Difference between revisions of "Evolution of polymorphism in plants"
Line 2: | Line 2: | ||
---- | ---- | ||
'''Background:''' | '''Background:''' | ||
− | :Understanding modes of species evolution is the major questions to the current evolutionary biology. As more DNA data become available, an increasing number of researchers is now switching to phylogeny-based | + | :Understanding modes of species evolution is the major questions to the current evolutionary biology. As more DNA data become available, an increasing number of researchers is now switching to phylogeny-based stochastic models. Therefore, the key challenge today is to develop and test algorithms which can adequately describe evolution of phenotypes. |
'''Goal:''' | '''Goal:''' | ||
:The goal of this project is to develop MCMC optimization of Ornstein-Uhlenbeck process with group-specific variance and then use it in phylogenetic comparative analysis to test for signal of directional/divergent selection in a group of plants | :The goal of this project is to develop MCMC optimization of Ornstein-Uhlenbeck process with group-specific variance and then use it in phylogenetic comparative analysis to test for signal of directional/divergent selection in a group of plants |
Revision as of 16:33, 22 February 2012
Evolution of polymorphism in plants
Background:
- Understanding modes of species evolution is the major questions to the current evolutionary biology. As more DNA data become available, an increasing number of researchers is now switching to phylogeny-based stochastic models. Therefore, the key challenge today is to develop and test algorithms which can adequately describe evolution of phenotypes.
Goal:
- The goal of this project is to develop MCMC optimization of Ornstein-Uhlenbeck process with group-specific variance and then use it in phylogenetic comparative analysis to test for signal of directional/divergent selection in a group of plants
Mathematical tools:
- Statistics (stochastic models and MCMC) and programming. The students will learn how to use R to implement stochastic models and develop optimization procedures of the model parameters
Biological or Medical aspects:
- This kind of analysis allow to estimate the most probable way of evolution, and permit to answer a lot of question like phenotypic evolution, comparative analysis between species and more other.
Supervisors:
- Anna Kostikova & Nicolas Salamin
Students: References:
- A Butler, A A King 2004 "Phylogenetic comparative analysis: A modeling approach for adaptive evolution" American Naturalist: 164(6): 683-695
Back to UNIL BSc course: "Solving Biological Problems that require Math 2012"