Comparative analysis of regulatory information and circuits across distant species
Development and homeostasis of all organisms is tightly controlled by transcription regulatory factors that are often highly conserved across deep phylogenies. However, it is unclear to what extend the basic components of these networks (e.g. network motifs and structure, binding frequencies, factor interactions) are preserved in distantly related species. Boyle and colleagues try to shed light on this question in a recent study published by nature in August 2014 (doi:10.1038/nature13668). Paper summary The scientists compare genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors in different cellular contexts (developmental stages and tissues) to identify the common properties of their underlying networks (data overview shown in Figure 1, taken from original publication). As already described in smaller-scale studies, they see that DNA binding motifs of orthologous regulatory factors remain similar in distantly related species. Furthermore, these orthologous factors are expressed in similar contexts. However, expression of the orthologous targets is only weakly correlated suggesting an extensive re-wiring of regulatory networks across human, worm and fly. Reconstructions of regulatory networks point to a higher number of master-regulators and upward-flowing edges in human when compared to worm and fly. In all three species, the most abundant network motif …
Read More