric organs – organs that are capable of creating and discharging electricity – have evolved independently in at least six different lineages of fish (Torpediniformes, Rajiformes, Mormyroidea, Euteleostei, Siluriformes, Gymnotiformes) and play an important role in communication, navigation, defense and predation. To investigate whether the convergent evolution of these organs has a common genetic basis, Jason Gallant and his coworkers studied the transcriptome of five species of electrogenic fish in three different lineages: Electrophorus electricus, Sternopygus macrurus, Eigenmannia virescens (Gymnotiforme), Malapterurus electricus (Siluriforme) and Brienomyrus brachyistius (Mormyroidea). Electric organs are comprised of arrays of electrocytes – asymmetric cells that are enriched in cation-specific ion channels on one and sodium pumps on the opposing side. The resulting ion flux slowly charges the electrocyte membrane and upon activation by a neuronal stimulus, the voltage is discharged, generating an electrical pulse from the fish. Although the morphology of electric organs and electrocytes varies substantially amongst these species, they are all muscle-derived tissue and originate developmentally from muscle progenitor cells. Since this evolution of muscular to electrogenic tissue has occurred several times independently, the authors investigated, whether the underlying genetic mechanisms are shared. To address this question, Gallant et al. first sequenced and assembled …

Read More

Genomic basis of the convergent evolution of electric organs

Electric organs in fish have evolved independently in six lineages and are an interesting example of convergent evolution. However, the genetic basis underlying the convergence of this trait is poorly understood. By sequencing and assembling the transcriptomes from the electric organ (EO) and skeletal muscle of three of those lineages of electric fish, Galant et al. showed the presence of shared patters of gene expression in pathways related to differentiation from muscle cell, increased cell size, reduced contractility and increased excitability. Paper summary Electric organs allow fish to communicate, navigate and cope with predators and preys. They have evolved rather recently: less than 100 million years ago in the Cenozoic (as shown in Figure 1A). Importantly they have evolved independently in at least six taxonomically diverse lineages, constituting a clear example of convergent evolution. Electrocytes are thought to be developmentally derived from myogenic precursors and are morphologically very different among fish lineages. This is illustrated in Figure 1B, where the authors show micrographs of electrocytes in two lineages of electric fish: gymnotiformes, such as Electrophorus electricus and Sternopygus macrurus, present electrocytes devoid of sarcomere, the contractile unit of muscle cells. In contrast, in mormiroids like Paramormyrops kingsleyae a disorganized and …

Read More

The Amborella Genome and the Evolution of Flowering Plants

Amborella trichopoda, an endemic species to New Caledonia, is the most early-diverging taxa of flowering plants (angiosperms, Figure 1). As such, the sequencing of its genome was of considerable interest for the investigation of the emergence and evolution of this highly diverse lineage presenting at least 350’00 species. In this work, the Amborella genome project (http://www.amborella.org/) reports the draft genome sequence for A. trichopoda. Notably, it was used as reference for the reconstruction of genomic features and architecture of the most recent common ancestor of living angiosperms, the investigation of gene families specific to flowering plants, and the investigation of the Amborella population structure. Genome structure The identification of frequent duplicated collinear genes (Figure 2a) within A. trichopoda genome provides evidence of an a ancient whole genome duplication (WGD). WGD is known to be a pervasive feature in the evolution of plants, with modern plants frequently presenting traces of multiple past duplication events. Thus, a comparison with Vitis vinifera (grape) showed that the genome of A. trichopoda is almost entirely covered by three syntenic grape regions (Figure 2b and 2c). This 1:3 relationship between those two genomes indicates that the WGD detected in A. trichopoda occurred in the common ancestor …

Read More

The evolutionary history of polar bears

The study of the Ursus lineage, including brown bear (Ursus arctos), black bear (Ursus americanus) and polar bear (Ursus maritimus), provides the ability of addressing the subject of adaptation to extreme (salty and glacial) environments in mammals. Moreover, in last few decades, polar bears won public and media attention, being one of the most charismatic species endangered by global warming and Arctic ice melting. To trace history of innovations and determine response to environmental changes in populations of polar bears, two articles published in Science and Proceedings of the National Academy of Sciences in April and June 2012 provide new data and insights to resolve this question. The absence of fossil of polar bears dating before the late Pleistocene (circa 126 000 years ago) and mitochondrial data, suggesting that polar bear were very closely related to a group of brown bear living in Admiralty, Baranof and Chichagof (ABC) islands in Alaska, previously led to believe that polar bears recently emerged from brown bears. The consequences of this hypotheses would be : Polar bear underwent a very rapid and recent (less than 200 ky ago) adaptation to extreme environment (previously not seen in mammals) Brown bear is a paraphyletic taxon, as …

Read More

Classic Selective Sweeps Were Rare in Recent Human Evolution

With the rise of genomics and the availability of whole genome sequences, geneticists hope to be able to understand the recent adaptations humans underwent. Classic selective sweeps, where a beneficial allele arises in a population and subsequently goes to fixation, leave a specific pattern. Indeed, all variation is erased as the selected allele invades the population, and the neighboring neutral variation is also partially swept, with an intensity depending on the linkage with the selected region. An example of classic selective sweep pattern. As the distance from the selected nucleotide increases, diversity increases. Fig. 2 from Hernandez et al. 2011. The selective sweep pattern was used to find evidence for recent adaptation in humans. Many candidate genes for recent adaptation in humans were found. Nevertheless, the preeminence of classic selective sweeps compared with other modes of adaptation (like background selection or recurrent a.k.a. “soft” sweeps) is still unknown. In this paper, the authors claim that classic selective sweeps are in fact a rare event in human recent evolution. They argue that the overall pattern found in genome scan studies can be explained with only nearly neutral mechanisms (neutral evolution plus some purifying selection), without any positive selection going on. This …

Read More