Difference between revisions of "Sven Bergmann"

Line 1: Line 1:
I am the head of the ''Computational Biology Group'' in the Department of Medical Genetics at the University of Lausanne.
+
I am the head of the ''Computational Biology Group'' ([http://serverdgm.unil.ch/bergmann/ CBG]) in the Department of Medical Genetics at the University of Lausanne.
  
 
----
 
----
Line 8: Line 8:
 
* http://serverdgm.unil.ch/bergmann
 
* http://serverdgm.unil.ch/bergmann
 
* e-mail: Sven.Bergmann_AT_unil.ch
 
* e-mail: Sven.Bergmann_AT_unil.ch
 +
 +
----
 +
 +
Do you know how to get ''smoothly'' from A to B? Well, you just need to minimize the functional expression
 +
<math>\tilde {\cal S}[y(x)] \equiv
 +
\int_{x_i}^{x_f} \left(\kappa[y(x)]\right)^\nu \, ds(x) =
 +
\int_{x_i}^{x_f} {|y''(x)|^\nu \over
 +
                  \left[1+y'(x)^2\right]^{3\nu-1 \over 2}} \,dx </math>!

Revision as of 21:45, 19 February 2009

I am the head of the Computational Biology Group (CBG) in the Department of Medical Genetics at the University of Lausanne.


  • Address: Rue de Bugnon 27 - DGM 328 - CH-1005 Lausanne - Switzerland
  • Phone at work: ++41-21-692-5452
  • Cell phone: ++41-78-663-4980
  • http://serverdgm.unil.ch/bergmann
  • e-mail: Sven.Bergmann_AT_unil.ch

Do you know how to get smoothly from A to B? Well, you just need to minimize the functional expression <math>\tilde {\cal S}[y(x)] \equiv \int_{x_i}^{x_f} \left(\kappa[y(x)]\right)^\nu \, ds(x) = \int_{x_i}^{x_f} {|y(x)|^\nu \over

                 \left[1+y'(x)^2\right]^{3\nu-1 \over 2}} \,dx </math>!