Electrogenic fish – what’s in charge of the charge?
Electric organs – organs that are capable of creating and discharging electricity – have evolved independently in at least six different lineages of fish (Torpediniformes, Rajiformes, Mormyroidea, Euteleostei, Siluriformes, Gymnotiformes) and play an important role in communication, navigation, defense and predation. To investigate whether the convergent evolution of these organs has a common genetic basis, Jason Gallant and his coworkers studied the transcriptome of five species of electrogenic fish in three different lineages: Electrophorus electricus, Sternopygus macrurus, Eigenmannia virescens (Gymnotiforme), Malapterurus electricus (Siluriforme) and Brienomyrus brachyistius (Mormyroidea). Electric organs are comprised of arrays of electrocytes – asymmetric cells that are enriched in cation-specific ion channels on one and sodium pumps on the opposing side. The resulting ion flux slowly charges the electrocyte membrane and upon activation by a neuronal stimulus, the voltage is discharged, generating an electrical pulse from the fish. Although the morphology of electric organs and electrocytes varies substantially amongst these species, they are all muscle-derived tissue and originate developmentally from muscle progenitor cells. Since this evolution of muscular to electrogenic tissue has occurred several times independently, the authors investigated, whether the underlying genetic mechanisms are shared. To address this question, Gallant et al. first sequenced and assembled …
Read More