Evolution at two levels of gene expression in yeast
Protein abundances mainly determined by the balance of transcriptional and translational regulation. Because of the limited technology for the translational research, however, gene expression evolution was based almost entirely on studies of transcriptional regulation. With the quickly development of ribosome profiling–isolating and sequencing short fragments of mRNA bound by actively translating ribosomes–now we can study translational regulation conveniently and efficiently. Simultaneous detection of regulatory divergence at two levels In this paper, firstly, in order to assess the relative contributions of regulatory elements evolution to the changes in mRNA abundance and translation rate, the authors applied ribosome profiling and RNAseq to two species of Saccharomyces yeast (S. cerevisiae and S. paradoxus )and their interspecific hybrid (figure 1). Within hybrids, both alleles share the same trans-acting cellular environment. Therefore, different mRNA abundance or translation efficiency is caused by cis-regulatory divergence. By applied these methods, the authors showed cis-regulatory divergence in both transcription and translation are abundant, almost 35% orthologs have significant divergence in translational efficiency, as compared with 61% with significant divergence in mRNA abundance. Because they identified cis-regulatory elements change at two regulatory levels simultaneously, an interesting question will be asked is whether changes at the two levels could be reinforcing (acting at the same direction) or opposing (acting in opposite directions). Compared …
Read More